• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexoelectricity in Solid Dielectrics:From Theory to Applications

    2015-12-12 11:58:11JianfengLuXuLiang2andShulingHu
    Computers Materials&Continua 2015年3期

    Jianfeng Lu,Xu Liang,2and Shuling Hu,2

    Flexoelectricity in Solid Dielectrics:From Theory to Applications

    Jianfeng Lu1,Xu Liang1,2and Shuling Hu1,2

    Flexoelectricity phenomenologically describes the universal electromechanical coupling effect between electric polarization and strain gradient,and electric field gradient and elastic strain.In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists,commonly,in all solid dielectrics.In this paper,a summary of the research on flexoelectricity is presented to illustrate the development of this topic.Flexoelectricity still have many open questions and unresolved issues in the developing field,although it has attracted a surge of attention recently.Here we review the theoretical investigations and experimental studies on flexoelectricity,and the aim of the current paper is to look into the potential applications of this electromechanical coupling effect.

    Flexoelectricity,Strain gradient,Electric field gradient,Electromechanical coupling.

    1 Introduction

    The development of nanotechnology,such as high performance electronics,integrated circuit,microelectromechanical systems and nanoelectromechanical systems,has the deepest effect on our daily life[Craighead(2000);Ekinci and Roukes(2005)].The conversion between mechanical energy and electrical energy has attracted a surge of attention,such as field effect transistors[Nishi(1978);Javeyet al.(2003)],self-powered nanogenerators[Wang(2008);Xuet al.(2010);Fanet al.(2012)],sensors and actuators[Park and Gao(2006)].A novel application is proposed to harvest the mechanical energy in the ambient based on the classical piezoelectricity[Sodanoet al.(2004);Hong and Moon(2005);Friswell and Adhikari(2010)].However,piezoelectric effect is commonly allowed in noncentrosymmetric media.The presence of non-uniform strain field such as strain gradient can locally break the inversion symmetry and induces electric polarization in solid dielectrics,which has been termed as flexoelectric effect.Conversely,mechanical stress can be generated by an electric field gradient[Tagantsev(1987);Tagantsev(1991);Ma(2010);Lee and Noh(2012);Nguyenet al.(2013)].Flexoelectricity phenomenologically describes the coupling between polarization and strain gradient,and electric field gradient and stress.In contrast to piezoelectricity which is invalid in materials with inversion symmetry, flexoelectricity exists in all solid dielectrics,even in soft membranes[Petrov(2002);Denget al.(2014)]and biological tissues[Fu(2010)].Flexoelectricity also manifests as a size-dependent electromechanical coupling effect due to the including of strain gradient and electric field gradient.Moreover, flexoelectricity hold the promising applications in nanoelectronics where strong strain gradients often be presented[Majdoubet al.(2009a);Fuet al.(2011);Leeet al.(2012)].

    In this paper,a summary of research on flexoelectricity is presented to illustrate the development of such topic.The effect of flexoelectricity on the electromechanical coupling response of nanostructures,the modified electrostatic potential generated in a bent piezoelectric nanowires and piezoelectric semiconductor nanowires has been discussed.Especially,the authors focus on the experimental study on the flexoelectricity in solid materials,the experimental methods and results are discussed in this paper.The aim of this paper is to look into the potential applications of this electromechanical coupling effect in engineering.

    2 Fundamental of flexoelectricity

    Flexoelectric effect is a fundamental physical property of dielectrics which can be de fined as the linear coupling between strain gradient and electric polarization,and linear coupling between stress and electric field gradient.Although flexoelectric effect is a universal electromechanical coupling effect, flexoelectricity has been ignored for a long time.Recently,it was realized that the flexoelectric effect may explain various physical phenomena in solids,such as the intrinsic “dead-layer”in ferroelectric capacitors[Majdoubet al.(2009a);Marangantiet al.(2009)],the size-dependent electromechanical coupling response of nanostructures[Liang and Shen(2013);Yan and Jiang(2013a);Yan and Jiang(2013b);Lianget al.(2014)],the rotation of electric polarization in ferroelectrics[Catalanet al.(2011)].By introducing the flexoelectricity,Liuet al.[Liuet al.(2012)]analytically solved the electrostatic potential generated in a bent piezoelectric nanowire and Xu[Xuet al.(2013)]discussed the interaction between flexoelectric effect and semiconductor properties.

    The fundamental physical formulation for the theory of flexoelectricity can be found in many literatures,Hu and Shen[Hu and Shen(2009)]developed a the-ory for nano-dielectrics with electric field gradient effect,surface and electrostatic force,Shen and Hu[Shen and Hu(2010)]developed a theory for solid dielectrics with flexoelectric effect,surface effect and electrostatic force.These works provided the fundamental physical and mathematical description of the flexoelectricity.Based on these theories,the effect of flexoelectric can be expressed as[Hu and Shen(2009);Lianget al.(2014)]:

    wherecijis the elastic modulus,ekijis the piezoelectric constants,ε0is the dielectric constant of vacuum,χijis the relative susceptibility and μijklis the flexoelectric coefficients.εijandEkare the strain and electric field,σijandPkare the Cauchy stress and electric polarization,respectively.The third terms in the right hand of Eq.(1)describe the direct and converse flexoelectric effect.

    It is worth mentioning that in the case of small gradients(such as mechanical bending),Eq.(1)is suitable,and however,in the case of strong gradients the following expressions are suggested[Shen and Hu(2010);Yudin and Tagantsev(2013)]:

    whereeklijandfklijare the converse and direct flexocoupling coefficients,respectively.Eq.(1)and Eq.(2)give the completely full coupled description of flexoelectricity.Based on these phenomenological descriptions,a series of theoretical works have been done to investigate the flexoelectric effect in solid dielectrics,i.e.,Yang[Yang and Shen(2014)]solved the embedded inclusion problem by the generalized Green’s function method,in which the flexoelectricity is taken into consideration.Although there are some review papers on such topic[Marangantiet al.(2006);Majdoubet al.(2008a);Yudin and Tagantsev(2013);Zubkoet al.(2013)], flexoelectricity still have many open questions in the developing field.Especially,review on experimental studies of flexoelectricity has not been done so far,that is the focus of this paper.

    Flexoelectric effect has been discovered in the middle twentieth century,however,it has been ignored for a long time by the researchers because this effect is quite small at macroscopic level.With the development of new techniques and nanotechnology, flexoelectricity has attracted an increasing amount of attention.Typically,flexoelectricity has been found in presence of strong electromechanical coupling in nano scaled materials and structures.In this section,we give a brie fly summary of the development of flexoelectricity.

