• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite Element Multi-mode Approach to Thermal Postbuckling of Functionally Graded Plates

    2015-12-12 08:27:38XiaFengandZhao
    Computers Materials&Continua 2015年5期

    W.Xia,Y.P.Fengand D.W.Zhao

    Finite Element Multi-mode Approach to Thermal Postbuckling of Functionally Graded Plates

    W.Xia1,Y.P.Feng2and D.W.Zhao3

    Postbuckling analysis of functionally graded ceramic-metal plates under temperature field is presented using finite element multi-mode method.The three-node triangular element based on the Mindlin plate theory is employed to account for the transverse shear strains, and the von-Karman nonlinear strain-displacement relation is utilized considering the geometric nonlinearity.The effective material properties are assumed to vary through the thickness direction according to the power law distribution of the volume fraction of constituents.The temperature distribution along the thickness is determined by one dimensional Fourier equations of heat conduction.The buckling mode shape solved from eigen-buckling analysis is adopted as the assumed mode function to reduce the degrees of freedom of nonlinear postbuckling equilibrium equations.The postbuckling response is obtained by solving the nonlinear equilibrium equations,and compared with the Newton-Raphson numerical results.The effects of boundary conditions,material gradient index and temperature distribution on postbuckling behavior are examined.

    Functionally graded plates,thermal postbuckling,geometric nonlinearity,finite element method.

    1 Introduction

    Functionally graded materials(FGMs)are believed to be ideal high-heat-resistant composites because the continuous varied material composition eliminates the sharp local thermal stress concentration which is often encountered in the interface between two constitutive materials.The most common FGM structures are ceramic-metal plates(or shells)with the through-the-thickness material distribution,where the ceramic-rich top has good thermal resistance and the metallic-rich bottom has superior fracture toughness.Functionally graded(FG)plates are easy to deflect when subjected to thermal load because the plate is asymmetric about the middle plane.Therefore,the thermo-mechanical behavior of functionally graded plates,including thermal stresses,stabilities,buckling and postbuckling,becomes an essential problem in FGMs applications.

    A survey on the modeling and analysis of FGM structures was given by Birman and Byrd(2007),and the literature on homogenization theories and the thermomechanical analysis of FG plates was recently reviewed by Jha,Kant and Singh(2013).The classical plate theory(CPT)and Sander’s assumption were adopted to derive equilibrium and stability equations for rectangular simply supported FG plates,and the closed-form solution of critical buckling temperature was presented by Javaheri and Eslami(2002).The first-order shear deformation theory(FSDT)and the third-order shear deformation theory(TSDT)accounting for the transverse shear strain and rotary inertia were also used to analyze the thermo-elastic bending of FG plates[Reddy and Chin(1998);Reddy(2000)].The mechanical models of circular FG plates based on CPT,FSDT and TSDT were compared,and the FSDT was proved to be suitable in buckling analysis for the axisymmetric bending of FG plates[Ma and Wang(2004)].The FSDT was utilized in stability analysis for simply supported rectangular FG plates under thermal load[Wu(2004)].The thermal post buckling behavior of FG skew plates was investigated utilizing nonlinear von Karman strain-displacement relations[Prakash,Singha,and Ganapathi(2008)].The shear deformable finite element approach was further developed to analyze the influence of neutral surface position on the postbuckling deformation of FG plates[Prakash,Singha,and Ganapathi(2009a)].The strain energy equations considering non-uniform shear stresses were established to derive the shear correction factor for FSDT of FG plates[Singha,Prakash,and Ganapathi(2011)].Many computational methods developed for the linear and nonlinear analysis of plate/shell structures are applicable in FG plates.For example,Tessler and Hughes(1985),Ibrahim,Tawfik and Al-Ajmi(2008)developed displacement plate elements based on Kirchhoff or Mindlin theories.Dong,El-Gizawy,Juhany and Atluri(2014)proposed a mixed-collocation C0finite element for modeling the thick-section FG plates instead of higher-order or layer-wise zig-zag plate theory.Cai and Atluri(2012)employed the drilling degrees of freedom in plate/shell elements to avoid the problem of singularity in the stiffness matrix,and proposed a triangular plate element using co-rotational frames and the von Karman nonlinear theories.The static and dynamic stability of FG panels in supersonic airflow were studied using finite element method[Sohn and Kim(2008)].The finite element model for FG panels under thermal and aerodynamic loads was established on the base of FSDT,von-Karman strain-displacement relations and the first-order piston theory aerodynamics.The thermal postbuckling and aeroelastic flutter of damped FG panels were investigated by Lee and Kim(2010).A three-dimensional finite element method was developed to determine the thermal buckling boundary of clamped FG plates.In the three-dimensional method,an 18-node solid element was employed to simulate the material distribution and non-uniform temperature field[Na and Kim(2004)].The thermal postbuckling behavior of FG plates considering initial geometric imperfection was further studied by many investigators[Shen(2007);Li,Zhang,and Zhao(2007);Yang,Liew,and Kitipornchai(2006)].

