• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influence of Gravitational Field on Generalized Thermoelasticity with Two-Temperature under Three-Phase-Lag Model

    2015-12-12 11:58:15MohamedOthmanHasonaandNehalMansour
    Computers Materials&Continua 2015年3期

    Mohamed I.A.Othman,W.M.Hasonaand Nehal T.Mansour

    The Influence of Gravitational Field on Generalized Thermoelasticity with Two-Temperature under Three-Phase-Lag Model

    Mohamed I.A.Othman1,2,3,W.M.Hasona2,4and Nehal T.Mansour2,5

    The problem of the generalized thermoelastic medium for three different theories under the effect of a gravitational field is investigated.The Lord-Shulman,Green-Naghdi III,three-phase-lag theories are discussed with two temperature.The normal mode analysis is used to obtain the analytical expressions of the displacement components,force stress,thermodynamic temperature and conductive temperature.The numerical results are given and presented graphically,when the thermal force is applied.Comparisons are made with the results predicted by three-phase-lag model,Green-Naghdi III and Lord-Shulman theories in the presence and absence of gravity as well as two temperature.

    gravity,three-phase-lag,thermoelastic,thermodynamic temperature,conductive temperature,normal-mode.

    Nomenclature

    λ,μ Lame’s parameter counterparts

    u,wdisplacement components

    ggravity

    athe volume coefficient of thermal expansion

    δijKronecker delta

    ρ mass density

    cespecific heat at constant strain

    K(≥0) thermal conductivity

    K?material characteristic of the theory

    Tthermodynamic temperature

    T0reference temperature

    φ conductive temperature

    τvphase lag of thermal displacement gradient

    τtphase lag of temperature gradient

    τqphase lag of heat flux

    b constant material"two temperature parameter"

    ωijskew symmetric tensor called the rotation tensor

    1 Introduction

    The effect of mechanical and thermal disturbances on an elastic body is studied by the theory of thermoelasticity.This theory has two defects,it has been studied by Biot(1956).He deals with a defect of the uncoupled theory that mechanical causes have no effect on temperature.This theory predicts an in finite speed of propagation of heat waves which is a defect that it shares with the uncoupled theory.The first theory was studied by Lord and Shulman(1967),who formulated the generalized thermoelasticity theory involving one thermal relaxation time.The second theory was discussed by Green-Lindsay(1972).They introduced two different relaxation times in the entropy expression and stress-strain relations.The third generalization of the coupled theory of thermoelasticity introduced by Green and Naghdi(1993)whose developed different theories labeled type I,type II,and type III.The Green-Naghdi(G-N)theory of type I in the linearized theory is equivalent to the classical coupled thermoelasticity theory,the(G-N)theory of type II does not admit energy dissipation,and the third(G-N)theory of type III admits dissipation of energy and the heat flux is a combination of type I and type II.The fourth generalization of the coupled theory of thermoelasticity is developed by Tzau(1995)and Chandrasekhariah(1998)and is referred to the dual-phase-lag thermoelasticity.Abbas and Othman(2012)have studied the generalized thermoelsticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli.Raychoudhuri(2007)has recently introduced the three-phase-lag,heat conduction equation in which the Fourier law of heat conduction is replaced by an approximation to a modi fication of the Fourier law with the introduction of three different phase-lag for the heat flux vector,the temperature gradient and the thermal displacement gradient.The stability of the three-phase-lag,the heat conduction equation is discussed by Quintanilla and Racke(2008).Reflection and transmission of waves from the imperfect boundary between two heat conducting micropolar thermoelastic solids by Marin(2014a).Weak solutions in elasticity of dipolar bodies with stretch were studied by Marin(2013).On temporal behav-ior of solutions in thermoelasticity of porous micropolar bodies by Marin(2014b).The effect of initial stress on generalized thermoelastic medium with three-phaselag model under temperature dependent properties has studied by Othman et al.(2014a).Subsequently Kar and Kanoria(2009)have employed this theory of thermoelasticity with three-phase-lag to discuss a problem of thermoelastic interactions on functional graded orthotropic hollow sphere under thermal shock.