    Kogan(1964)developed the phenomenological description for electric polarization due to strain gradient in solid crystals while Meyer(1969)discussed the contribution of electric quadrupole to flexoelectricity.Indenbom(1981)suggested the flexoelectricity for such phenomenon as was discussed in liquid crystals.In the 1980s,Tagantsev(1985,1986)gave a more extensively study on the flexoelectric effect,and systematically studied four contributions to this effect,i.e.the bulk static flexoelectric effect,the bulk dynamic flexoelectric effect,the surface flexoelectric effect,and the surface piezoelectric effect.Based on the lattice dynamics theory,an explicit expression for the flexoelectric coefficients is[Tagantsev(1986);Fuet al.(2006)]:

    whereχ is the dielectric susceptibility,γ is the material parameter constant,eis the electron charge andathe lattice parameter.

    Inspired by the Tagantsev’s theory and lattice dynamics theory’s prediction,there spring up numerous investigation on flexoelectricity.Marvan et al(1994)proposed the parallel chains of harmonic oscillator model combined with surface force rather than strain gradient to understand the physical reason of flexoelectric effect.Klicet al.(2004)used the potential double-well model to derive the formulation of flexoelectric coefficient which is compatible with Tagantsev’s expression. Maranganti(2006)developed the fundamental solutions for spherical and cylindrical inclusion problems from the framework of flexoelectricity. After that,Majdoub(2008b,2009b)employed molecular dynamics to interpret the flexoelectric effect,and investigated the size-dependent piezoelectric and elastic behavior by combining atomistic and theoretical approaches. Deng(2014)developed a nonlinear theoretical framework for flexoelectricity in soft material,and proposed a concept of designing soft piezoelectric composite without using piezoelectric materials.

    Variational principle has been regarded as the bases of the computational for electromechanical coupling problems for a long time.Hu and Shen(2009,2010),Shen and Hu(2010)proposed a variational principle based on electric enthalpy for nanosized dielectrics concerning the effects of flexoelectricity,surface and electrostatic force.This works provide the physical fundamentals and computational method for flexoelectricity.Based on this work,the size-dependent piezoelectricity and elasticity due to strain gradient-electric field coupling has been studied based on a modified Bernoulli-Euler beam model[Liang and Shen(2013)],the effect of flexoelectricity on the electrostatic potential in bent ZnO and piezoelectric semi-conductive nanowire has been investigated and discussed[Liuet al.(2012);Xuet al.(2013)].The flexoelectric effect on elastic wave propagating in periodically layered nanostructure has also been performed using the transfer matrix method[Liuet al.(2014)].There are a series of theoretical works considering the flexoelectric effect in nanoscale dielectrics,however,the flexoelectric coefficients have not be experimentally measured.The difficulties in measuring flexoelectric coefficients of dielectrics are in measuring tiny electric signals generated in bulk dielectrics or the need of new detection techniques for nano scaled dielectrics.

    3 Development of experiments on flexoelectricity

    3.1 Experimental measurement of flexoelectric coefficients of ferroelectrics

    Although lattice dynamics predict a much small magnitudes of the flexoelectric coefficients,theoretical analysis have shown that flexoelectricity plays an important role in enhancing the electromechanical coupling effect,especially in where strong strain gradients is presented[Marangantiet al.(2006);Majdoubet al.(2008a);Majdoubet al.(2008b);Majdoubet al.(2009a)].To understand the flexoelectricity better,it is very necessary to measure the flexoelectric coefficients of dielectrics,typically for dielectrics with high dielectric constants (high dielectric susceptibility)as suggested by the lattice dynamic theory.For cubic crystals,there are only three independent non-zero components of the flexoelectric coefficients[Ma and Cross(2001b);Ma(2007);Shuet al.(2011)].By stretching or compressing a truncated pyramid specimen,the flexoelectric coefficient μ11has been measured[Fuet al.(2006)].By bending a cantilever beam specimen,the flexoelectric coefficient μ12for a series of un-poled ferroelectrics has been measured[Ma and Cross(2001b,a);Ma and Cross(2002);Ma and Cross(2005,2006)].Four point bending method is also employed to measure the flexoelectric coefficient μ12[Ma and Cross(2003)].In these works,giant flexoelectric coefficients which are 4-5 order larger than the predictions of lattice dynamics have been observed.

    In the last decades,experiments on a series of ferroelectrics have been performed inspired by the intrinsic property of flexoelectricity. Crosset al.studied the flexoelectric effect in various perovskite ceramics,such as ferroelectric and paraelectric Barium Titanate[Ma and Cross(2006)],Barium Strontium Titanate(BST)[Ma and Cross(2002)],Lead Magnesium Niobate(PMN)[Ma and Cross(2001b)],Lead ZirconateTitanate(PZT)[Ma and Cross(2003)].In their analysis of experimental,the quasi-static or low frequency dynamic techniques as well as four point bending con figuration were employed to measure the flexoelectric coefficients.It is found that the flexoelectric coefficient can come up to 100μC/m,4-5 orders larger than the lattice dynamic predictions(~10-10C/m).The temperature dependence of flexoelectric coefficients has also been investigated in perovskite ceramics,and it is found that flexoelectric coefficient approaches its peak at the phase transition point[Ma and Cross(2006)].

    By bending beam methods,the flexoelectric coefficientμ12has been measured for various ceramics.Figure 1 illustrated the bending method for measuring flexoelectric coefficient.The wire connects to electrodes on the surface of the specimen for current detection,and the displacement of the specimen is monitored.The electric charge can be calculated from the measured electric current in the external electrical circuit byPi=i?2πfA,whereiis the measured electrical current,fis the driving frequency of the applied load andAis the area of the electrodes on the top and bottom surface[Cross(2006)].The flexoelectric effect of the specimen can be simplified as

    whereμ12is the transverse flexoelectric coefficient.

    Figure 1:Schematic for experiments measurement of flexoelectric coefficients by bending mothed.a:cantilever bending method;b:four point bending method.

    By stretching or compressing truncated pyramid specimens,the flexoelectric coefficient μ11for various ceramics has also been measured.Figure 2 gives the schematic for the experiments set up.This special geometrical shape of the specimen was designed to generate strain gradient when elastic stress is applied.The average strain gradient in the truncated pyramid can be calculated from

    The electric charge can be calculated from the measured electric current in the external electrical circuit bywhereiis the measured electrical current,fis the driving frequency of the applied load andAis the area of the electrodes on the top and bottom surface[Cross(2006)].The definition of the direct flexoelectric effect holds

    whereμ11is longitudinal flexoelectric coefficient.