    The studies on the nonlinear postbuckling behavior of FG plates revealed that the postbuckling deformation of FG plates is similar to that of asymmetric laminates,because the neutral surface does not coincide with the geometric mid-plane for both structures.The influence of bending-extension coupling on the instability of bifurcation type was examined for FG plates under in-plane load[Aydogdu(2008)],and for FG plates with initial geometric imperfection[Yang,Liew and Kitipornchai(2006)].The eigen-buckling analysis was proved to be inaccurate because the bending-extension coupling does not properly take into account.The nonlinear method based on the Newton-Raphson iterative technique was widely used but only the postbuckling deflection amplitude was obtained.Due to the geometric nonlinearity and bending-extension coupling,the postbuckling of FG plates may exhibit more than one equilibrium states which are asymmetry about the mid-plane.The snap-through phenomenon between two of the equilibriums was recently reported in theoretical analysis and numerical simulations[Prakash,Singha,and Ganapathi(2009b);Singha,Prakash, and Ganapathi(2011)],but to the authors’knowledge,the thorough analysis of asymmetrical postbuckling equilibriums of FG plates has not been reported in any major international journal.

    The present work proposes a finite element multi-mode approach to investigate nonlinear postbuckling equilibriums of FG plates.The material properties are assumed to vary continuously and smoothly through the thickness according to the power law distribution of the constituent volume fraction.A three-node triangular Mindlin plate element based on the first-order shear deformation theory and the von-Karman nonlinear strain-displacement relation is utilized to establish the finite element model accounting for transverse shear strains,moderate rotations and geometric nonlinearities.The temperature field is considered to vary through the thickness direction alone and determined by nonlinear Fourier equations of heat conduction.The Euler type thermal buckling is analyzed by eigen-buckling analysis.The postbuckling response is obtained by the Newton-Raphson numerical procedure and the multi-mode method.In the multi-mode method,the buckling mode shapes solved from eigen-buckling analysis are adopted as the assumed mode functions.The current formulation is verified by comparison between present results and available solutions,and the influence of plate boundary condition,plate length-to-thickness ratio,material gradient index and non-uniform temperature distribution on the postbuckling response of FG plates is discussed.

    2 Formulations

    Fig.1 shows a ceramic-metal FG plate measuring with length l,width b and thickness h.A coordinate system(x,y,z)is established on the middle plane of the plate.We will consider the nonlinear postbuckling behavior of the FG plate subject to thermal load,which involves the structure stretching and bending coupling.Based on two-dimensional plate theory,the displacement field includes three displacements(u,v,w in x,y,z directions,respectively)and two rotations(?xand ?yaround the x and y axes,respectively).

    The material constitution is assumed to vary continuously through the plate thickness according to the following simple power law distribution.

    where n is the gradient index(n≥0),Vcand Vmdenote the volume fractions of ceramic and metal,respectively.Applying the linear rule of mixture,the effective material property distribution is determined as follows:

    where P represents the effective material properties,including Young’s modulus E,Poisson’s ratio υ,thermal expansion α and heat conductivity κ;Pcand Pmdenote the properties of ceramic and metal,respectively.