    In the classical theory of elasticity,the gravity effect is generally neglected.Generalized thermoelastic medium with temperature-dependent properties for different theories under the effect of gravity field has studied by Othman et al.(2013a).The effect of gravity in the problem of propagation of waves in solids,in particular on an elastic globe,was first studied by Bromwich(1898).The influence of the gravitational field and rotation on a generalized thermoelastic medium using a dual-phase-lag model has studied by Othman et al.(2013b).Subsequently,an investigation of the influence of the gravitational field and rotation on thermoelastic solid with voids under Green-Naghdi theory was considered by Othman et al.(2013c).The effect of gravity on the surface waves,on the propagation of waves in an elastic layer has been studied by De and Sengupta(1974 and 1978).The effect of rotation on micropolar generalized thermoelasticity with two temperature using a dual-phase-lag model has studied by Othman et al.(2014b).Generalized thermoelsticity of thermal shock problem in a non-homo-geneous isotropic hollow cylinder with energy dissipation studied by Othman and Abbas(2012).

    The two temperature theory of thermoelasticity was introduced by Gurtin and Williams(1967),Chen and Gurtin(1968),and Chen et al.(1968),in which the classical Clausius-Duhem inequality was replaced by another one depending on two temperature;the conductive temperature and the thermodynamic temperature,the first is due to the thermal processes,and the second is due to the mechanical processes inherent between the particles and the layers of elastic material,this theory was also investigated by Iesan(1970).The two-temperature model was underrated and unnoticed for many years thereafter.Only in the last decade has the theory been noticed,developed in many works,and find its applications,mainly in the problems in which the discontinuities of stresses have no physical interpretations.Among the authors who contribute to develop this theory,Quintanilla(2004)studied existence,structural stability,convergence and spatial behavior of this theory.Youssef (2006) introduced the generalized Fourier’s law to the field equations of the two-temperature theory of thermoelasticity and proved the uniqueness of the solution for homogeneous isotropic material,Puri and Jordan(2006)studied the propagation of harmonic plane waves.Recently,Maga?a and Quintanilla(2009)have studied the uniqueness and growth solutions for the model proposed by Youssef(2006).

    The present paper is concerned with the investigations related to the effect of gravity with two temperature on a generalized thermoelastic medium based on threephase-lag model by applying the normal mode analysis.Also,the effect of gravity and two-temperature on the physical quantities are discussed numerically and illustrated graphically.

    2 Formulation of the problem and basic equations

    We consider a homogeneous thermoelastic half-space with two-temperature under the influence of gravity.All the considered quantities are functions of the time variabletand of the coordinatesxandzWe consider the normal source acting on the plane surface of generalized thermoelastic half-space under the influence of gravity.The system of governing equations of a linear thermoelasticity with gravity and without body forces consists of:

    The stress-strain relation written as:

    The equation of motion in the absence of body force

    The equation of heat conduction under three phase lag model

    For a two dimensional problem inxz-plane,Eqs.(2)-(4)can be written as:

    For the purpose of numerical evaluation,we introduce dimensions variables

    Using the above dimensions quantities,Eqs.(8)-(10)become

    We define displacement potentialsqand ψ which relate to displacement componentsuandwas,

    Using Eq.(14)in Eqs.(11)-(13),we obtain:

    3 Normal mode analysis

    The solution of the considered physical variable can be decomposed in terms of normal modes as the following form

    Where,ω is the complex time constant andais the wave number inx-direction.Using(18)in Eqs.(15)-(17),we obtain

    The solution of Eq.(22)has the form

    Where,Mn(n=1,2,3)are some constants,are the roots of the characteristic equation of Eq.(22).

    Dimensionless variables of the stress components yields the following,

    Using Eq.(14)and Eqs.(23)-(26)in(27)-(29)

    Where,

    4 Boundary conditions

    The boundary conditions on the plane surfacez=0 are:

    Using Eqs.(32),(34)and(35)in boundary conditions(36),we get three equations in three constantsMn(n=1,2,3)as:

    Solving Eqs.(37)-(39)the constantsMn(n=1,2,3)are defined as follows:

    Where,

    5 Numerical results

    To study the effect of gravity and two-temperature,we now present some numerical results.For this purpose,copper is taken as the thermoelastic material for which we take the following values of the different physical constants.

