• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-Dependent J-Integral Solution for Semi-elliptical Surface Crack in HDPE

    2015-12-12 11:58:12BendoubaDjebliAidBenseddiqandBenguediab
    Computers Materials&Continua 2015年3期

    M.Bendouba,A.Djebli,A.Aid,N.Benseddiqand M.Benguediab

    Time-Dependent J-Integral Solution for Semi-elliptical Surface Crack in HDPE

    M.Bendouba1,A.Djebli1,A.Aid1,N.Benseddiq2and M.Benguediab3

    This work focuses on a linear elastic analysis by the finite element method and the development of a shape function,commonly known as geometrical correction factor,for the case of semi-elliptical crack in a cylindrical rod.We used the same shape function to analyze the behavior of the rod in the case of a viscoelastic medium materialized by a polymeric material such as HDPE.A linear viscoelastic model calibrated from a relaxation test was developed and implemented in Abaqus.Results showed a relatively good performance,compared with finite element method.

    J-integral,Viscoelastic,HDPE.

    1 Introduction

    The ability to predict crack growth continues to be a major component of research for several structural materials.Multiple mechanisms may be responsible for crack initiation,nevertheless eventually dominant fatigue cracks evolve into surface cracks,which often have a semi-elliptical shape[Findley,(2007)]

    Cylindrical components such as pipes,pins,reinforcement wires and shafts are commonly used in engineering structures,where,under repeated or continued loading,cracks may develop at the surface and grow across the section[Cai(2005)].Due to geometrical complexity,certain simplification had been made for the crack pro file;early attempts used a straight edge[Daoudet al.(1978);Bush(1981);Carpinteri(1992)]or a circular arc[Wilhemet al.(1982);Mackay and Alperin(1985);Daoud(1985);Forman and Shivakumar(1986);Raju and Newman(1986)]to idealize the crack front.These idealizations,although so close,are not exactly in agreement with experimental observations[Shin and Cai(2004)].Thus,the authors,through recent works,agree on this crack con figuration.Afterward,linear elastic fracture mechanics(LEFM)has been used to analyze stress intensity factors along the crack front for the case of Mode I loading.Recently,a solution of SIFs under mode III was proposed by Benhamenaet al.(2011)for two bonded functionally graded material,and recently,the solution for combined loading(bending,tension and torsion)was proposed[Danton,(2002)]. Apart from the metallic materials that have attracted abundant literature in this subject of research,the polymer materials,unfortunately,have not had their fair share of the subject,apart from works dealing with the subject in point of view elastic or elastoplastic material domain.However it is established that between this two domain,there is one area where the response of the material is substantially dependent on the speed of loading.Thus,unlike metallic materials,the mechanical properties of polymeric materials are indeed sensitive to many parameters,even under normal operating conditions,such as loading rate and temperature.In addition,physical,chemical and mechanical changes can occur in service,especially,when they are subjected to cyclic loading(crack growth)as considered by Hernándezet al.(2001)

    Controlling these parameters,and predicting their long-term effects,helps to avoid design errors,and maintain the integrity of structures.For viscoelastic material,fracture toughness is assumed to be a material property function.As such,it is implicitly taken to depend on loading rate and temperature.In practice,this property function may be quantified using differents methods.Popular among these methods,the work of fracture,the critical energy release rate,the pseudo-elastic or viscoelastic J integral,and the more common critical J integral[Riyadh and Wafa(2006)]According to Danton(2002),it is unlikely that a single-parameter material function would suffice to fully characterize the fracture response of a real linear viscoelastic solid.In practice it is merely hoped that if geometric effects are removed from the test data,a test article and a cracked structural component will fail at the same value of the fracture parameter only if the corresponding failure times are also the same.

    It is in this restricted sense that theJintegral at crack-growth initiation(Jc(t))is taken here as a measure of fracture resistance.

    Many resent papers in fracture and fatigue analysis of complex 2D&3D solid structures and materials are presented[see,Dong and Atluri(2012);Dong and Atluri(2013)].The interest for this series of works is to explore the advantageous features of computational methods as modelling the complicated uncracked structures with simple FEMs,and model the crack-singularities by mathematical methods such as complex variables,special functions.

    HDPE is a significant material,whose tensile creep is a suitable measure of its viscoelastic nature[Schapery(1984);Creus(1986)].It is used in the manufacturing of pipes for transporting fluids such as natural gas and water under relatively high permanent loads,for this reason it is necessary to develop simple tools for engineers to optimize the design of all polymer components,while compromising the safety and cost.When linear viscoelasticity theory is applied to the analysis of the traction problem for a cracked body,the correspondence principle indicates that stresses remain constant in time[Knauss(1973);Williams(1984);Masuero and Creus(1993)].Thus,when aKstress intensity criterion for crack growth is applied,no deferred effect appears to be possible.On the other hand,experimental results[Williams(1984);Ismail et al.(2012)]indicate that cracks in viscoelastic materials grow under constant loads proficiently beneath the elastic fracture load level.In this study,we analyze the applicability of the concept of the normalized stress intensity factor,in the case of a viscoelastic material behavior.For that purpose, finite element analysis is performed to analyze the behavior of a cylindrical rod having a semi elliptical crack,by analyzing the evolution of stress intensities along the crack front.The elastic mechanical properties such as Young’s modulus(E)and Poisson’s ratio(ν)are taken arbitrarily in order to calculate the normalizedSIF,and developing its analytical function under the ModeIcase loading.Thereafter,we checked the validity of this function for the calculation of theJintegral in the case of viscoelastic response.Therefore,An expression of the normalizedSIFs F(a/c,a/D,x/h=0)to the deepest point is obtained.The second purpose of this paper is an analysis of visco-Elastic fracture behavior of HDPE rod loaded in tension,by studying theJintegral(in sense ofG(t))evolution with time.The results have led to the formulation of analyticalJ(t)relationship that involve the normalizedSIFs(F(a/c,a/D,x/h=0))that has been developed in the first section and time-dependent modulusE(t).The analytical relationship obtained describes the evolution of the energy release rate with time,and gives an advantage for quick and simple calculation of the rupture parameters,such as theJintegral.

    2 Material and method

    2.1 Geometrical model

    This study presents a three dimensional finite element analysis using Abaqus commercial[Abaqus(2009]code for semi-elliptical surface cracks in rod.The rod was subjected to remote tension load.The ratio of crack depth to crack length(a/c)ranged from 0.1 to 1,the ratio of crack depth to rod diameter(a/D)ranged from 0.05 to 0.45.Figure 1 presents the geometrical model used in this study.