    After measured the electric current and calculated the average strain gradient,the flexoelectric coefficient can be calculated

    and effective piezoelectric stress constant[Cross(2006)]can be de fined from the experiments as

    Eq.(6)indicates that flexoelectric effect can perform as piezoelectric effect,however,the effective piezoelectric stress constant related to the geometric parameters of the specimen.

    The flexoelectric coefficients and the material parameters for different ceramics are listed in Table 1.These works proved the flexoelectric effect by experiments,in addition it is found that the flexoelectric coefficient for high-K ceramics are 4-5 orders larger than the prediction by the lattice dynamic theory.It is also found that the flexoelectric coefficients in ceramics have been enhanced by the high dielectric susceptibility,which agrees well with the predictions of lattice dynamic theory.

    Inspired by Cross’s works and the lattice dynamic prediction,ferroelectric composites with high dielectric susceptibility were fabricated.Giant flexoelectric coefficients in these composites are observed[Liet al.(2013);Shuet al.(2013);Kwonet al.(2014);Liet al.(2014);Shuet al.(2014a);Shuet al.(2014b)].Although there are many attempts on measuring the flexoelectric coefficient of ferroelectrics,no works are made on measuring the flexoelectricμ44of ceramics.

    Figure 2:Schematic for measuring flexoelectric coefficientμ11by compressing a truncated pyramid specimen.

    Table 1: flexoelectric coefficient of various materials at room temperature(24?C).

    3.2 Measurement of flexoelectric effect in polyvinylidene fluoride films(PVDF)

    Besides ferroelectrics, flexoelectric coefficients in some thermoplastic polymers such as PVDF have been measured.Fuet al.[Fuet al.(2006);Fuet al.(2007);Baskaranetal.(2011a);Baskaranetal.(2011b);Baskaranetal.(2011c);Baskaranet al.(2012);Heet al.(2012)]observed giant flexoelectric effect in polyvinylidene fluoride(PVDF) films.Different shapes of no stretched and poled PVDF films were measured via lock-in detection setup to verify the flexoelectric effect[Baskaranet al.(2011a)].

    The polarization in the film includes the residual piezoelectricity effect and the flexoelectric effect.The generated electric polarization in PVDF films can be written as:

    Theoretically,the flexoelectric effect in polymers such as PVDF is similar to that in liquid crystals.Therefore the flexoelectric effect in polymers is more complicated than that in solid crystals.However,the mechanism of flexoelectric effect in polymers has not been adequately understood so far.

    4 Development of numerical methods of flexoelectricity

    Strain gradient and electric field gradient are included in the theory of flexoelectricity.Analytical solutions for the electromechanical coupled problems with flexoelectricity can be obtained for simple models such as beams,plates and so on.For the case where the shapes and boundary conditions are complex,the numerical methods are needed and urgent.

    At the atomic level,Hong(2013)used the first-principles to calculate the flexoelectric coefficient for cubic insulating materials.Mbarki(2014)used the molecular dynamics(MD)approach with specially tailored interatomic force- field to verify flexoelectric effect of BST/STO and its temperature dependence.Atomic and MD simulations,however,are expensive and restricted by the hardware conditions.

    At the macroscopic level,numerical methods can be used to solve the complicated electromechanical coupling problems with flexoelectricity. Classical finite element methods cannot solve the higher order theories which including the gradients of strain and electric field.The mixed finite element methods or the meshless methods might be the appropriate methods to solve the electromechanical coupling problems with flexoelectricity.There are also some attempts on solving such electromechanical coupling problems.Ariaset al.(2014,2015)introduced the smooth meshfree basis function to deal with the higher-order partial differential equations which could be convenient when handle the general geometries and boundary conditions.Darrallet al.(2015)provided the variational formulation and used the mixed finite element method to solve the size-dependent problem.Several examples were bringing out to illustrate the size-dependent characteristics.Some other researchers also conducted numerical study on flexoelectricity[Fanget al.(2013);Yurkov(2015)].

    5 Potential applications of flexoelectricity

    There are also some applications based on the flexoelectric effect,such as curvature detection by flexoelectric sensors[Kwonet al.(2013);Yanet al.(2013a);Yanet al.(2013b)]and flexoelectric actuators[Huet al.(2011)].Among these structural health monitoring(SHM)in mechanical,civil,shipbuilding,transportation and aircraft structures may be the key point.The system defects such as cracks could cause a catastrophic failure.The present detection technology involves time consuming,expensive and low accuracy,so the researchers and enterprise are always hunting for the high efficiency with low cost structure health monitoring systems.Strain gradient distribution changes abruptly in the vicinity of a crack due to the stress concentration.Strain gradient in the vicinity of a crack can be measured based on flexoelectric effect,and precautionary measures can be carried out based on the estimation of loading parameter to avoid accident.A novel technique has been proposed[Huanget al.(2012);Kwonet al.(2013);Yanet al.(2013b);Huanget al.(2014a,b)]for structural health monitoring and crack detection based on the flexoelectric effect.The strain gradient sensors were attached in the neighboring of crack and hole with varied tension stress,the charge generated by flexoelectric effect was measured to predict the position of crack.In the centrosymmetric crystals,the flexoelectricity can be written as[Huanget al.(2014a,b)]:

    Another novel application for flexoelectric effect is to fabricate piezoelectric composite but without any piezoelectric constituents.Cross[Fouseket al.(1999)]analyzed the piezoelectric response of 0-3 composite made of non-piezoelectric constituent.Then they presented a flexure mode multilayer composite in which giant piezoelectric effect was observed[Chuet al.(2009)].Zhuet al.(2006)devised the pyramid array structure based on the enhanced flexoelectric effect.

    The flexoelectric coefficients of ceramics are affected by the grain size,temperature and loading frequency.Systematic investigations are needed to analyze these factors.The flexoelectric effect in polymers is more complex,the mechanism has not been fully understood so far.There is still a long way to go from theory to engineering applications,in view of the difficulties in theoretical and experimental works.

    6 Conclusion

    As a universal electromechanical coupling effect, flexoelectricity attracted an increasing of attention.Flexoelectricity phenomenologically describes the coupling between electric polarization and strain gradient,and electric field gradient and stress.Flexoelectricity plays an important role in determining the electro-elastic response of nanoscaled structures.In the last decades,a lot of experimental works have been done to measure the flexoelectric coefficients of non-poled ferroelectrics and thermoplastic polymers.The experimental methods and experimental results are summarized and discussed in this paper.The potential applications such as flexoelectric sensors,actuators,structural health monitoring and crack detection have also been briefly summarized.

    Acknowledgement:The support from NSFC(Grants No.11372238)is appreciated.

    Abdollahi,A.;Millán,D.;Peco,C.;Arroyo,M.;Arias,I.(2015):Revisiting pyramid compression to quantify flexoelectricity:A three-dimensional simulation study.Physical Review B,vol.91,no.10,104103.