    According to the Mindlin plate theory,the displacement field can be determined by mid-plane displacements and rotations as follows:

    Figure 1:Schematic of a functionally graded plate.

    where u0,v0and w0denote the mid-plane displacements in x,y and z directions,respectively;while ?xand ?ydenote the transverse normal rotations around the x and y axes,respectively.Because the rotations ?xand ?yare independent of displacements(u,v,w)in the Mindlin plate theory,the finite element model requires only C0-continuity.The displacement field is then approximated as a polynomial which is a function of the element degrees of freedom(DOFs)by applying a threenode triangular Mindlin(MIN3)plate element[Tessler and Hughes(1985)].

    where?wm,?wband?? denote the membrane,bending and rotation element DOFs,respectively;while Hu,Hv,Hw,Hwθ,Hθx,Hθyare element interpolation functions.The detailed derivation of MIN3 element interpolation functions are given by Tessler and Hughes(1985).The geometric nonlinearity is considered by applying von Karman strain-displacement relations.The in-plane strains are then expressed in terms of mid-plane displacements as

    The constitutive relations are expressed as

    where?T is the temperature change from a stress-free state(room temperature).The material properties vary along the thickness direction for the FG plate,and the effective properties(E,υ and α)are functions of z according to Eq.2.The in-plane force,moment and transverse shear force resultants are defined,respectively,by

    In matrix form,the relation between the stress resultants and the strains is written as

    where NTand MTdenote the thermal force and moment resultants,respectively,and are given by

    The matrices A,B,D,and S denote the in-plane,bending-stretching coupling,bending,and transverse shear stiffness,respectively,which are defined by

    where κsis the shear correction coefficient of MIN3 element.The strain energy stored in the plate is

    By applying the finite element discretization using MIN3 element,the potential energy is expressed in terms of the structural DOFs as

    where wmand wbdenote the membrane and bending structural DOFs,respectively;pm?Tand pb?Tdenote the membrane and bending thermal loads,respectively;km,kbm,kbdenote the linear membrane,bending-stretching coupling,and bending stiffness matrices,respectively;k?Tis the thermal stiffness matrix;n1b,n1bmdenote the first-order nonlinear bending and bending-stretching coupling stiffness matrices,respectively;n2bis the second-order nonlinear bending stiffness matrix.The equilibrium equations are then derived by minimization of total potential energy as

    3 Solution procedure

    3.1 Thermal analysis

    The temperature field in the plate is assumed to vary only along the thickness direction,and the temperature distribution is governed by one dimensional Fourier equation of heat conduction as follows.

    where T is the temperature distribution in the plate.If we define room temperature as T0,the temperature change in Eq.?7i/s e?xpressed? as?/T?=T?T0.Considering thermal boundary conditions as Th2=Tc,T?h2=Tm,the solution of Eq.15 gives the temperature distribution function as

    where

    3.2 Buckling analysis

    The thermal buckling equations are derived from Eq.14 by solving the partitioned equations for wm,and reducing the equilibrium equations in terms of the bending deflection wbas follows.

    where

    The equilibrium equations in Eq.18 can be rewritten in a residual form as

    For the linear Euler type buckling problem,the nonlinear terms in Eq.20 can be neglected.The critical buckling temperature is obtained by solving the following eigenvalue problem.

    where?T1is the unit temperature rise,denote the positive real eigenvalues solved by Eq.21,and λ1is the minimal one of eigenvalues.The critical buckling temperature rise is defined by

    3.3 Postbuckling analysis

    For the postbuckling problem,the nonlinear equilibrium equation in Eq.18 can be solved numerically by applying either a conventional Newton-Raphson procedure,or a modified Newton’s procedure in conjunction with various iterative strategies that permit the load parameter to vary during equilibrium iterations.Because the incremental-iterative solution represents only one of the equilibrium states of the plate for a given initial condition,it cannot show the asymmetrical postbuckling behavior of the FG plate.But it is difficult to give analytical solutions to Eq.18.Therefore,the current work will introduce a multi-mode approximated method to analyze the asymmetrical postbuckling equilibriums of the FG plate based on the finite element model.