    2.2 Material Model

    As has been argued above,this analysis highlights the point on the independence of the normalizedSIF Fwith respect to the elastic properties(E,v)intrinsic to

    Figure 1:Schematic illustration for surface cracked and definition of an arbitrary crack shape.

    the material,For this reason,the mechanical properties used in the calculation ofFare chosen arbitrarily,E=207GPaand ν=0.3,as values of Young’s modulus and Poisson’s ratio,respectively.Otherwise,in the second section of this paper,the mechanical model used is linear viscoelastic.The material of interest is a Polyethylene HDPE characterized at different strain rates by Riadhet al.(2006),the authors have con firmed,following an experimental analysis using creep and relaxation tests at room temperature,the linear viscoelastic nature of the polymer of interest in the field of small deformations.However,static mechanical properties for various strain rates are shown in Tab.1[Riadhet al.(2006)]

    Table 1:Tensile mechanical properties of HDPE under different strain rates[Riadh et al.(2006)].

    Figure 2 illustrates the superposition of the relaxation modulus for different levels of imposed strains that assumes a linear viscoelastic behavior at room temperature[Riadhet al.,(2006)]

    Figure 2:Experimental tensile stress relaxation modulus E(t)of HDPE versus time for different applied strain levels[Riadh et al.(2006].

    2.3 Finite element modeling

    Finite element model is developed using Abaqus,A re fined mesh has been created in the area that surrounds the crack front,with using of 20 nodes iso-parametric quadratic brick elements.The square root singularity of stress and strain fields is modeled by shifting the mid-point nodes to the quarter point location around the crack line region This fact is made possible by choosing wedge elements with 15 nodes surrounding the crack tip(Figure 3).

    Figure 3:Detailed modeling of the singularity in the region of the crack line.

    The geometry of the surface crack is completely de fined by the size ratioa/Dand the crack shape ratioa/c(Figure 1),whereD,aandcare,respectively,the diameter of the rod,the crack depth(minor radius of the ellipse)and the major radius of the ellipse.a/cis ranged between 0.1 to 0.9,while,a/Dis taken between 0.05 and 0.45,with different increments to encompass the majority of shapes and sizes as possible similar works as Duboiset al.,(2001)the Warbyet al.,(1992)A typical finite element model is shown in Figure 4

    Figure 4:Typical Finite element model.

    We have applied uniaxial tensile load at the free end of the rod,the other end(the crack plane minus its surface)is fixed with respect to displacement along the axis of the rod as rotations.For reasons of symmetry of loading and geometry,we used a quarter of the rod to minimize the cost in computation time and memory space allocated.The rods length is taken toH=200mm.since,as it is illustrated in Figure 5,the value ofJis independent of this latter,however,Raju and Newman(1986)require a length sufficiently large as a condition of applicability of their approach;the diameterDis fixed toD=20 mm.

    2.4 Evaluation of the rupture parameters

    2.4.1Normalized SIF F

    It is recognized in linear fracture mechanics that stress intensity factor is obtained by the following relation:

    The elasticFEresults displays the elastic component ofJintegral,the stress intensity factor for modeIcondition can be extracted as:

    Figure 5:Elastic FE results of J integral along the crack front for different rod lengths.

    Where,the subscriptIindicates the mode one(crack opening),E′=Efor plane stress condition andE′=E?1-ν2for plane strain condition.

    A normalizedSIF(shape function),F,can be de fined as:

    Fvalues will be evaluated using the results of the J-integral obtained by numerical simulation,just the deepest pointAwill be discussed here,yet a full analysis of the results allows extending the current approach to all points on the line of the crack front with restrictions on the outer point where the singularity is poorly de fined[Danton(2002)]

    3 Analysis of J

    Through the results obtained in this study,we found a fact that different contours integrals yield almost equal values ofJ(except the first contour),which con firms one of the properties ofJthrough our calculations;we have chosen the values of the last contour in the analysis.Figure 6 illustrate three trends ofJalong the crack front,which provides information on the intensity distribution of stresses.

    Figure 6:FE results of J for various crack parameters a)a/D=0.2,b)a/D=0.333.

    The first tendency is that obtained for aspect ratios(0.1≤a/c≤0.5),we note thatJis maximum at the deepest point of the crack(see Figure 1)and it is a minimum in the surface point of the crack,The second trend is observed for the aspect ratios(0.6,0.7),whereJshows relative stability along the crack front,for aspect ratios greater than 0.7,the trend is reversed andJbecomes maximum at the surface point and it decreases to the minimum value at the deepest point.The evolution ofJshown in Figure 6 is qualitatively reproduced for all size ratios(a/D).Figure 7 shows the results ofJas a function of the position on the crack front for a size ratioa/D=0.133,and different shape ratios.The three trends ofJare clearly illustrated.These results yield an idea on the crack propagation.Now,if the initial crack con figuration where(a/c)is greater than 0.7 is assumed,crack starts propagating at the outside point.The parameter(c)is expanded,therefore,(a/c)decreases and the crack adopts a larger con figuration,at this stage,the depth(a)is constant and remains constant until(a/c)is equal to or less than 0.5,Jwill now be maximum at the deepest point.It is noted here that the critical value ofJis reached first and therefore(a)increases.The propagation process is reversed to the depth direction.The crack has a larger size and will find its original shape.

    Figure 7:The effect of aspect ratio(a/c)on the value of J along the crack front for a size ratio a/D=0.133.

    4 Results

    4.1 Normalized SIF(F)formulation

    Now,we present the expression of the NormalizedSIF(F)to be used in the analytical formulation ofJin the section dealing with the linear viscoelastic behavior of HDPE.

    The results obtained by theFEMallowed us to calculate(F)for all shape and size ratios,and after smoothing the results,we established an expression that gives(F)as a function of(a/canda/D)Attention is pointed on the deepest pointA(x/h=0,Figure 1).Thus,(x/h)will not be taken as a parameter in the function.The results are validated by comparison with those collected from literature.Figure 8 show the variation ofFas a function with the respect of the aspect ratios for different size ratios.A polynomial fit of results in Figure 9 provides a variety of coefficientbi(bi=f(a/D)).

    Figure 8:Variation of F as a function of aspect ratios for different size ratios.

    Figure 9:Variation of bi(i=0,1,2,3)coefficient with respect to size ration a/D.