    Abdollahi,A.;Peco,C.;Millán,D.;Arroyo,M.;Arias,I.(2014):Computational evaluation of the flexoelectric effect in dielectric solids.Journal of Applied Physics,vol.116,no.9,093502.

    Baskaran,S.;He,X.;Chen,Q.;Fu,J.Y.(2011a):Experimental studies on the direct flexoelectric effect in alpha-phase polyvinylidene fluoride films.Applied Physics Letters,vol.98,no.24,2901.

    Baskaran,S.;He,X.;Fu,J.Y.(2011b):Gradient scaling phenomenon of piezoelectricity in non-piezoelectric polyvinylidene fluoride films.Materials Science.

    Baskaran,S.;He,X.;Wang,Y.;Fu,J.Y.(2012):Strain gradient induced electric polarization in α-phase polyvinylidene fluoride films under bending conditions.Journal of Applied Physics,vol.111,no.1,014109.

    Baskaran,S.;Ramachandran,N.;He,X.;Thiruvannamalai,S.;Lee,H.J.;Heo,H.;Chen,Q.;Fu,J.Y.(2011c):Giant flexoelectricity in polyvinylidene fluoride films.Physics Letters A,vol.375,no.20,pp.2082-2084.

    Catalan,G.;Lubk,A.;Vlooswijk,A.;Snoeck,E.;Magen,C.;Janssens,A.;Rispens,G.;Rijnders,G.;Blank,D.;Noheda,B.(2011):Flexoelectric rotation of polarization in ferroelectric thin films.Nature materials,vol.10,no.12,pp.963-967.

    Chu,B.;Zhu,W.;Li,N.;Eric Cross,L.(2009):Flexure mode flexoelectric piezoelectric composites.Journal of Applied Physics,vol.106,no.10,4109.

    Craighead,H.G.(2000):Nanoelectromechanical systems.Science,vol.290,no.5496,pp.1532-1535.

    Cross,L.E.(2006):Flexoelectric effects:Charge separation in insulating solids subjected to elastic strain gradients.Journal of Materials Science,vol.41,no.1,pp.53-63.

    Darrall,B.T.;Hadjesfandiari,A.R.;Dargush,G.F.(2015):Size-dependent piezoelectricity:A 2D finite element formulation for electric field-mean curvature coupling in dielectrics.European Journal of Mechanics-A/Solids,vol.49,pp.308-320.

    Deng,Q.;Liu,L.;Sharma,P.(2014):Flexoelectricity in soft materials and biological membranes.Journal of the Mechanics and Physics of Solids,vol.62,pp.209-227.

    Ekinci,K.;Roukes,M.(2005):Nanoelectromechanical systems.Review of scienti fic instruments,vol.76,no.6,061101.

    Fan,F.-R.;Lin,L.;Zhu,G.;Wu,W.;Zhang,R.;Wang,Z.L.(2012):Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.Nano letters,vol.12,no.6,pp.3109-3114.

    Fang,D.;Li,F.;Liu,B.;Zhang,Y.;Hong,J.;Guo,X.(2013):Advances in Developing Electromechanically Coupled Computational Methods for Piezoelectrics/Ferroelectrics at Multiscale.Applied Mechanics Reviews,vol.65,no.6,060802.

    Fousek,J.;Cross,L.;Litvin,D.(1999):Possible piezoelectric composites based on the flexoelectric effect.Materials Letters,vol.39,no.5,pp.287-291.

    Friswell,M.I.;Adhikari,S.(2010):Sensor shape design for piezoelectric cantilever beams to harvest vibration energy.Journal of Applied Physics,vol.108,no.1,014901.

    Fu,J.(2010):Experimental studies of the direct flexoelectric effect in bone materials.Paper presented at the APS Meeting Abstracts18013.

    Fu,J.Y.;Liu,P.Y.;Cheng,J.;Bhalla,A.S.;Guo,R.(2007):Optical measurement of the converse piezoelectric d 33 coefficients of bulk and microtubular zinc oxide crystals.Applied physics letters,vol.90,no.21,212907-212907-212903.Fu,J.Y.;Zhu,W.;Li,N.;Cross,L.E.(2006):Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition.Journal of Applied Physics,vol.100,no.2,024112.

    Fu,Q.;Zhang,Z.Y.;Kou,L.;Wu,P.;Han,X.;Zhu,X.;Gao,J.;Xu,J.;Zhao,Q.;Guo,W.(2011):Linear strain-gradient effect on the energy bandgap in bent CdS nanowires.Nano Research,vol.4,no.3,pp.308-314.

    He,X.;Baskaran,S.;Fu,J.Y.(2012):On the flexoelectricity in Polyvinylidene fluoride films.Paper presented at the MRS Proceedingsmrsf11-1403-v1417-1440.

    Hong,J.;Vanderbilt,D.(2013):First-principles theory and calculation of flexoelectricity.Physical Review B,vol.88,no.17,174107.

    Hong,Y.K.;Moon,K.S.(2005):Single crystal piezoelectric transducers to harvest vibration energy.Paper presented at the Optomechatronic Technologies 200560480E-60480E-60487.

    Hu,S.;Li,H.;Tzou,H.(2011):Static nano-control of cantilever beams using the inverse flexoelectric effect.Paper presented at the ASME 2011 international mechanical engineering congress and exposition463-470.

    Hu,S.;Shen,S.(2009):Electric field gradient theory with surface effect for nanodielectrics.Computers,Materials&Continua(CMC),vol.13,no.1,pp.63.

    Hu,S.;Shen,S.(2010):Variational principles and governing equations in nanodielectrics with the flexoelectric effect.Science China Physics,Mechanics and Astronomy,vol.53,no.8,pp.1497-1504.

    Huang,W.;Yan,X.;Kwon,S.R.;Zhang,S.;Yuan,F.-G.;Jiang,X.(2012):Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing.Applied Physics Letters,vol.101,no.25,252903.

    Huang,W.;Yang,S.;Zhang,N.;Yuan,F.-G.;Jiang,X.(2014a):Cracks monitoring and characterization using Ba0.64Sr0.36TiO3 flexoelectric strain gradient sensors,906119-906119-906119.

    Huang,W.;Yang,S.;Zhang,N.;Yuan,F.-G.;Jiang,X.(2014b):Direct Mea-surement of Opening Mode Stress Intensity Factors Using Flexoelectric Strain Gradient Sensors.Experimental Mechanics,vol.55,no.2,pp.313-320.

    Indenbom,V.;Loginov,E.;Osipov,M.(1981):Flexoelectric effect and crystalstructure.Kristallogra fiya,vol.26,no.6,pp.1157-1162.