    The numerical technique,outlined above,was used for the distribution of the real part of the temperatureT,the displacement componentsu,wand the stress components σxx,σzz,σxzfor the problem.There are three lines expressing theories are,the"solid line"expresses the 3PHL theory,the"cross line"expresses the L-S theory,and the"dashed line"expresses the G-N III theory.Figs.1(a,b)-6(a,b)show the distribution of the physical quantities based on L-S,G-N III and 3PHL in the case ofg=0,9.8 respectively.Fig.1(a,b)depict that the displacement componentuincreases with the increase of gravity in the three theories.In the absence and presence of gravity(i.e.g=0,9.8),ubegins to increase then smooth decreases and takes the form of wave and try to return to zero.Fig.2(a,b)exhibit that the displacement componentwincreases with the decrease of gravity,and takes the form of a wave until it develops to zero,that’s mean that the displacementwis inversely proportional with gravity.Fig.3(a,b)demonstrate that the behavior of temperatureTdecreases forg=0,9.8 and takes the form of a wave until it develop to zero.Fig.4(a,b)show that the stress component σxzincreases with the increase of gravitygin L-S,and decreases with the decrease of the gravity in G-N III and 3PHL and takes the form of the wave until it develop to zero.Fig.5(a,b)depict that the stress component σxxbegins from the value zero and satis fies the boundary condition atz=0 in the three theories.The stress component σxxdecreases with the increase of gravity in L-S and 3PHL,and decreases during the period 0≤z≤1,then increasing and takes the form of the wave until it develop to zero atg=9.8 in G-N III,while increases in the period 0≤z≤1,then decreasing and takes the form of the wave until it develop to zero atg=0 in G-N III.Fig.6(a,b)explain that the stress component σzzdecreases in the case ofg=0,9.8 and decays to zero.

    Figs.7(a,b)-12(a,b)exhibit the distribution of the physical quantities based on L-S,G-N III and 3PHL in the case ofb=0,0.1.Fig.7(a,b)show that the displacement componentuincreases with the increase ofbin G-N III and L-S theories,while,it decreases with the increase ofbin 3PHL theory,and try to return to zero at infinity in three theories.Fig.8(a,b)demonstrate that the displacement componentwincreases atb=0.1,in three theories,in the range 0≤z≤1,while decreases atb=0,in 3PHL theory,then,increases atb=0,in the range 0≤z≤0.5,in G-N III and L-S theories,and takes the form of the wave until it develop to zero in three theories.Fig.9(a,b)explain that the temperature satis fies the boundary conditions atz=0 and decreases,in the three theories to a minimum value in the range 0≤z≤1,atb=0.1,while,increases forz≥0.75,atb=0,then,it decays to zero in the two cases.Fig.10(a,b)explain that the stress component σxzdecreases atb=0.1,in the range 0≤z≤0.5 of the three theories,while decreases in the range 0≤z≤0.5 forb=0 in the two theories L-S and 3PHL,but it increases forb=0 in G-N III,and takes the form of the wave until it develop to zero in L-S and G-N III and 3PHL theories.Fig.11(a,b)show that the stress component σxxsatis fies the boundary condition and decreases to a minimum value in the range 0≤z≤1,and increases in the range 1≤z≤2,but,decays to zero in the three theories,forb=0.1,while,increases in the range 0≤z≤0.5 forb=0 in 3PHL and G-N III theories and decays to zero,then,decreases in the range 0≤z≤0.5 forb=0,and increases in the range 0.5≤z≤1 forb=0 until it develop to zero in L-S theory.Fig.12(a,b)show that the stress component σzzdecreases forb=0.1,in the three theories,and it decreases forb=0,in L-S and G-N III,but increases forb=0,in 3PHL then,decays to zero.

    Figure 1:Distribution of displacement component u in the presence and absence of g.

    Figure 2:Distribution of displacement component w in the presence and absence of g.

    Figure 3:Distribution of the temperature T in the presence and absence of g.

    Figure 5:Distribution of the stress component σxxin the presence and absence of g.

    Figure 6:Distribution of the stress component σzzin the presence and absence of g.

    Figure 7:Distribution of displacement component u in the presence and absence of b.

    Figure 8:Distribution of displacement component w in the presence and absence of b.

    Figure 9:Distribution of the temperature T in the presence and absence of b.

    Figure 10:Distribution of the stress component σxzin the presence and absence of b.

    Figure 11:Distribution of the stress component σxxin the presence and absence of b.

    Figure 12:Distribution of the stress component σzzin the presence and absence of b.

    6 Conclusion

    By comparing the figures obtained under the three theories,important phenomena are observed:

    1.Analytical solutions based upon normal mode analysis of the thermoelastic problem in solids have been developed.

    2.The method that is used in the present article is applicable to a wide range of problems in hydrodynamics and thermoelasticity.

    3.There are significant differences in the field quantities under GN-III,3PHL and L-S theories.