    We observe that,indeed,Fdecreases with increasing(a/c)and it increases with increasing(a/D).The combination of data and the curves fitting resulted in an expression of(F)as follows:

    The values ofBijare summarized in Tab.2

    The results summarized in Figure 10 show confrontations of our results with those of Shin and Cai,(2004).In the works of Warbyet al.(1992)and those of Raju and Newman(1986),we note here that we used con figurations of cracks similar to shin and Cai(2004)However,Raju and Newman(1986)de fine the parametercas the length intersection of the crack surface with the outer surface of the rod.Results ofFexpression obtained in this work are in agreement with the results obtained by Shin and Cai(2004)for all aspect ratios.Deviations are observed from the results Raju and Newman(1986),especially for large size ratios.This fact can beexplained by the difference between the definition of crack parameterc,therefore,if we observe Figure 10(b),where(a/c)=0.8,the difference between the results decreases significantly.

    Table 2:BijFactors of Eq.4.

    Figure 10:Variation of F with respect to a/D,a)Comparison of present results for a/c=0.6,b)a/c=0.8,c)a/c=1.

    Exactly,at this con figuration,we have observed that the two definitions ofccoincide,which explain the consistency of theFvalues.For aspect ratios less than 0.8,our results are below those of Raju and Newman(1986)(Figure 10(a)),the difference becomes greater pronounced by increasing the size ratios(a/D),in the other hand,fora/cgreater than 0.8,our results are above those of Raju and Newman(1986)(Figure 10(c)).These observations are illuminated by Figure 11 that con firms the observation made for the consistency of the results with those of Shin and Cai(2004).We clearly observe that the curves intersect at the point(a/c=0.8),where we observe almost the same value ofF.

    Figure 11:Variation of F with respect to a/c,comparison of the present results for;a)a/c=0.6,b)a/c=0.8 and c)a/c=1.

    4.2 Correspondence principle for viscoelastic material.

    Figure 12:Evolution of J with time along the crack front for a/D=0.35 and a/c=0.2.

    Figure 13:Evolution of J with time along the crack front for a/D=0.35 and a/c=0.9.

    Polymeric materials such as HDPE are increasingly used in engineering;these viscoelastic materials are time-dependent.That is,the viscoelastic mechanical behavior problems are dependent on both the current state and the entire history[Riadh and Wafa(2006)]This material is a typical mesoscopic response of semicrystalline polymers,see Tomita and Uchida(2005).Generally,the stress level is relatively low and loading time is not long,so the mechanical properties of numerous viscoelastic materials are usually modeled as linear viscoelastic materials[Williams(1984)]For linear viscoelasticity,the determination of solutions is to invoke the numerical inversion of Laplace transform[Marques and Creus(2012)].FEM,as commonly computational methods,has been used to investigate viscoelastic problems[Park and Schapery(1999);Stavros and Jiangwei(2008)].So,for service loading conditions,and with the assumption that the material is homogeneous and isotropic,we applied the finite element method to calculateJ-integrals.Results are shown in Figure 12 and 13,where,for various loading time,we present the results ofJalong the crack front.Figure 12 indicates an increase ofJfor each point on the crack with time fora/c=0.2.Figure 13 indicates the same trend ofJfor each point along the crack front with time fora/c=0.9,except this,we note the same trends discussed above.

    4.3 Viscoelastic formulation

    The viscoelastic behavior is characterized by a time hereditary relationship between stresses and strains.Afterwards,according to time evolutions of stress and strain scalar σ(τ)and ε(τ)respectively,the behavior law is described by a Boltzmann’s integral:

    Wherej(t-τ)is the time creep function in where,tand τ are actual and delayed times respectively.

    Since several years,this formulation is implemented in the finite element method allowing a mechanical field definition and energy interpretations.The finite element implementation,of the hereditary integral(Eq.5)requests to develop memorization techniques for mechanical field history.In this context,we propose in the present work to formulate an analytical expression based on the linear fracture mechanic.The principle of the proposed procedure is based on the fact that it is possible to reduce the problem to instantaneous linear elastic by increments.This means that,at every moment,we calculate the value of theJ-integral based on the updated mechanical properties.The shape function(normalized SIF)is the same.

    4.4 Formulation procedure

    The geometrical model is the same as that used for the calculation of the normalizedSIFfor a semi-elliptical surface crack studied in the previous sections.This same function is assumed to be constant for a given con figuration of crack;it varies only with cracks parameter,the elastic modulus varies with time,it is given,for relaxation case,by

    Where,σ (t)is the time-dependent stress and ε is the applied strain.For creep,the stress is kept constant at σ0and the variation of deformation with time ε(t)is measured.The time-dependent creep modulus is given by:

    The time domain viscoelastic material model available in Abaqus describes isotropic rate-dependent material behavior for materials in which dissipative losses primarily caused by viscous(internal damping)effects,assuming that the shear and volumetric behaviors are independent in multiaxial stress states(except when used for an elastomeric foam),it can be used only in conjunction with linear elastic behavior,hyperelastic behavior of rubber materials or hyperelastic behavior for elastomeric foams.It can be calibrated using time-dependent creep test data,time-dependent relaxation test data,or frequency-dependent cyclic test data[Abaqus(2009)]

    The basic hereditary integral formulation for linear isotropic viscoelasticity is:

    Whereeand φ are the mechanical deviatoric and volumetric strains,Kis the bulk modulus andGis the shear modulus,which are function of time[Stavros and Jiangwei(2008)]

    The relaxation functionK(t)andG(t)can be de fined individually in terms of Prony series[Park and Schapery(1999)]:

    WhereK∞andG∞r(nóng)epresent the long term bulk and shear modulus.In order to numerically simulate the response of HDPE rod in this analysis,at least one curve of relaxation or creep is required for calibration of our material,since it is possible to interconvert between the viscoelastic functions,based on Prony series[Park and Schapery(1999]For this purpose,we need to transform the results of the test performed in tension(Figure 2)to relaxation shear data,using the relation:

    Where,ν denotes Poisson’s ratio,it is assumed to be constant throughout the period of relaxation.Let us,now,consider shear test at small strain where the response is the shear stress,the viscoelastic material model de fines τ(t)as:

    WhereGR(t)is the time-dependent shear relaxation modulus,which characterizes the materials response.This constitutive behavior is illustrated by considering a relaxation test in which strain is suddenly applied to a specimen and next constant for a long time.The initial time is taken ass=0 in the beginning of the experiment,so that:

    G0=G(0)is the instantaneous shear modulus,the normalized relaxation function(required as data input)has the limiting valuesgR(0)=1 andgR(∞)=G∞?G0.