    Since the number of structural node DOFs of wbis usually very large,this turns out to be computationally costly.An efficient solution procedure is to transfer Eq.18 into modal coordinates with a modal reduction.Firstly,the structural deflection is assumed to be expressed as a linear combination of known functions as

    where the linearized matrices n1(i)and n2(i,j)have the same forms as n1 and n2 except they use normalized eigenvectors ?iand ?jin evaluating the corresponding element matrices.Thirdly,the finite element equilibrium equation is transformed into modal coordinates as

    where the modal stiffness K,N1 and N2,and the modal force P?Tare defined,respectively,by

    The DOFs of the finite element equation are reduced by the use of modal coordinate transformation.Therefore,the nonlinear equation can be studied by analytical approach.Meanwhile a class of problems involving material behavior,temperature distribution,plate geometry and boundary condition are convenient to take into account in this multi-mode approach because the actual buckling mode shapes are employed as the assumed mode functions.

    4 Results and Discussion

    In this section,the buckling stabilities and postbuckling responses of a ceramicmetal FG plate under thermal loads are investigated.The FG plate considered here comprises silicon nitride(Si3N4)and stainless steel(SUS304).The properties of each constituent,including the Young’s modulus E,thermal expansion coefficient α and heat conductivity κ,are given in Tab.1.The reference room temperature is assumed to be 300K(27?),and the Poisson’s ratio is chosen as 0.3 for simplicity.The geometryof the plate is l×b=0.3m×0.3m,and the length-to-thickness ratio is chosen if not specially defined.A 288-element full-plate mesh is utilized to model the plate.When uniform temperature distribution is considered,the critical buckling temperature rise is=29.72K for the clamped FG plate and=11.15K for the simply supported FG plate.The corresponding buckling mode shapes of clamped and simply supported FG plates are shown as contour plots in Fig.2.

    Table 1:Properties of the functionally graded material constitution.

    Figure 2:Thermal buckling mode shapes of FG plates.

    4.1 Clamped FG plates

    Before proceeding for the detailed study,the formulation developed herein is validated against the thermal-mechanical analysis of clamped FG plates with various values of length-to-thickness ratioThe Si3N4/SUS304 FG plates with gradient index n=1 are clamped at the edges with the assumption that thedisplacements are immovable.The length-to-thickness ratios are chosen as80 and 100.Tab.2 presents the resulting buckling temperature rise obtained by the finite element eigen-buckling analysis with different mesh sizes,along with results from present multi-mode method.

    Table 2:Resulting buckling temperature rise compared with finite element solutions.

    It is seen from Tab.2 that MIN3 element employed here has a good convergence property,and the 288-element mesh(12×12×2 elements)is found to be adequate to model the FG plate.Thus,the mesh size of 12×12×2 elements is utilized in constructing the multi-mode model. Furthermore, the nonlinear postbuckling equations in modal coordinates are utilized to investigate the critical buckling temperature by solving a linearized eigenvalue problem.The multi-mode solutions are obtained using the first buckling mode as assumed mode function,and verified by comparing with the finite element results(3%error with 288-element mesh results).Fig.3 shows the resulting thermal buckling mode shapes obtained by the finite element eigen-buckling analysis and the present multi-mode method.By comparing the thermal buckling mode shapes along the center line of the FG plate,the multi-mode solution shows good agreement with the finite element results.