    4.The presence of the gravitational field and two-temperature plays a significant role on all physical quantities.

    5.The comparison of the three theories of thermoelasticity,Lord-Shulman theory,three-phase-lag model and Green-Naghdi III is carried out.

    6.The value of all the physical quantities converges to zero,and all the functions are continuous.

    Abbas,I.A.,Othman,M.I.A.(2012):Generalized thermoelsticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli.Chinese Physics B,vol.21,no.1,pp.14601-14606.

    Biot,M.A.(1956):Thermoelasticity and irreversible thermodynamics.Journal of Applied Physics,vol.7,pp.240-253.

    Bromwich,T.J.(1898):On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe.The Proceedings of the London Mathematical Society,vol.30,pp.98-120.

    Chandrasekharaiah,D.S.(1998):Hyperbolic thermoelasticity:A review of recent literature.Applied Mechanics Reviews,vol.51,pp.705-729.

    Chen,P.J.;Gurtin,M.E.(1968):On a theory of heat conduction involving two temperatures.Journal of Applied Mathematics and Physics,vol.19,pp.614-627.

    Chen,P.J.;Gurtin,M.E.;Williams,W.O.(1968):A note on non-simple heat conduction.Journal of Applied Mathematics and Physics,vol.19,pp.969-970.

    De,S.N.;Sengurta,P.R.(1974):In fluence of gravity on wave propagation in an elastic layer.The Journal of the Acoustical Society of America,vol.55,pp.919-921.

    De,S.N.;Sengurta,P.R.(1976):Surface waves under the influence of gravity.Gerlands Beitr Geophys(Leipzig),vol.85,pp.311-318.

    Green,A.E.;Lindsay,K.A.(1972):Thermoelasticity.Journal of Elasticity,vol.2,pp.1-7.

    Green,A.E.;Naghdi,P.M.(1993):Thermoelasticity without energy dissipation.Journal of Elasticity,vol.31,pp.189-209.

    Gurtin,M.E.;Williams,W.O.(1967):An axiom foundation for continuum thermo-dynamics.Archive for Rational Mechanics and Analysis,vol.26,pp.83-117.

    Ie?san,D.(1970):On the linear coupled thermoelasticity with two-temperatures.Journal of Applied Mathematics and Physics,vol.21,pp.583-591.

    Kar,A.;Kanoria,M.(2009):Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect.EuropeanJournal of Mechanics-A/Solids,vol.28,pp.757-767.

    Lord,H.W.;Shulman,Y.A.(1967):Generalized dynamical theory of thermoelasticity.Journal of the Mechanics and Physics of Solids,vol.15,pp.299-309.

    Maga?a,A.;Quintanilla,R.(2009):Uniqueness and growth of solutions in two temperature generalized thermoelastic theories.Mathematics and Mechanics of Solids,vol.14,pp.622-634.

    Marin,M.(2013):Weak solutions in elasticity of dipolar bodies with stretch.Carpathian Journal of Math,vol.29,no.1,pp.33-40.

    Marin,M.(2014a):Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids.Annales Universitatis Scientiarum Ovidius,Mathematics Series,vol.22,no.2,pp.151-175.

    Marin,M.(2014b):On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies.Annales Universitatis Scientiarum Ovidius,Mathematics Series,vol.22,no.1,pp.169-188.

    Othman,M.I.A.;Abbas,I.A.(2012):Generalized thermoelsticity of thermal shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation.International Journal of Thermophysics,vol.33,no.5,pp.913-923.

    Othman,M.I.A.;Elmaklizi,Y.D.;Said,S.M.(2013a):Generalized thermoelastic medium with temperature-dependent properties for different theories under the effect of gravity field.International Journal of Thermophysics,vol.34,pp.521-537.

    Othman,M.I.A.;Hasona,W.M.;Eraki,E.M.(2013b):In fluence of gravity field and rotation on a generalized thermoelastic medium using a dual-phase-lag model.Journal of Thermoelasticity,vol.1,pp.2328-2401.

    Othman,M.I.A.;Zidan,M.E.M.;Hilal,M.I.M.(2013c):The influence of gravitational field and rotation on thermoelastic solid with voids under Green-Naghdi theory.Journal of Physics,vol.2,pp.22-34.

    Othman,M.I.A.;Hasona,W.M.;Abd-Elaziz,E.M.(2014a):The effect of initial stress on generalized thermoelastic medium with three-phase-lag model under temperature dependent properties.Canadian Journal of Physics,vol.92,pp.448-457.