    For Elastic domain,we need to integrate elastic modulus;it is taken equal to 1060MPa.Corresponding to the strain rate ε’=4.10-2,Poisson’s ratio is arbitrarily chosen equal to 0.35.

    4.5 Analytical viscoelastic J integral solution

    When the evaluation of the strain energy release rateGis based on energy variations from an instantaneously elastic state,a correspondence can be established between the viscoelastic and a fictitious elastic problem[(Marc and Hung(2004)].As pointed out by Schapery(1990).In the works of Nguyenaet al.(2008),it would yet be possible to identify a path-independent integralJ(t)which is identical toGand obtained directly from an elastic solution consisting of the current stress field σRappropriately de fined displacementsand strains fields.The path-independent integral is given by[Marc and Hung(2004);Nguyenaet al.(2008);Duanet al.(2012)]

    It is always possible to identifyJ(t1)corresponding toG(t1)when the resulting stress field σij(t1)is combined withfields,determined from an elastic analysis under boundary tractionpi(t1),using as material constants,the moduleμ(0)andk(0).Analytical expression of Energy release rateJ(t)formulated in this work is based on knowledge of the law evolution of the elastic modulus with time.However,this modulus is numerically calculated using Prony series[Park and Schapery(1999)]approximation of relaxation test in Figure 2.Curve fitting of the relaxation modulus versus time leads to the expression ofE(t)which is expressed as follows:

    This equation is typically analogous to Eq.10 with three decades of recovery time.E∞,EiandTiare the rheological parameters for the viscoelastic model for a given conditions,their values are given in Tab.3.

    Table 3:Viscoelastic model parameters of the studied HDPE at room temperature.

    Using Eq.7 allows us,to check the validity of Eq.17 in the calculations that follow.Figure 14 shows the results ofE(t)calculated by using ε33(t)obtained by theFEmethod(Figure 15)compared withE(t)calculated directly by Eq.17.We note that we have imposed an axial stress equal to 1MPaat the end of the rod,the same limit conditions was applied.Thus,Figure 14 shows an agreement ofE(t)calculated directly by Eq.17 withE(t)calculated by dividing axial strainFEoutput(Figure 15)by instantaneous applied stress.

    So the simulation by finite element method is reliable and can be replaced by analytical equation.Based on these results,we propose to develop an analytical expression forJ,involvingE(t)given by Eq.17,and the shape function which is determined by Eq.4 above.Once the expressions ofF(Eq.4)and the expression ofE(t)expressed by Eq.17 are found,we formulate the expression of theJintegral using the expression ofSIF Kgiven by Eq.1.

    Figure 14:Comparison between FE results and analytical viscoelastic model(E(t))calculated with Eq.17.

    Figure 15:Finite element results strains vs.time.

    Where,Jelis the elastic domain ofJ,therefore;viscoelastic expression ofJis obtained by substitutingEbyE(t)expressed in Eq.17,and using the expression ofFfor the deepest point of the crack(pointAin Figure 1)

    ViscoelasticJintegral is written as

    That gives the dependant-time analytical expression ofJ(t)as a function ofF,which depends on surface crack parameters,E(t)which is function of creep time,and of course,the remote axial stress as a constant throughout time and the crack depth

    This work deals with the problem of viscoelastic fracture of a cylindrical rod.Thus,as shown in Figure 14,the viscoelastic model developed after calibration of a relaxation test on a specimen HDPE is highly reliable owing to accurately reproduces the response to loading of the rod for a given period.Nevertheless,and given the tremendous effort in time and resources,e.g.memory space allocated to the storage of meshes and output data for post-processing,it is convenient for an engineer to possess means simple calculations.Simply,the analytical method,that provides proven effectiveness.Of course,it should be accompanied by the finite element method which is the further widely used,especially for complicated problems.For the constant loading,the stress intensity factors for the crack in a linear viscoelastic material are invariable along with time and their values are the same as those for the corresponding elastic material[Duan(2012];Leiet al.(2012)].So the latter case can be referred to check the validity of the developed expression.Figure 16(a)to 16(d)summarize certain results of the J-integral calculated by the analytical relation proposed here.Comparisons between them and the results extracted from the numerical simulation byFEM,give satisfaction,however,it should be noted that deviations were observed for long load times,which can be explained by the accumulation of error with increasing iterations,taking into account the discrepancies of approximation.

    Figure 17(a)and 17(b)illustrate this last observation for periods of loading up to 90,000 seconds,where the difference between the results is pronounced for periods exceeding 30 000 seconds in both cases,the results always converge to oneJvalue which remains constant whenE(t)reachesE∞.Both curves of Figs 17(a)and 17(b)converge to the same horizontal asymptote that takes the value ofJ∞,in finiteJis specific for each cracks con figuration,it depends of course on the value of the shape function.

    Figure 16:Energy release rate(J-integral)of the HDPE rod subjected to tension at the deepest point A.(a).Comparison between analytical and FE results for crack size ratio 0.15and crack shape ratio 0.4.(b)crack size ratio 0.15 and crack shape ratio 0.9;(c)crack size ratio 0.2 and crack shape ratio 0.4 and(d)crack size ratio 0.2 and crack shape ratio 0.5

    Figure 17:Long term energy release rate(J-integral)of HDPE rod subjected to tension for the deepest point A.(a)Comparison between analytical and FE results for crack size ratio 0.2 and crack shape ratio 0.1(b)crack size ratio 0.35 and crack shape ratio 0.9

    For example,in the case wherea/D=0.35 anda/c=0.9(Fig.17(b)),Jconverges to 0.0660MPa.mmfor the finite element method and to 0.0636MPa.mmfor the analytical method.So if we consider the simulation results as a reference,we can estimate relative errors equal to 3.63 percent for the first case and 4.78 percent in the case ofa/D=0.2 anda/c=0.1(Figure 17(a)),Considered eligible in numerical approximations.

    5 Conclusion

    This work deals with the problem of viscoelastic fracture of a cylindrical rod.However,a normalizedSIFis determined for an arbitrary elastic material; it is applicable to HDPE of study.The results of this work show that

    -The NormalizedSIFis independent of the material.Moreover,it depends on the parameters of the crack surface.