    Javey,A.;Guo,J.;Wang,Q.;Lundstrom,M.;Dai,H.(2003):Ballistic carbon nanotube field-effect transistors.Nature,vol.424,no.6949,pp.654-657.

    Klíc,A.;Marvan,M.(2004):Theoretical study of the flexoelectric effect based on a simple model of ferroelectric material.Integrated Ferroelectrics,vol.63,no.1,pp.155-159.

    Kogan,S.M.(1964):Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals.Soviet Physics-Solid State,vol.5,no.10,pp.2069-2070.

    Kwon,S.;Huang,W.;Zhang,S.;Yuan,F.;Jiang,X.(2013):Flexoelectric sensing using a multilayered barium strontium titanate structure.Smart Materials and Structures,vol.22,no.11,115017.

    Kwon,S.R.;Huang,W.;Shu,L.;Yuan,F.-G.;Maria,J.-P.;Jiang,X.(2014):Flexoelectricity in barium strontium titanate thin film.Applied Physics Letters,vol.105,no.14,142904.

    Lee,D.;Noh,T.W.(2012):Giant flexoelectric effect through interfacial strain relaxation.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,vol.370,no.1977,pp.4944-4957.

    Lee,D.;Yang,S.M.;Yoon,J.-G.;Noh,T.W.(2012):Flexoelectric Rectification of Charge Transport in Strain-Graded Dielectrics.Nano letters,vol.12,no.12,pp.6436-6440.

    Li,Y.;Shu,L.;Huang,W.;Jiang,X.;Wang,H.(2014):Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite.Applied Physics Letters,vol.105,no.16,162906.

    Li,Y.;Shu,L.;Zhou,Y.;Guo,J.;Xiang,F.;He,L.;Wang,H.(2013):Enhanced flexoelectric effect in a non-ferroelectric composite.Applied Physics Letters,vol.103,no.14,142909.

    Liang,X.;Hu,S.;Shen,S.(2014):Effects of surface and flexoelectricity on a piezoelectric nanobeam.Smart Materials and Structures,vol.23,no.3,035020.

    Liu,C.;Hu,S.;Shen,S.(2012):Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire.Smart Materials and Structures,vol.21,no.11,115024.

    Liu,C.;Hu,S.;Shen,S.(2014):Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals.Journal of Applied Mechanics,vol.81,no.5,051007.

    Ma,W.(2007):Flexoelectricity:strain gradient effects in ferroelectrics.Physica Scripta,2007(T129),180.

    Ma,W.(2010):Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids.physica status solidi(b),vol.247,no.1,pp.213-218.

    Ma,W.;Cross,L.E.(2001a):Large flexoelectric polarization in ceramic lead magnesium niobate.Applied Physics Letters,vol.79,no.26,pp.4420-4422.

    Ma,W.;Cross,L.E.(2001b):Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics.Applied Physics Letters,vol.78,no.19,pp.2920-2921.

    Ma,W.;Cross,L.E.(2005):Flexoelectric effect in ceramic lead zirconate titanate.Applied Physics Letters,vol.86,no.7,072905.

    Ma,W.;Cross,L.E.(2006):Flexoelectricity of barium titanate.Applied Physics Letters,vol.88,no.23,232902-232902-232903.

    Ma,W.;Eric Cross,L.(2002):Flexoelectric polarization of barium strontium titanate in the paraelectric state.Applied Physics Letters,vol.81,no.18,pp.3440-3442.

    Ma,W.;Eric Cross,L.(2003):Strain-gradient-induced electric polarization in lead zirconate titanate ceramics.Applied Physics Letters,vol.82,no.19,pp.3293-3295.

    Majdoub,M.;Maranganti,R.;Sharma,P.(2009a):Understanding the origins of the intrinsic dead layer effect in nanocapacitors.Physical Review B,vol.79,no.11,115412.

    Majdoub,M.;Sharma,P.;Cagin,T.(2008a):Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect.Physical Review B,vol.77,no.12,125424.

    Majdoub,M.;Sharma,P.;Cagin,T.(2009b):Erratum:Enhancedsize-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[Phys.Rev.B 77,125424(2008)].Physical Review B,vol.79,no.11,119904.

    Majdoub,M.;Sharma,P.;?agin,T.(2008b):Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures.Physical Review B,vol.78,no.12,121407.

    Maranganti,R.;Majdoub,M.;Sharma,P.(2009):Flexoelectricity in nanostructures and ramifications for the dead-layer effect in nanocapacitors and“giant”piezoelectricity.Paper presented at the APS March Meeting Abstracts1193.

    Maranganti,R.;Sharma,N.;Sharma,P.(2006):Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects:Green’s function solutions and embedded inclusions.Physical Review B,vol.74,no.1,014110.

    Marvan,M.;Janus,V.;Havranek,A.(1994):Electric polarization induced by strain gradient.Paper presented at the Electrets,1994.(ISE 8),8th International Symposium on623-627.

    Mbarki,R.;Haskins,J.;Kinaci,A.;Cagin,T.(2014):Temperature dependence of flexoelectricity in BaTiO 3 and SrTiO 3 perovskite nanostructures.Physics Letters A,vol.378,no.30,pp.2181-2183.

    Meyer,R.B.(1969):Piezoelectric effects in liquid crystals.Physical Review Letters,vol.22,no.18,918.

    Nguyen,T.D.;Mao,S.;Yeh,Y.W.;Purohit,P.K.;McAlpine,M.C.(2013):Nanoscale flexoelectricity.Advanced Materials,vol.25,no.7,pp.946-974.

    Nishi,Y.(1978):Field effect transistors):Google Patents.

    Park,S.;Gao,X.(2006):Bernoulli-Euler beam model based on a modified couple stress theory,Journal of Micromechanics and Microengineering,16(11),2355.

    Petrov,A.G.(2002):Flexoelectricity of model and living membranes.Biochimica et Biophysica Acta(BBA)-Biomembranes,vol.1561,no.1,pp.1-25.

    Shen,S.;Hu,S.(2010):A theory of flexoelectricity with surface effect for elastic dielectrics.Journal of the Mechanics and Physics of Solids,vol.58,no.5,pp.665-677.

    Shu,L.;Huang,W.;Kwon,S.R.;Wang,Z.;Li,F.;Wei,X.;Zhang,S.;Lanagan,M.;Yao,X.;Jiang,X.(2014a):Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3.Applied Physics Letters,vol.104,no.23,232902.

    Shu,L.;Li,F.;Huang,W.;Wei,X.;Yao,X.;Jiang,X.(2014b):Relationship between direct and converse flexoelectric coefficients.Journal of Applied Physics,vol.116,no.14,144105.