    Othman,M.I.A.;Hasona,W.M.;Abd-Elaziz,E.M.(2014b):Effect of rotation on micropolar generalized thermoelasticity with two temperature using a dualphase-lag model.Canadian Journal of Physics,vol.92,pp.149-158.

    Puri,P.;Jordan,P.M.(2006):On the propagation of harmonic plane waves under the two-temperature theory.International Journal of Engineering Science,vol.44,pp.1113-1126.

    Quintanilla,R.(2004):On existence,structural stability,convergence and spatial behavior in thermoelasticity with two-temperatures.Acta Mechanica,vol.168,pp.61-73.

    Quintanilla,R.;Racke,R.(2008):A note on stability in three-phase-lag heat conduction.International Journal of Heat and Mass Transfer,vol.51,pp.24-29.

    Roy Choudhuri,S.K.(2007):On thermoelastic three phase lag model.Journal of Thermal Stresses,vol.30,pp.231-238.

    Tzou,D.Y.(1995):A uni fied field approach for heat conduction from macro to microscales.The ASME Journal of Heat Transfer,vol.117,pp.8-16

    Youssef,H.M.(2006):Theory of two-temperature generalized thermoelasticity.IMA,Journal of Applied Mathematics,vol.71,pp.383-390.

    1Department of Mathematics,Faculty of Science,Taif University 888,Saudi Arabia.

    2Department of Mathematics,Faculty of Science,Zagazig University,P.O.Box 44519,Zagazig,Egypt.