    -Knowledge of the stress intensity repartition along the crack front,by using a simple analytical expression of the normalizedSIF,gives access toJas a rupture parameter that is widely used for its simplicity and its experimental determination established.

    -Results of this work allowed developing a simple analytical expression giving the time-dependentJintegral involving the Young’s modulus which is itself a function of time and the shape function.

    -The correspondence principle between elastic and viscoelastic problem has been used,the numerical simulations give similar results to those calculated by the expression developed in this work,consequently,theJintegral method,by its simplicity,can be exploited in the case of a viscoelastic medium such as HDPE.

    -Because very small computational burden is needed,the current Method is very suitable for fracture analyse of 3D structures such as cylindrical rod with a semielliptical crack

    -A more detailed study is in progress,where the use of the correspondence principle will be retained in the case of pressurized HDPE pipes containing cracks in different positions and a more rigorous shape function will be necessary

    AbaqusVersion 6.9 Documentation.Dassault Systmes Simulia Corp.,Providence,R I,USA,2009.

    Benhamena,A.;Aminallah,L.;Bouiadjra,B.B;Benguediab,M.;Amrouche,A.;Benseddiq,N.(2011):Jintegral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending.Mater Design.,vol.32,no.5,pp.2561-2659.

    Bush,J.(1981):Stress intensity factors for single-edge-crack solid and hollow round bars loaded in tension.J.Test.Eval.,vol.9,no.4,pp.216-223.

    Cai,C.Q.;Shin,C.S.(2005):A normalized area-compliance method for monitoring surface crack development in a cylindrical rod.Int.J.Fatigue.,vol.27,no.7,pp.801-809.

    Carpinteri,A.(1992):Stress intensity factors for straight-fronted edge cracks in round bars.Eng.Frac.Mech.,vol.42,no.6,pp.1035-1040.

    Creus,G.J.(1986):Viscoelasticity-basic theory and applications to concrete structure.Springer-Verlag.,pp.28-29

    Danton,G..L.(2002):Initiation J-integral for linear viscoelastic solids with constant Poisson’s ratio.Int.J.Fract.,vol.113,no.1,pp.27-37.

    Daoud,O.E.K.;Cartwright,D.J.(1985):Strain energy release rate for a circular-arc edge crack in a bar under tension or bending.J.Strain.Anal.Eng.Design.,vol.20,no.1,pp.53-58.

    Daoud,O.E.K.;Cartwright,D.J.;Carney,M.(1978):Strain-energy release rate for a single edge-cracked circular bar in tension.J.Strain.Anal.Eng.Design.,vol.13,no.2,pp.83-89.

    Dong,L.;Atluri,S.N.(2012):SGBEM(Using Non-hyper-singular Traction BIE),and super elements,for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.CMES:Computer Modeling in Engineering&Sciences,vol.89,no.5,pp.417-458.

    Dong,L.;Atluri,S.N.(2012):SGBEM Voronoi Cells(SVCs),with embedded arbitrary shaped inclusions,voids,and/or cracks,for micromechanical modeling of heterogeneous materials.CMC:Computers,Materials&Continua,vol.33,no.2 pp.111-154.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 1:2D structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,no.2,pp.91-146.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 2:3D solids.CMES:Computer Modeling in Engineering&Sciences,vol.90,no 5,pp.379-413.

    Duan,J.;Lei,Y.;Li,D.(2012):Enriched finite element method for 2-D and 3-D blunt crack problems in a viscoelastic medium.J.Mechl.Scie.Tech.,vol.26,no.3,pp.869-882.

    Dubois,F.;Chazal,C.;Petit,C.(2001):Viscoelastic crack growth process in wood timbers:an approach by the finite element method for mode I fracture.Inte.J.Fracture.,vol.113,no.4,pp.367-388.

    Findley,K.O.;Koh,S.W.;Saxena,A.(2007):J-integral expressions for semielliptical cracks in round bars.Inte.J.Fatigue.,vol.29,no.5,pp.822-828.

    Forman,R.G.;Shivakumar,V.(1986):Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders.Fracture Mechanics:Seventeenth Volume.J.H.Underwood,R.Chait,C.W.Smith,D.P.Wilhelm,W.A.Andrews and J.C.Newman(Eds.).ASTM STP 905,Philadelphia:pp.59-74.

    Hernández,A.J.;Hernández,S.J.;Macias-García,A.;Sánchez-González,J.(2001):Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model,Polym.Test.,vol.21,no.3,pp.325-331.

    Ismail,A.E.;Arif fin,A.K.;Abdullah,S.;Ghazali,M.J.(2012):Stress intensity factors for surface cracks in round bar under single and combined loadings.Meccanica.,vol.47,no.5,1141-1156.

    Knauss,W.G.(1973):The mechanic of polymer fracture Applied.Mechanics Reviews.,vol.26,pp.1-17.

    Lei,Y.J.;Duan,J.B.;Li,D.K.;Li,X.F.(2012):Crack problems in viscoelastic medium using enriched finite element method.Int.J.Mech.Sci.,vol.58,pp.34-46.

    Mackay,T.L.;Alperin,B.J.(1985):Stress intensity factors for fatigue cracking in high-strength bolts.Eng.Frac.Mec.,vol.1,no.21,pp.91-97.

    Marc,D.;Hung,N.(2004):Fatigue crack growth analysis by an enriched meshless method.J.Comp.Appl.Math.,vol.168,no.1-2,pp.155-64.

    Marc,D;Hung,N.(2004)Fatigue crack growth analysis by an enriched meshless method.J.Comput.Appl.Math.,vol.168,pp.155-164.

    Marques,S.P.C;Creus,G.J.(2012):Solutions with Abaqus in Computational Viscoelasticity.Springer Briefs in Computational Mechanics.,pp.103-111.

    Masuero,J.R.;Creus,G.J.(1993):Finite elements analysis of viscoelastic fracture.Inte.J.Fracture.,vol.60,pp.267-282.

    Nguyena,V.P.;Rabczuk,T.;Bordas,S.(2008):Meshless methods:a review and computer implementation aspects.Math.Comp.Simulation.,vol.79,no.3,pp.763-813.

    Park,S.W.;Schapery,R.A.(1999):Methods of inter-conversion between linear viscoelastic material functions.Part I:a numerical method based on Prony series.Inte.J.Solid.Stru.,vol.36,pp.1653-1675.

    Raju,I.S.;Newman,J.C.(1986):Stress-intensity Factors for circumferential surface cracks in pipes and rods under tension and bending loads.ASTM special technical publication,vol.905,pp.789-805.