    Shu,L.;Wei,X.;Jin,L.;Li,Y.;Wang,H.;Yao,X.(2013):Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics.Applied Physics Letters,vol.102,no.15,152904.

    Shu,L.;Wei,X.;Pang,T.;Yao,X.;Wang,C.(2011):Symmetry of flexoelectric coefficients in crystalline medium.Journal of Applied Physics,vol.110,no.10,104106.

    Sodano,H.A.;Inman,D.J.;Park,G.(2004):A review of power harvesting from vibration using piezoelectric materials.Shock and Vibration Digest,vol.36,no.3,pp.197-206.

    Tagantsev,A.(1985):Theory of flexoelectric effect in crystals.Zhurnal Eksperi-mental’noi i Teoreticheskoi Fiziki,vol.88,no.6,pp.2108-2122.

    Tagantsev,A.(1986):Piezoelectricity and flexoelectricity in crystalline dielectrics.Physical Review B,vol.34,no.8,5883.

    Tagantsev,A.(1987):Pyroelectric,piezoelectric, flexoelectric,and thermal polarization effects in ionic crystals.Physics-Uspekhi,vol.30,no.7,pp.588-603.

    Tagantsev,A.K.(1991):Electric polarization in crystals and its response to thermal and elastic perturbations.Phase Transitions:A Multinational Journal,vol.35,no.3-4,pp.119-203.

    Wang,Z.L.(2008):Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics.Advanced Functional Materials,vol.18,no.22,pp.3553-3567.

    Xu,L.;SHEN,S.(2013):Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity.International Journal of Applied Mechanics,vol.5,no.02.

    Xu,S.;Qin,Y.;Xu,C.;Wei,Y.;Yang,R.;Wang,Z.L.(2010):Self-powered nanowire devices.Nature nanotechnology,vol.5,no.5,pp.366-373.

    Xu,Y.;Hu,S.;Shen,S.(2013):Electrostatic potential in a bent flexoelectric semiconductive nanowire.CMES-Computer Modeling in Engineering&Sciences,vol.91,no.5,pp.397-408.

    Yan,X.;Huang,W.;Kwon,S.;Yang,S.;Jiang,X.;Yuan,F.(2013a):Design of a curvature sensor using a flexoelectric material.Paper presented at the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring86920N-86920N-86910.

    Yan,X.;Huang,W.;Kwon,S.R.;Yang,S.;Jiang,X.;Yuan,F.-G.(2013b):A sensor for the direct measurement of curvature based on flexoelectricity.Smart Materials and Structures,vol.22,no.8,085016.

    Yan,Z.;Jiang,L.(2013a):Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams.Journal of Applied Physics,vol.113,no.19,194102.

    Yan,Z.;Jiang,L.(2013b):Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity.Journal of Physics D:Applied Physics,vol.46,no.35,355502.

    Yang,S.;Shen,S.(2014):Anti-plane Circular Nano-inclusion Problem with Electric Field Gradient and Strain Gradient Effects.CMC:Computers,Materials&Continua,vol.40,no.3,pp.219-239.

    Yudin,P.;Tagantsev,A.(2013):Fundamentals of flexoelectricity in solids.Nanotechnology,vol.24,no.43,432001.

    Yurkov,A.(2015):Calculation of flexoelectric deformations of finite-size bodies.Physics of the Solid State,vol.57,no.3,pp.460-466.

    Zhu,W.;Fu,J.Y.;Li,N.;Cross,L.(2006):Piezoelectric composite based on the enhanced flexoelectric effects.Applied physics letters,vol.89,no.19,192904-192904-192903.

    Zubko,P.;Catalan,G.;Tagantsev,A.K.(2013):Flexoelectric effect in solids.Annual Review of Materials Research,vol.43,pp.387-421.

    1State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,P.R.China.