    The thermal postbuckling paths of a typical clamped FG plate with gradient index n=1 under uniform temperature elevation are further analyzed using the multi-mode method.Fig.4 shows the variation in non-dimensional central plate deflection w/h against temperature change for clamped FG plates with length-to-thickness ratios as l/h=60,80 and 100.The solid,dashed and dashdot lines denote the results for three deformed configurations solved from the multi-mode equilibrium equations.It is seen from Fig.4 that no transverse deflection(only zero solution P0)occurs at low temperature rise(?T ≤ ?Tcr),while two non-zero values of postbuckling deflection(positive solution P1and negative solution P2)occur after?T>?Tcr.It proves to be a typical bifurcation buckling in this case.Because the non-zero values of postbuckling deflection(P1and P2)are almost symmetric about the mid-plane of the plate,either of the two deflection branches can represent the postbuckling amplitude of the clamped FG plate.The numerical results obtained by Lee and Kim(2010)are also depicted in Fig.4,and good agreement with present multi-mode solutions is discovered,regardless of the length-to-thickness ratios.Fig.5 shows the variation in non-dimensional central plate deflection w/h against temperature change for clamped FG plates with gradient indexes as n=0,0.2,1,5 and∞.As defined in Eq.1,the plate with gradient index n=0 corresponding to the pure ceramic plate,while gradient index n=∞refer to the pure metal plate.The solid and dashed lines inFig.5 denote the non-zero and zero results solved from the multi-mode equilibrium equations,respectively.The non-zero solutions represent the thermal postbuckling deflections.Typical bifurcation buckling is observed in Fig.5 for clamped FG plates,regardless of the gradient indexes.With the gradient index of FG plates decreasing the critical buckling temperature increases,while the postbuckling deflection decreases.As depicted in Eq.1,the volume fraction of the ceramic increases with the gradient index decreasing.Also considering the elastic modulus of the ceramic is larger than that of the metal,but the thermal expansion coefficient of the ceramic is smaller than that of the metal.It is concluded that the ceramic-metal FG plate with more ceramic constituent is more stiffen and not ease to buckle with temperature elevation.

    Figure 3:Thermal bucking mode shapes along plate center line of the clamped FG plate.

    Figure 4:Thermal postbuckling paths of clamped FG plates with various lengthto-thickness ratios.

    Figure 5:Thermal postbuckling paths of clamped FG plates with various gradient indexes.

    4.2 Simply supported FG plates

    The thermal buckling and postbuckling behavior of simply supported FG plates are further discussed.Fig.6 shows the variation in critical buckling temperature rise?Tcragainst the gradient index n for simply supported Si3N4/SUS304 FG plates with length-to-thickness ratios as60 and 100.It proves that the critical buckling temperature increases with the decrease of the gradient index(more ceramic constituent)and the length-to-thickness ratio(thicker plate).For a given length-to-thickness ratio,the critical buckling temperature of the pure ceramic plate(n=0)is the highest,while the critical buckling temperature of the pure metal plate(n=∞)is the lowest.

    Figure 6:Variation of critical buckling temperature with gradient index.

    Fig.7 shows the variation in non-dimensional central plate deflection w/h against temperature change for a simply supported Si3N4/SUS304 FG plate based on the multi-mode method.The uniform temperature elevation is assumed and the gradient index is chosen as n=1.The solid and dashed lines in Fig.7 denote the nonzero and zero results solved from the multi-mode equilibrium equations,respectively.By contrasting Fig.7 and Fig.4,it is discovered that the simply supported FG plate under thermal load exhibits quite different prebuckling and postbuckling behavior from that of the clamped FG plate.For the simply supported FG plate,the transverse deflection occurs no matter how small the temperature rise.Therefore,there is no bifurcation buckling in this case.It is also seen in Fig.7 that two different non-zero solution branches of the temperature-deflection curve(P1and P2)exist for the simply supported FG plate,which appear quite similar to the behavior corresponding to imperfect structures[Iooss and Joseph(1980)].Then the simply supported FG plate may have three different values of deflection(P0,P1and P2)corresponding to a given temperature,that is,three deformed configurations may exist for a simply supported FG plate for a given thermal load.The numerical results using Newton-Raphson iteration based on the finite element model are also depicted in Fig.7 with symbol‘◆’.For a given temperature and initial condition,the Newton-Raphson iteration gives only one solution of plate deflection,but good agreement between the numerical iterative result and the multi-mode solution is discovered.

    Figure 7:Asymmetrical postbuckling paths of a simply supported FG plate.

    Figure 8:Thermal postbuckling paths of simply supported FG plates with various gradient indexes.

    Fig.8 shows the variation in non-dimensional central plate deflection w/h against temperature change for simply supported FG plates with gradient indexes as n=0,0.2,1,5 and∞.It is seen that asymmetrical postbuckling branches of the temperature-deflection curve exist for most simply supported FG plates.But bifurcation buckling behavior reappears for FG plates with gradient indexes as n=0 and∞,which refer to the pure ceramic and pure metal plate,respectively.It is also shown in Fig.8 that the postbuckling deflection decreases with the gradient index of FG plates decreasing(more ceramic constituent).