    Riadh,E.;Wafa,T.(2006):Viscoelastic Behavior of HDPE Polymerusing Tensile and Compressive Loading.J.Mater.Eng.Perform.,vol.15,no.1,pp.111-116.

    Rice,J.R.(1968):A path independent integral and the approximate analysis of strain concentration by notches and cracks.J Appl Mech.,vol.35,pp.379-386.

    Schapery,R.A.(1984):Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media.Inte.J.Fracture.,vol.25,no.3,pp.195-223.

    Schapery,R.A.(1990):On some path independent integrals and their use in fracture of nonlinear viscoelastic media.Inte.J.Fracture.,vol.42,no.2,pp.189-207.

    Shin,C.S.;Cai,C.Q.(2004):Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending.Inte.J.Fracture.,vol.129,pp.239-264.

    Stavros,S.;Jiangwei,W.(2008):Evaluation of polymer fracture parameters by the boundary element method.Eng Frac Mech.,vol.75,no.5,pp.1251-1265.

    Tian,L.;Dong,L.;Bhavanam,S.;Phan,N.,Satya,N.A.(2014):Mixed-mode fracture&non-planar fatigue analyses of cracked I-beams,using a 3D SGBEMFEM Alternating Method.Theoretical and Applied Fracture Mechanics,vol 74,pp.188-199.

    Tomita,Y.;Uchida,M.(2005):Computational Characterization and Evaluation of Deformation Behavior of Spherulite of High Density Polyethylene in Mesoscale Domain.CMES:Computer Modeling in Engineering&Sciences.,vol.10,no.3,pp.239-248.

    Warby,M.K.;Walton,J.R.;Whiteman,J.R.(1992):A finite-element model of crack-growth in a finite body in the context of mode-I linear viscoelastic fracture.Comput.Meth.Appl.Mech.Eng.,vol.97,no.3,pp.375-397.

    Wilhem,D.;Fitz Gerald,J.;Carte,J.;Dittmer,D.(1982):An empirical approach to determining K for surface cracks.Proceedings of the 5th international Conference on Fracture Research,pp.11-21.

    Williams,J.G.(1984):Fracture Mechanics of Polymers.Ellis Horwood Limited,New York.

    1University of Mustapha Stambouli,B.P 305,Mascara,Algeria.

    2University Lille 1,Bd P.59655 Villeneuve d’Ascq,France.

    3University of Djilali Liabès,Sidi Bel Abèss,Algeria.