    3E-mail:m_i_a_othman@yahoo.com

    4E-mail:wahedhasona@yahoo.com

    5E-mail:nehal.tarek23@yahoo.com

    亚洲第一青青草原| www.999成人在线观看| 日韩欧美国产一区二区入口| 国产精品国产三级国产专区5o| 咕卡用的链子| 2018国产大陆天天弄谢| 欧美亚洲 丝袜 人妻 在线| 美女脱内裤让男人舔精品视频| avwww免费| 欧美97在线视频| 亚洲av成人一区二区三| 一区在线观看完整版| 国产又色又爽无遮挡免| 欧美日韩亚洲高清精品| netflix在线观看网站| 桃红色精品国产亚洲av| 91成人精品电影| 美女国产高潮福利片在线看| 国产亚洲欧美精品永久| 麻豆av在线久日| 亚洲成人国产一区在线观看| 成人av一区二区三区在线看 | 日日夜夜操网爽| 最黄视频免费看| 欧美精品一区二区大全| 国产xxxxx性猛交| 一级a爱视频在线免费观看| 午夜福利视频在线观看免费| 国产精品1区2区在线观看. | 国产精品免费视频内射| 9热在线视频观看99| 老司机影院成人| 99国产精品一区二区三区| 精品少妇内射三级| 亚洲情色 制服丝袜| 首页视频小说图片口味搜索| 久久香蕉激情| 亚洲国产精品一区二区三区在线| 日韩,欧美,国产一区二区三区| h视频一区二区三区| 国产日韩欧美亚洲二区| 在线观看舔阴道视频| 首页视频小说图片口味搜索| 热99re8久久精品国产| 51午夜福利影视在线观看| 久久av网站| 国产深夜福利视频在线观看| 五月天丁香电影| 国产成人av激情在线播放| 在线天堂中文资源库| 成人av一区二区三区在线看 | 亚洲国产成人一精品久久久| 国产亚洲精品一区二区www | 日韩制服骚丝袜av| 1024视频免费在线观看| 亚洲男人天堂网一区| 在线十欧美十亚洲十日本专区| 大片电影免费在线观看免费| 国产黄色免费在线视频| 成年人免费黄色播放视频| 人人妻,人人澡人人爽秒播| 在线十欧美十亚洲十日本专区| 国产精品免费大片| 成年美女黄网站色视频大全免费| 日韩欧美一区二区三区在线观看 | 成年av动漫网址| 99国产精品一区二区三区| 高潮久久久久久久久久久不卡| 久久这里只有精品19| 在线看a的网站| 人人妻人人爽人人添夜夜欢视频| 老熟女久久久| 建设人人有责人人尽责人人享有的| 脱女人内裤的视频| 大码成人一级视频| 久久香蕉激情| cao死你这个sao货| 黄色视频不卡| 999久久久精品免费观看国产| 国产精品 欧美亚洲| 高清av免费在线| 99久久99久久久精品蜜桃| 十八禁高潮呻吟视频| avwww免费| 日韩,欧美,国产一区二区三区| 久久精品国产亚洲av高清一级| 免费看十八禁软件| 香蕉国产在线看| 国产麻豆69| 国产精品欧美亚洲77777| 黄色怎么调成土黄色| 丰满迷人的少妇在线观看| 啦啦啦在线免费观看视频4| 午夜福利视频精品| 啦啦啦啦在线视频资源| 国产一区有黄有色的免费视频| 日韩视频在线欧美| 国产精品.久久久| 少妇裸体淫交视频免费看高清 | 老司机靠b影院| 91成人精品电影| 国产精品.久久久| 99香蕉大伊视频| 我的亚洲天堂| 手机成人av网站| 国产一区有黄有色的免费视频| 黄色视频,在线免费观看| 性少妇av在线| 熟女少妇亚洲综合色aaa.| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 亚洲成人免费av在线播放| 精品亚洲成a人片在线观看| 日韩精品免费视频一区二区三区| tube8黄色片| 国产伦理片在线播放av一区| 欧美xxⅹ黑人| 99久久国产精品久久久| 各种免费的搞黄视频| 中国国产av一级| 大片免费播放器 马上看| 婷婷色av中文字幕| 亚洲第一青青草原| 亚洲av日韩在线播放| 69精品国产乱码久久久| 久久久国产一区二区| 99国产精品99久久久久| 老汉色∧v一级毛片| 亚洲国产精品999| 国产精品久久久久久人妻精品电影 | 天天影视国产精品| 国产日韩欧美视频二区| 成年av动漫网址| 亚洲精品久久成人aⅴ小说| 成人免费观看视频高清| 免费观看人在逋| 久久免费观看电影| 操出白浆在线播放| 可以免费在线观看a视频的电影网站| 国产精品一区二区在线不卡| 亚洲国产欧美网| 岛国在线观看网站| 天堂俺去俺来也www色官网| 在线亚洲精品国产二区图片欧美| 国产精品影院久久| 一区二区日韩欧美中文字幕| 欧美日本中文国产一区发布| 男女下面插进去视频免费观看| 别揉我奶头~嗯~啊~动态视频 | 欧美国产精品va在线观看不卡| 婷婷成人精品国产| 欧美黑人精品巨大| 日本精品一区二区三区蜜桃| 成年美女黄网站色视频大全免费| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 啦啦啦中文免费视频观看日本| 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 1024香蕉在线观看| 热re99久久精品国产66热6| 国产免费av片在线观看野外av| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看 | 国产不卡av网站在线观看| 日韩免费高清中文字幕av| 大片电影免费在线观看免费| 日韩中文字幕视频在线看片| 日本一区二区免费在线视频| 成年女人毛片免费观看观看9 | 夜夜骑夜夜射夜夜干| 曰老女人黄片| 久久久精品区二区三区| 国产深夜福利视频在线观看| 精品人妻一区二区三区麻豆| 男人舔女人的私密视频| 午夜福利视频在线观看免费| 一区福利在线观看| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女 | 日韩视频在线欧美| 国产99久久九九免费精品| 不卡av一区二区三区| 久久久国产欧美日韩av| 亚洲久久久国产精品| av超薄肉色丝袜交足视频| 成人国语在线视频| 色播在线永久视频| 亚洲中文字幕日韩| 日本欧美视频一区| 欧美黑人精品巨大| av网站免费在线观看视频| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 女警被强在线播放| 国产99久久九九免费精品| 久久久久久人人人人人| 美女高潮到喷水免费观看| 国产av又大| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 91成年电影在线观看| 国产成人一区二区三区免费视频网站| 搡老熟女国产l中国老女人| 国产深夜福利视频在线观看| 最近中文字幕2019免费版| 色综合欧美亚洲国产小说| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 天天添夜夜摸| 人人妻人人澡人人看| 午夜91福利影院| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 