    2Corresponding Authors.E-mail:xul594@gmail.com;slhu@mail.xjtu.edu.cn

    国产v大片淫在线免费观看| 国产探花极品一区二区| 99国产精品免费福利视频| 女性生殖器流出的白浆| 成人亚洲欧美一区二区av| 亚洲天堂av无毛| 夫妻午夜视频| 男人爽女人下面视频在线观看| 中文字幕免费在线视频6| 久久久精品免费免费高清| 大话2 男鬼变身卡| 免费不卡的大黄色大毛片视频在线观看| 国精品久久久久久国模美| 欧美精品亚洲一区二区| 蜜桃在线观看..| 男的添女的下面高潮视频| 美女国产视频在线观看| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 精品少妇黑人巨大在线播放| av免费观看日本| 一级二级三级毛片免费看| 久久久久国产精品人妻一区二区| 亚洲精华国产精华液的使用体验| 久久99蜜桃精品久久| 国产高清国产精品国产三级 | 黄色配什么色好看| 最新中文字幕久久久久| 亚洲婷婷狠狠爱综合网| 老女人水多毛片| 九九在线视频观看精品| 久久久久久久久大av| 午夜福利视频精品| 水蜜桃什么品种好| 欧美国产精品一级二级三级 | 日本黄大片高清| 亚洲精品自拍成人| 亚洲成人中文字幕在线播放| 久久青草综合色| 国产无遮挡羞羞视频在线观看| 日韩在线高清观看一区二区三区| av播播在线观看一区| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 国产精品不卡视频一区二区| 亚洲精品日韩av片在线观看| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 亚洲成人av在线免费| 搡女人真爽免费视频火全软件| 久久97久久精品| 妹子高潮喷水视频| 国产精品.久久久| 最黄视频免费看| 日本爱情动作片www.在线观看| 欧美3d第一页| 99re6热这里在线精品视频| av播播在线观看一区| 免费大片18禁| 成年av动漫网址| 大香蕉久久网| 精品一品国产午夜福利视频| 国产精品偷伦视频观看了| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 久久婷婷青草| 日韩一本色道免费dvd| 色哟哟·www| 国产精品99久久99久久久不卡 | 国产亚洲av片在线观看秒播厂| 久久久久久久久久人人人人人人| 少妇人妻 视频| 国产精品久久久久久av不卡| 观看免费一级毛片| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 国产精品久久久久久久久免| 大香蕉久久网| 精品一区二区免费观看| 嫩草影院入口| 中文在线观看免费www的网站| 免费观看av网站的网址| 一级毛片电影观看| 欧美日韩亚洲高清精品| 国产黄片美女视频| 欧美精品国产亚洲| 水蜜桃什么品种好| 成人高潮视频无遮挡免费网站| 美女主播在线视频| 亚洲综合精品二区| 成人午夜精彩视频在线观看| 国产精品福利在线免费观看| 日本av手机在线免费观看| 欧美日韩亚洲高清精品| 亚洲国产高清在线一区二区三| 丰满人妻一区二区三区视频av| 夜夜骑夜夜射夜夜干| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 色哟哟·www| 日韩一区二区三区影片| 国产黄片美女视频| 色哟哟·www| 青春草国产在线视频| 欧美人与善性xxx| 最新中文字幕久久久久| av女优亚洲男人天堂| 日本欧美视频一区| 国产欧美亚洲国产| 夜夜看夜夜爽夜夜摸| 蜜臀久久99精品久久宅男| 国产精品一区二区在线观看99| 国产男女超爽视频在线观看| 欧美三级亚洲精品| 欧美日韩视频精品一区| 麻豆国产97在线/欧美| 大片免费播放器 马上看| 三级国产精品片| 国产免费又黄又爽又色| 黄色一级大片看看| 这个男人来自地球电影免费观看 | 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 99热国产这里只有精品6| 在线观看国产h片| 国产精品免费大片| 成人黄色视频免费在线看| 美女国产视频在线观看| 97热精品久久久久久| 免费看日本二区| 内射极品少妇av片p| 男人舔奶头视频| 九色成人免费人妻av| 一级毛片我不卡| 亚洲一级一片aⅴ在线观看| 久久精品人妻少妇| 大片电影免费在线观看免费| 精品一区二区三区视频在线| 亚洲图色成人| 国产成人freesex在线| 欧美亚洲 丝袜 人妻 在线| 麻豆国产97在线/欧美| 高清欧美精品videossex| 97在线人人人人妻| av福利片在线观看| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 亚洲国产精品999| 日韩av不卡免费在线播放| 丰满人妻一区二区三区视频av| 久久韩国三级中文字幕| 国产一级毛片在线| 九草在线视频观看| 国产 一区精品| 日韩强制内射视频| 嫩草影院入口| 欧美丝袜亚洲另类| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 777米奇影视久久| 日韩亚洲欧美综合| 国产欧美日韩精品一区二区| 我的老师免费观看完整版| 亚洲自偷自拍三级| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 国产黄片美女视频| 只有这里有精品99| 日韩三级伦理在线观看| 欧美日韩国产mv在线观看视频 | 国产成人freesex在线| 亚洲av国产av综合av卡| 99久久中文字幕三级久久日本| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 精品一区二区三卡| av.在线天堂| 亚洲av男天堂| 黄片无遮挡物在线观看| 国产亚洲欧美精品永久| 性色avwww在线观看| 99久久人妻综合| 亚洲国产精品999| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 啦啦啦在线观看免费高清www| 一级毛片久久久久久久久女| 好男人视频免费观看在线| 狂野欧美激情性bbbbbb| 免费看av在线观看网站| 国产在线男女| 午夜福利在线在线| 国产亚洲欧美精品永久| 天天躁日日操中文字幕| 久热久热在线精品观看| 亚洲性久久影院| 久久99精品国语久久久| 成人18禁高潮啪啪吃奶动态图 | 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 日韩欧美精品免费久久| 国产日韩欧美亚洲二区| 大陆偷拍与自拍| 色吧在线观看| 欧美成人一区二区免费高清观看| 直男gayav资源| 国产精品一区二区性色av| 久久久久久久精品精品| 久久毛片免费看一区二区三区| 免费播放大片免费观看视频在线观看| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 欧美三级亚洲精品| 日本av手机在线免费观看| 免费少妇av软件| 欧美日韩视频精品一区| 少妇 在线观看| .国产精品久久| 国产高清国产精品国产三级 | 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 午夜福利高清视频| 国产在视频线精品| 看十八女毛片水多多多| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 国产69精品久久久久777片| 久久精品国产亚洲网站| 大香蕉久久网| 国产综合精华液| 久久国产精品男人的天堂亚洲 | 亚洲四区av| 一级毛片 在线播放| 美女国产视频在线观看| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 国产精品一区二区三区四区免费观看| 国产精品国产三级专区第一集| 多毛熟女@视频| 韩国av在线不卡| 国产精品99久久久久久久久| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 人妻夜夜爽99麻豆av| 欧美另类一区| 免费看av在线观看网站| 亚洲中文av在线| 久久久久久久久大av| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 亚洲精品日韩在线中文字幕| 欧美一区二区亚洲| 在线亚洲精品国产二区图片欧美 | 久久99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 岛国毛片在线播放| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 久久人人爽人人片av| 欧美xxⅹ黑人| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区| 伦理电影免费视频| 久久婷婷青草| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 有码 亚洲区| 一级黄片播放器| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 嫩草影院入口| www.av在线官网国产| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 一区二区av电影网| 久久久久久人妻| 国产极品天堂在线| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 黄片wwwwww| 最近的中文字幕免费完整| 国产成人精品久久久久久| 精品久久久久久久末码| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲 | 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 人人妻人人看人人澡| 尾随美女入室| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 精品久久久久久久久亚洲| 人妻系列 视频| 日韩av不卡免费在线播放| 最后的刺客免费高清国语| 伦理电影大哥的女人| 综合色丁香网| 亚洲国产日韩一区二区| 久久6这里有精品| 欧美人与善性xxx| 青春草亚洲视频在线观看| 亚洲av中文字字幕乱码综合| 国产成人精品婷婷| 国产免费又黄又爽又色| 亚洲av.av天堂| 极品教师在线视频| 国产精品福利在线免费观看| 亚洲精品日本国产第一区| 波野结衣二区三区在线| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 免费av中文字幕在线| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 午夜福利高清视频| 国产老妇伦熟女老妇高清| 色网站视频免费| 亚洲国产精品一区三区| 国产久久久一区二区三区| 身体一侧抽搐| 亚洲欧美日韩东京热| 97热精品久久久久久| 国产伦精品一区二区三区四那| 日韩中字成人| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一区在线观看国产| 国产亚洲一区二区精品| 永久网站在线| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看 | 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 秋霞伦理黄片| 在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 国产精品国产av在线观看| 久久精品国产自在天天线| 美女cb高潮喷水在线观看| h视频一区二区三区| 日本色播在线视频| 国产精品99久久99久久久不卡 | 1000部很黄的大片| 一区二区三区四区激情视频| 97在线人人人人妻| 这个男人来自地球电影免费观看 | 美女xxoo啪啪120秒动态图| 一个人免费看片子| 26uuu在线亚洲综合色| 国产乱来视频区| 亚洲第一区二区三区不卡| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 欧美精品人与动牲交sv欧美| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 精品一区二区免费观看| 久久人人爽人人片av| 国产精品一区二区在线观看99| 97在线视频观看| 国产在线一区二区三区精| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产大屁股一区二区在线视频| 欧美精品一区二区免费开放| 国产淫片久久久久久久久| 亚洲成色77777| 超碰av人人做人人爽久久| 国产日韩欧美在线精品| 亚洲国产精品专区欧美| 国产免费又黄又爽又色| 精品一区在线观看国产| 十八禁网站网址无遮挡 | 久久精品国产亚洲av天美| 亚洲欧洲国产日韩| 一个人免费看片子| 国产国拍精品亚洲av在线观看| 99久久精品一区二区三区| 国产视频首页在线观看| 久久精品国产亚洲av涩爱| 亚洲aⅴ乱码一区二区在线播放| 亚洲成色77777| 亚洲综合精品二区| 22中文网久久字幕| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 国产在线一区二区三区精| 99久久中文字幕三级久久日本| 亚洲第一av免费看| 日韩强制内射视频| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 日本黄大片高清| 亚洲人与动物交配视频| 亚洲天堂av无毛| 高清毛片免费看| 久久久久久久久大av| 日韩视频在线欧美| 丰满迷人的少妇在线观看| 亚洲国产日韩一区二区| 一级毛片我不卡| 1000部很黄的大片| 成年免费大片在线观看| 草草在线视频免费看| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 国产伦在线观看视频一区| 久久 成人 亚洲| 全区人妻精品视频| a 毛片基地| 男女边摸边吃奶| 在线 av 中文字幕| 在线观看免费日韩欧美大片 | 国产精品国产三级国产专区5o| av免费观看日本| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 80岁老熟妇乱子伦牲交| 久久影院123| 赤兔流量卡办理| 成人黄色视频免费在线看| 日本午夜av视频| 国产成人aa在线观看| 午夜福利网站1000一区二区三区| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 亚洲伊人久久精品综合| 97精品久久久久久久久久精品| 1000部很黄的大片| 春色校园在线视频观看| 欧美老熟妇乱子伦牲交| 久久久午夜欧美精品| 天堂俺去俺来也www色官网| 在线观看一区二区三区| 国产高清三级在线| 亚洲精品国产成人久久av| 国产成人freesex在线| 丰满少妇做爰视频| av网站免费在线观看视频| 欧美3d第一页| 我的女老师完整版在线观看| 人妻 亚洲 视频| 精品少妇久久久久久888优播| 夫妻性生交免费视频一级片| 亚洲欧美一区二区三区国产| 久久精品国产自在天天线| 亚洲国产毛片av蜜桃av| 日本猛色少妇xxxxx猛交久久| 亚洲性久久影院| 国产免费一区二区三区四区乱码| 国产永久视频网站| 一级av片app| 美女国产视频在线观看| 国产午夜精品一二区理论片| 久久6这里有精品| 制服丝袜香蕉在线| 热re99久久精品国产66热6| 亚洲欧美成人综合另类久久久| 在线观看一区二区三区激情| 中国国产av一级| 久久女婷五月综合色啪小说| 国产黄色视频一区二区在线观看| 男女下面进入的视频免费午夜| 免费少妇av软件| 国产精品女同一区二区软件| 久久国产精品大桥未久av | 蜜桃久久精品国产亚洲av| 中文精品一卡2卡3卡4更新| 色5月婷婷丁香| 18禁在线无遮挡免费观看视频| 成人毛片60女人毛片免费| 色视频www国产| 99热网站在线观看| av专区在线播放| 国精品久久久久久国模美| 成年美女黄网站色视频大全免费 | 国产成人aa在线观看| 观看av在线不卡| 观看免费一级毛片| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩另类电影网站 | 一级av片app| 各种免费的搞黄视频| 尾随美女入室| 春色校园在线视频观看| 中文欧美无线码| 日日啪夜夜爽| 我要看日韩黄色一级片| 精品国产露脸久久av麻豆| 韩国av在线不卡| 少妇人妻久久综合中文| 国产精品人妻久久久久久| 99久久综合免费| 中文天堂在线官网| 免费黄网站久久成人精品| 国产亚洲午夜精品一区二区久久| 女性生殖器流出的白浆| 狂野欧美激情性bbbbbb| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 一区二区三区乱码不卡18| freevideosex欧美| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线不卡| 精品国产露脸久久av麻豆| 久久99热6这里只有精品| 日韩大片免费观看网站| 亚洲,欧美,日韩| 亚洲综合精品二区| 国产精品无大码| 日本欧美视频一区| 女人十人毛片免费观看3o分钟| 91久久精品电影网| 欧美极品一区二区三区四区| 国国产精品蜜臀av免费| 老司机影院毛片| 国产精品国产三级国产专区5o| 一级毛片 在线播放| 国产伦在线观看视频一区| 大香蕉97超碰在线| 国产精品无大码| 黄色欧美视频在线观看| 啦啦啦视频在线资源免费观看| 成人毛片a级毛片在线播放| 中文字幕制服av| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 亚洲精品第二区| 一级毛片 在线播放| 亚洲,欧美,日韩| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 精品一品国产午夜福利视频| 18禁在线无遮挡免费观看视频| freevideosex欧美| av在线老鸭窝| av在线播放精品| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 免费av中文字幕在线| 色网站视频免费| 干丝袜人妻中文字幕| 国产亚洲欧美精品永久| 久久久久久久久久久免费av| 麻豆乱淫一区二区| 精品午夜福利在线看| 岛国毛片在线播放| 亚洲精品成人av观看孕妇| 一级毛片 在线播放| 内射极品少妇av片p| 丝袜脚勾引网站| www.色视频.com| 欧美人与善性xxx| 在线免费十八禁| 亚洲国产精品专区欧美| 国产精品99久久久久久久久| 中文乱码字字幕精品一区二区三区| 亚洲欧洲国产日韩| 中国美白少妇内射xxxbb| 色婷婷久久久亚洲欧美| 搡女人真爽免费视频火全软件| 在线播放无遮挡| 国产精品嫩草影院av在线观看| 日韩精品有码人妻一区| 久久亚洲国产成人精品v| 在线 av 中文字幕| 日本wwww免费看| 久久久久久久久久成人| 人妻少妇偷人精品九色| 亚洲综合色惰| 久久鲁丝午夜福利片| 五月天丁香电影| 国产亚洲5aaaaa淫片| 国产深夜福利视频在线观看| 国产成人精品婷婷| 国产在线视频一区二区| 亚洲国产最新在线播放| 男人舔奶头视频| 高清毛片免费看| 啦啦啦在线观看免费高清www| 久久毛片免费看一区二区三区| 免费观看性生交大片5| 最近中文字幕2019免费版| 乱系列少妇在线播放|