    日韩成人伦理影院| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 国产精品av视频在线免费观看| 九色成人免费人妻av| 两个人视频免费观看高清| 国产精品嫩草影院av在线观看| 蜜桃亚洲精品一区二区三区| 国产一区二区三区综合在线观看 | 亚洲精华国产精华液的使用体验| 波野结衣二区三区在线| 日日撸夜夜添| 插阴视频在线观看视频| 99热这里只有是精品50| 寂寞人妻少妇视频99o| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 人妻系列 视频| 啦啦啦韩国在线观看视频| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 嫩草影院入口| 精品久久久久久久久久久久久| 人妻制服诱惑在线中文字幕| 亚洲欧美精品专区久久| 97在线视频观看| 精品一区在线观看国产| 青春草亚洲视频在线观看| 我要看日韩黄色一级片| av卡一久久| 久久午夜福利片| 一区二区三区乱码不卡18| 一本久久精品| 水蜜桃什么品种好| 久久久久久久国产电影| 成人一区二区视频在线观看| 免费av观看视频| 91狼人影院| 欧美激情久久久久久爽电影| 精品一区二区三区人妻视频| 免费观看a级毛片全部| 久久精品久久久久久噜噜老黄| 久久精品夜夜夜夜夜久久蜜豆| 26uuu在线亚洲综合色| 日本wwww免费看| 亚洲一级一片aⅴ在线观看| 亚洲精品影视一区二区三区av| 中文字幕制服av| 日本熟妇午夜| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频 | 色综合色国产| 99久久中文字幕三级久久日本| 97热精品久久久久久| 久久久久久久久久久丰满| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 免费播放大片免费观看视频在线观看| 18禁裸乳无遮挡免费网站照片| 欧美日韩亚洲高清精品| 国产毛片a区久久久久| 美女主播在线视频| 日韩欧美精品免费久久| 亚洲三级黄色毛片| ponron亚洲| 亚洲欧洲日产国产| 午夜激情欧美在线| 亚洲欧美成人精品一区二区| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 日韩欧美国产在线观看| 精品国产露脸久久av麻豆 | 久久久久久久大尺度免费视频| 免费av观看视频| ponron亚洲| 91久久精品国产一区二区三区| 99热6这里只有精品| 国产又色又爽无遮挡免| 亚洲成人精品中文字幕电影| 18禁在线无遮挡免费观看视频| 别揉我奶头 嗯啊视频| 人体艺术视频欧美日本| 国产国拍精品亚洲av在线观看| 久久久久网色| 日日摸夜夜添夜夜添av毛片| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 亚洲久久久久久中文字幕| 成人亚洲精品一区在线观看 | 一级毛片黄色毛片免费观看视频| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 观看美女的网站| 国产精品蜜桃在线观看| 国产av码专区亚洲av| 在线免费观看的www视频| 亚洲最大成人手机在线| kizo精华| 精品国产三级普通话版| 亚洲av免费高清在线观看| 美女被艹到高潮喷水动态| 男女边摸边吃奶| 最近视频中文字幕2019在线8| 麻豆av噜噜一区二区三区| 天天一区二区日本电影三级| 色吧在线观看| 99热全是精品| 看十八女毛片水多多多| 国产精品一及| 在线免费观看不下载黄p国产| 欧美+日韩+精品| 国产不卡一卡二| 嫩草影院入口| 成人午夜精彩视频在线观看| 国产av在哪里看| 一夜夜www| 欧美成人午夜免费资源| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 成年女人看的毛片在线观看| 国产精品三级大全| 国产91av在线免费观看| 两个人的视频大全免费| 青青草视频在线视频观看| 欧美 日韩 精品 国产| 老司机影院毛片| 亚洲18禁久久av| 久久精品夜色国产| 波野结衣二区三区在线| 国产成人福利小说| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 免费大片18禁| 欧美高清性xxxxhd video| 国产有黄有色有爽视频| 最近视频中文字幕2019在线8| 中文字幕制服av| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 日韩国内少妇激情av| www.色视频.com| 日本欧美国产在线视频| 熟妇人妻久久中文字幕3abv| av又黄又爽大尺度在线免费看| 最近的中文字幕免费完整| 久久久久久久久久成人| 亚洲精品乱久久久久久| a级毛色黄片| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 国产久久久一区二区三区| 国产免费一级a男人的天堂| 青春草亚洲视频在线观看| 熟妇人妻不卡中文字幕| 国产午夜福利久久久久久| 精品午夜福利在线看| 久久精品久久精品一区二区三区| 免费观看精品视频网站| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 22中文网久久字幕| 91精品伊人久久大香线蕉| 免费观看精品视频网站| 国产精品av视频在线免费观看| 国产老妇伦熟女老妇高清| 亚洲国产日韩欧美精品在线观看| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| av在线蜜桃| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 国产女主播在线喷水免费视频网站 | 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 亚洲欧美日韩无卡精品| 老司机影院成人| 伦精品一区二区三区| 国产成人免费观看mmmm| 婷婷色av中文字幕| 国产永久视频网站| 一本久久精品| www.av在线官网国产| 爱豆传媒免费全集在线观看| 精品99又大又爽又粗少妇毛片| 国产女主播在线喷水免费视频网站 | 能在线免费观看的黄片| 日本三级黄在线观看| 精品久久久久久久久亚洲| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 国产午夜精品一二区理论片| 久久国产乱子免费精品| 国产高清有码在线观看视频| 如何舔出高潮| 人体艺术视频欧美日本| 国产成人免费观看mmmm| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 亚洲电影在线观看av| 国产亚洲午夜精品一区二区久久 | 久久精品夜色国产| kizo精华| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 亚洲精品中文字幕在线视频 | 男女边摸边吃奶| 免费观看性生交大片5| 高清在线视频一区二区三区| 边亲边吃奶的免费视频| 一级二级三级毛片免费看| 狠狠精品人妻久久久久久综合| 国内精品一区二区在线观看| 九九久久精品国产亚洲av麻豆| 久久国内精品自在自线图片| 国产伦精品一区二区三区四那| 国产真实伦视频高清在线观看| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 国产女主播在线喷水免费视频网站 | 97热精品久久久久久| 色尼玛亚洲综合影院| 中文资源天堂在线| av免费观看日本| 成人高潮视频无遮挡免费网站| 一个人看的www免费观看视频| 亚洲av电影在线观看一区二区三区 | 亚洲av男天堂| 性插视频无遮挡在线免费观看| 亚洲图色成人| 内射极品少妇av片p| eeuss影院久久| 欧美成人a在线观看| 男女那种视频在线观看| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 2018国产大陆天天弄谢| 成年人午夜在线观看视频 | 边亲边吃奶的免费视频| 亚洲av免费在线观看| 久久久久九九精品影院| videos熟女内射| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 国产精品嫩草影院av在线观看| 成人欧美大片| 人人妻人人澡欧美一区二区| 嫩草影院新地址| 熟妇人妻不卡中文字幕| 国产熟女欧美一区二区| 七月丁香在线播放| 亚洲精品456在线播放app| 午夜福利在线观看免费完整高清在| 最近中文字幕高清免费大全6| 可以在线观看毛片的网站| 亚洲怡红院男人天堂| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 高清欧美精品videossex| www.av在线官网国产| 日韩强制内射视频| a级一级毛片免费在线观看| 国产成人免费观看mmmm| 色尼玛亚洲综合影院| 国产 一区精品| 国产精品一区www在线观看| av天堂中文字幕网| 日韩av在线大香蕉| 精品少妇黑人巨大在线播放| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 99久久精品热视频| 一级av片app| 男女边摸边吃奶| 男人和女人高潮做爰伦理| 成年版毛片免费区| 国产黄片视频在线免费观看| 国产成人午夜福利电影在线观看| 麻豆国产97在线/欧美| 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 久久99热6这里只有精品| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 九九在线视频观看精品| 好男人视频免费观看在线| 