一区二区av电影网| 中文字幕精品免费在线观看视频| 精品视频人人做人人爽| a在线观看视频网站| 免费在线观看日本一区| 亚洲伊人色综图| 最近最新中文字幕大全免费视频| 一级片'在线观看视频| 精品国产国语对白av| 亚洲 国产 在线| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| av在线播放精品| 12—13女人毛片做爰片一| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 窝窝影院91人妻| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 麻豆国产av国片精品| 我的亚洲天堂| 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 超色免费av| 9色porny在线观看| 飞空精品影院首页| 久久精品国产综合久久久| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 大型av网站在线播放| 操美女的视频在线观看| 又黄又粗又硬又大视频| 国产精品久久久久久精品古装| 老司机影院毛片| 亚洲国产欧美在线一区| 夜夜骑夜夜射夜夜干| 久热爱精品视频在线9| 免费在线观看完整版高清| 69精品国产乱码久久久| 午夜福利视频精品| av线在线观看网站| 亚洲七黄色美女视频| 亚洲av电影在线观看一区二区三区| 婷婷色av中文字幕| 国内毛片毛片毛片毛片毛片| 国产精品秋霞免费鲁丝片| 天天躁日日躁夜夜躁夜夜| 80岁老熟妇乱子伦牲交| 啦啦啦 在线观看视频| 又大又爽又粗| 久久影院123| 久久人人97超碰香蕉20202| 欧美日韩亚洲综合一区二区三区_| 老司机午夜福利在线观看视频 | 免费久久久久久久精品成人欧美视频| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 精品一区二区三卡| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 两个人免费观看高清视频| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 国产视频一区二区在线看| 亚洲第一青青草原| 视频区图区小说| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦免费观看视频1| 性色av乱码一区二区三区2| 精品久久久久久电影网| 国产在视频线精品| 国产野战对白在线观看| 亚洲成av片中文字幕在线观看| 波多野结衣一区麻豆| 中文字幕高清在线视频| 少妇粗大呻吟视频| 亚洲欧美日韩另类电影网站| 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 91大片在线观看| 飞空精品影院首页| 亚洲九九香蕉| 国产91精品成人一区二区三区 | 俄罗斯特黄特色一大片| 女警被强在线播放| 成年人午夜在线观看视频| 国产91精品成人一区二区三区 | 国产成人影院久久av| 久久国产精品人妻蜜桃| 欧美日韩av久久| 老熟女久久久| 久久久久久久久久久久大奶| 一级片'在线观看视频| 我要看黄色一级片免费的| 国产精品国产av在线观看| 国产成人精品久久二区二区91| 欧美日韩视频精品一区| 午夜日韩欧美国产| 乱人伦中国视频| 久久久久精品人妻al黑| 操美女的视频在线观看| 亚洲av成人一区二区三| 丰满饥渴人妻一区二区三| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 9191精品国产免费久久| 美女午夜性视频免费| 亚洲一区二区三区欧美精品| 亚洲欧洲精品一区二区精品久久久| 色婷婷久久久亚洲欧美| 久热这里只有精品99| 成年人黄色毛片网站| 国产av国产精品国产| 国产在线观看jvid| 亚洲一区二区三区欧美精品| 丁香六月欧美| 国产精品香港三级国产av潘金莲| 久久性视频一级片| 日韩免费高清中文字幕av| 黄片小视频在线播放| 少妇裸体淫交视频免费看高清 | 午夜福利乱码中文字幕| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频 | 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 91麻豆av在线| 精品高清国产在线一区| 国产高清国产精品国产三级| 亚洲一区中文字幕在线| 热99久久久久精品小说推荐| 两人在一起打扑克的视频| 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 菩萨蛮人人尽说江南好唐韦庄| 国产视频一区二区在线看| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 啦啦啦啦在线视频资源| 黄频高清免费视频| 亚洲欧美日韩高清在线视频 | 国产精品免费大片| 无限看片的www在线观看| 国产xxxxx性猛交| 久久精品亚洲av国产电影网| 一区二区三区乱码不卡18| 久久精品国产亚洲av香蕉五月 | 91国产中文字幕| 亚洲国产欧美网| 国产91精品成人一区二区三区 | 人人妻人人澡人人看| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 18禁黄网站禁片午夜丰满| 热99国产精品久久久久久7| 99国产精品免费福利视频| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 国产区一区二久久| 国产精品久久久久成人av| 久久久久精品人妻al黑| 精品国产一区二区久久| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 黑人猛操日本美女一级片| 飞空精品影院首页| 美女高潮到喷水免费观看| 少妇人妻久久综合中文| 亚洲 欧美一区二区三区| www.av在线官网国产| 久久av网站| 成人三级做爰电影| 午夜激情av网站| 99国产精品免费福利视频| 在线观看免费午夜福利视频| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 一本大道久久a久久精品| 岛国毛片在线播放| 制服人妻中文乱码| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 啦啦啦在线免费观看视频4| 免费少妇av软件| 免费在线观看黄色视频的| 久久人人爽人人片av| 国产一区二区三区综合在线观看| 色综合欧美亚洲国产小说| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| 91麻豆av在线| 