亚洲欧美日韩东京热| 亚洲最大成人av| 国产淫语在线视频| 一边亲一边摸免费视频| 日韩电影二区| 亚洲av成人av| 青春草视频在线免费观看| 色综合亚洲欧美另类图片| 国产一级毛片在线| 久久国产乱子免费精品| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 熟女电影av网| 春色校园在线视频观看| 免费观看在线日韩| 久久国内精品自在自线图片| 欧美三级亚洲精品| 久久国内精品自在自线图片| 欧美xxⅹ黑人| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 男女啪啪激烈高潮av片| 成人av在线播放网站| 人体艺术视频欧美日本| 最近手机中文字幕大全| 天堂中文最新版在线下载 | 亚洲精品成人av观看孕妇| 人妻夜夜爽99麻豆av| 国产在视频线精品| 一级毛片黄色毛片免费观看视频| 欧美激情在线99| 亚洲在久久综合| 欧美一区二区亚洲| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 欧美 日韩 精品 国产| 国产真实伦视频高清在线观看| 日韩一区二区三区影片| 中文欧美无线码| 国产中年淑女户外野战色| 国产高潮美女av| 日韩亚洲欧美综合| 91久久精品电影网| 日韩亚洲欧美综合| 成人毛片60女人毛片免费| 亚洲四区av| 精品国产露脸久久av麻豆 | 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| av线在线观看网站| 22中文网久久字幕| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 搡老乐熟女国产| 天堂网av新在线| 日本与韩国留学比较| 能在线免费观看的黄片| 国产亚洲精品av在线| 欧美日韩精品成人综合77777| 老司机影院成人| 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 联通29元200g的流量卡| av在线观看视频网站免费| 99久国产av精品国产电影| 成年av动漫网址| ponron亚洲| 超碰av人人做人人爽久久| 国产成人精品一,二区| 国产极品天堂在线| 99久国产av精品国产电影| 免费大片黄手机在线观看| 黑人高潮一二区| 啦啦啦啦在线视频资源| 大香蕉久久网| 国产av在哪里看| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 搡老乐熟女国产| 日日啪夜夜爽| 自拍偷自拍亚洲精品老妇| 午夜精品在线福利| 尾随美女入室| av免费在线看不卡| 亚洲国产精品国产精品| kizo精华| 国产亚洲91精品色在线| 特大巨黑吊av在线直播| av.在线天堂| 女人十人毛片免费观看3o分钟| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 成年人午夜在线观看视频 | 亚洲精品,欧美精品| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| 国产有黄有色有爽视频| 国产亚洲最大av| 伊人久久国产一区二区| 又大又黄又爽视频免费| 三级毛片av免费| 插逼视频在线观看| 欧美性猛交╳xxx乱大交人| 小蜜桃在线观看免费完整版高清| 91午夜精品亚洲一区二区三区| 丰满少妇做爰视频| 国产又色又爽无遮挡免| 少妇丰满av| 99热全是精品| 亚洲精品自拍成人| 国产黄片视频在线免费观看| 啦啦啦韩国在线观看视频| av在线观看视频网站免费| 亚洲精品日本国产第一区| 欧美不卡视频在线免费观看| 亚洲精华国产精华液的使用体验| 亚洲精品自拍成人| 国产精品久久视频播放| 人人妻人人澡人人爽人人夜夜 | 性插视频无遮挡在线免费观看| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| xxx大片免费视频| 日韩欧美国产在线观看| 午夜日本视频在线| 国产中年淑女户外野战色| 亚洲,欧美,日韩| 精品久久久久久久久av| 国产免费又黄又爽又色| 男人舔女人下体高潮全视频| 国产单亲对白刺激| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| 身体一侧抽搐| 在线观看免费高清a一片| 看免费成人av毛片| a级毛片免费高清观看在线播放| 国产精品久久久久久久电影| 七月丁香在线播放| 18禁动态无遮挡网站| 国产免费一级a男人的天堂| 欧美成人a在线观看| 特级一级黄色大片| 日韩av免费高清视频| av线在线观看网站| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 久久久久免费精品人妻一区二区| av播播在线观看一区| 国产麻豆成人av免费视频| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 能在线免费观看的黄片| 精品熟女少妇av免费看| 久久99热这里只频精品6学生| 欧美日本视频| 国国产精品蜜臀av免费| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 亚洲成人一二三区av| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 欧美xxⅹ黑人| 婷婷色综合www| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 一级毛片久久久久久久久女| 久久久久久久久久人人人人人人| 麻豆成人午夜福利视频| 国产 一区精品| 中文字幕人妻熟人妻熟丝袜美| 日本猛色少妇xxxxx猛交久久| 欧美人与善性xxx| 成人无遮挡网站| 我的老师免费观看完整版| 久久精品国产亚洲网站| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 欧美日韩在线观看h| 亚洲精品中文字幕在线视频 | 高清av免费在线| 欧美人与善性xxx| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 亚洲久久久久久中文字幕| 天堂√8在线中文| 熟妇人妻久久中文字幕3abv| 亚洲欧美清纯卡通| 亚洲精品,欧美精品| 色尼玛亚洲综合影院| 男女边吃奶边做爰视频| 国产成人精品福利久久| av女优亚洲男人天堂| 亚洲自拍偷在线| 乱码一卡2卡4卡精品| 丰满乱子伦码专区| 成人亚洲精品一区在线观看 | 99re6热这里在线精品视频| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 成人亚洲精品av一区二区| 精品午夜福利在线看| 欧美+日韩+精品| 婷婷色综合www| av在线观看视频网站免费| 亚洲精品一区蜜桃| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 免费在线观看成人毛片| 久久久久久久久大av| 国产又色又爽无遮挡免| 97热精品久久久久久| 亚洲精品日韩在线中文字幕| 亚洲精品一区蜜桃| 噜噜噜噜噜久久久久久91| 国产男女超爽视频在线观看| 免费黄色在线免费观看| 国产成人91sexporn| 欧美变态另类bdsm刘玥| 午夜福利在线观看吧| 在线观看av片永久免费下载| 九九爱精品视频在线观看| 高清av免费在线| 国产精品一区二区三区四区免费观看| 成人av在线播放网站| 欧美bdsm另类| 国产伦精品一区二区三区四那| 国产免费视频播放在线视频 | 国产视频内射| 亚洲精品乱久久久久久| 一个人看视频在线观看www免费| 男插女下体视频免费在线播放| 久久99蜜桃精品久久| 国产 一区 欧美 日韩| 我要看日韩黄色一级片| 全区人妻精品视频| 男人狂女人下面高潮的视频| 亚洲av成人av| 国产精品.久久久| 狂野欧美白嫩少妇大欣赏| 日韩制服骚丝袜av| 80岁老熟妇乱子伦牲交| 嫩草影院入口| 国产亚洲5aaaaa淫片| 真实男女啪啪啪动态图| 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 精品久久久久久成人av| 亚洲国产欧美人成| 夫妻性生交免费视频一级片| 三级国产精品片| 爱豆传媒免费全集在线观看| 少妇熟女aⅴ在线视频| 国产人妻一区二区三区在| 又大又黄又爽视频免费| 少妇的逼水好多| 午夜福利在线观看吧| 亚洲精品,欧美精品| 99热这里只有是精品50| 欧美激情在线99| 日韩av在线免费看完整版不卡| av线在线观看网站| 美女xxoo啪啪120秒动态图| 欧美xxⅹ黑人| 国产91av在线免费观看| 国产亚洲最大av| 亚洲国产高清在线一区二区三| 91精品国产九色| 夫妻午夜视频| 美女脱内裤让男人舔精品视频| 免费看av在线观看网站| 日韩av免费高清视频| av福利片在线观看| 国产69精品久久久久777片| 国产亚洲91精品色在线| 成人亚洲精品一区在线观看 | 日韩成人av中文字幕在线观看| 纵有疾风起免费观看全集完整版 | 只有这里有精品99| 天堂网av新在线| 久久韩国三级中文字幕| 婷婷色麻豆天堂久久| 丝袜喷水一区| 最近中文字幕高清免费大全6| 国产乱人视频| 丝袜喷水一区| 丝袜美腿在线中文| 日产精品乱码卡一卡2卡三| 国产成人a区在线观看| 卡戴珊不雅视频在线播放| 久久99精品国语久久久| 亚洲三级黄色毛片| 18禁在线无遮挡免费观看视频| 黄片无遮挡物在线观看| 国产欧美日韩精品一区二区| 一级毛片我不卡| 欧美日韩精品成人综合77777| 中文字幕av在线有码专区| 久久久久九九精品影院| 看非洲黑人一级黄片| 国产精品不卡视频一区二区| 国产精品熟女久久久久浪| 国产伦精品一区二区三区视频9| 久久亚洲国产成人精品v| 精品一区二区三区视频在线|