精品人妻一区二区三区麻豆| 亚洲精品中文字幕一二三四区 | 亚洲精品久久久久久婷婷小说| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品自拍成人| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 久久久久久久久久久久大奶| 国产1区2区3区精品| 美女中出高潮动态图| 大码成人一级视频| 国产野战对白在线观看| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 成年女人毛片免费观看观看9 | 国产精品1区2区在线观看. | 日韩大片免费观看网站| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 高清av免费在线| 日本五十路高清| 超色免费av| 国产亚洲精品一区二区www | 99国产精品99久久久久| 热99久久久久精品小说推荐| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 人人澡人人妻人| 欧美午夜高清在线| 夫妻午夜视频| 久久狼人影院| 首页视频小说图片口味搜索| 51午夜福利影视在线观看| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 人妻 亚洲 视频| 欧美一级毛片孕妇| 精品人妻1区二区| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 亚洲av国产av综合av卡| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| av电影中文网址| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 大片免费播放器 马上看| 悠悠久久av| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 久久99一区二区三区| 亚洲精品av麻豆狂野| www.999成人在线观看| 国产成人精品无人区| 欧美激情 高清一区二区三区| 国产亚洲欧美精品永久| 欧美激情久久久久久爽电影 | 婷婷丁香在线五月| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 亚洲av男天堂| 91字幕亚洲| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 国产伦人伦偷精品视频| 色视频在线一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲av电影在线观看一区二区三区| 搡老岳熟女国产| 首页视频小说图片口味搜索| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 久久女婷五月综合色啪小说| 亚洲国产中文字幕在线视频| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| www.自偷自拍.com| 青草久久国产| 国产精品久久久久成人av| 欧美日韩亚洲综合一区二区三区_| 美女福利国产在线| av有码第一页| 99久久综合免费| 精品乱码久久久久久99久播| 2018国产大陆天天弄谢| 久久人人97超碰香蕉20202| 久久香蕉激情| 老司机深夜福利视频在线观看 | 欧美另类亚洲清纯唯美| 欧美日韩亚洲高清精品| 一区在线观看完整版| 亚洲精品一二三| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 丁香六月天网| 亚洲欧美成人综合另类久久久| 久久国产精品影院| 香蕉丝袜av| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 国产成人啪精品午夜网站| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| 97在线人人人人妻| 性少妇av在线| 涩涩av久久男人的天堂| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 18禁裸乳无遮挡动漫免费视频| 美女午夜性视频免费| 夫妻午夜视频| a级片在线免费高清观看视频| 久久影院123| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 国产成人精品在线电影| 亚洲专区字幕在线| 满18在线观看网站| a 毛片基地| 1024视频免费在线观看| 在线观看www视频免费| 欧美日韩一级在线毛片| 91字幕亚洲| 首页视频小说图片口味搜索| 啦啦啦免费观看视频1| 欧美国产精品一级二级三级| 蜜桃在线观看..| 脱女人内裤的视频| 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲 | 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区 | 国产成人av激情在线播放| www.999成人在线观看| 久久 成人 亚洲| 91成年电影在线观看| 色播在线永久视频| 美女脱内裤让男人舔精品视频| 热99国产精品久久久久久7| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一出视频| av网站免费在线观看视频| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 欧美日韩亚洲高清精品| 成人手机av| 久久人人97超碰香蕉20202| 99热网站在线观看| 日韩欧美国产一区二区入口| 亚洲免费av在线视频| 精品一品国产午夜福利视频| 欧美另类一区| 国产伦理片在线播放av一区| 欧美乱码精品一区二区三区| 成年人午夜在线观看视频| 色94色欧美一区二区| 国产99久久九九免费精品| 日本黄色日本黄色录像| 日日夜夜操网爽| 国产免费现黄频在线看| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 日韩 亚洲 欧美在线| 成人手机av| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av美国av| 在线观看免费高清a一片| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 91国产中文字幕| www.自偷自拍.com| 亚洲第一欧美日韩一区二区三区 | tocl精华| 亚洲欧美成人综合另类久久久| 精品人妻1区二区| 精品国产乱码久久久久久小说| 国产野战对白在线观看| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费|