    Figure 9:Thermal postbuckling paths of a simply supported FG plate under different temperature distribution.

    The thermal postbuckling paths of the simply supported FG plate with non-uniform temperature distributions are further investigated.The temperature distribution along the plate thickness i/s governed by Eq.16,and the top/bottom temperature rise ratio is chosen as?Tc?Tm=1,2 /and 4.Fig.9 shows the variation in nondimensional central plate deflection wh against temperature change for simply supported FG plates with the gradient index as n=1 under different temperaturefield.It is seen in Fig.9 that postbuckling branches of the temperature-deflection curve under n/on-uniform temperature distribution with top/bottom temperature rise ratios as?Tc?Tm=2 and 4 are quite d/ifferent from the postbuckling branch under uniform temperature distribution(?Tc?Tm=1).Because the negative value of deflection is larger than the positive value of deflection for FG plate under uniform temperature distribution,the negative deflection branch(bending to the metal-rich side)represents the postbuckling amplitude o/f the simply supported plate.But for non-uniform temperature distribution of?Tc?Tm=2 and 4,the positive value of deflection is larger than the negative value.Thus the positive deflection branch(bending to the ceramic-rich side)represents the postbuckling amplitude of the FG plate.For a given temperature at the top side of the plate(Tc),the value of postbuckling deflection decreases with the top/bottom temperature rise ratio increasing.

    5 Conclusions

    Thermal buckling and postbuckling behavior of FG plates has been investigated using an approximated multi-mode method.Numerical studies are conducted to examine the effect of boundary condition,material distribution and temperature distribution on the postbuckling response of ceramic-metal FG plates.The following conclusions are reached:(1)MIN3 element has good convergence property in modeling the FG plate and performing the thermal buckling analysis.The multimode method based on the finite element model provides an efficient and accurate approach to study the asymmetrical postbuckling behavior of the FG plate.(2)Typical bifurcation buckling phenomenon is found in the clamped FG plate,regardless of the length-to-thickness ratio and the gradient index variation.The ceramic-metal FG plate with more ceramic constituent is more stiffen and not ease to buckle(higher critical buckling temperature and lower postbuckling deflection)with temperature elevation.(3)Three deformed configurations may exist for a simply supported FG plate under given thermal load,and the transverse deflection occurs no matter how small the temperature rise.Then no bifurcation buckling occurs for the simply supported FG plate.For uniform temperature distribution,the bending deflection branch to the metal-rich side represents the postbuckling amplitude of the simply supported FG plate.While for non-uniform temperature distribution,the bending deflection branch to the ceramic-rich side represents the postbuckling amplitude of the simply supported ceramic-metal FG plate.

    Acknowledgement: The authors gratefully acknowledge the support of National Natural Science Foundation of China(Grant no.11302162),Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant no. 201102011 20023),and Fundamental Research Funds for the Central Universities(Xi’an Jiao-tong University).This research was also supported in part by Natural Science Basic Research Plan in Shaanxi Province of China(Program no.2013JQ1005).

    Aydogdu,M.(2008):Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory.Composite Structures,vol.82,no.1,pp.155-157.

    Birman,V.;Byrd,L.W.(2007):Modeling and analysis of functionally graded materials and structures.Applied Mechanics Reviews,vol.60,pp.195-216.

    Cai,Y.C.;Atluri,S.N.(2012):Large rotation analyses of plate/shell structures based on the primal variational principle and a fully nonlinear theory in the updated Lagrangian co-rotational reference frame.CMES:Computer Modeling in Engineering&Sciences,vol.83,no.3,pp.249-273.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A simple locking-alleviated3D 8-node mixed-collocation C0 finite element with over-integration for functionally-graded and laminated thick-section plates and shells,with&without Z-pins.CMC:Computers,Materials&Continua,vol.41,no.3,pp.163-192.

    Ibrahim,H.H.;Tawfik,M.;Al-Ajmi,M.(2008):Non-linear panel flutter for temperature-dependent functionally graded material panels.Computational Mechanics,vol.41,no.2,pp.325-334.

    Iooss,G.;Joseph,D.D.(1980):Elementary Stability and Bifurcation Theory.Springer.

    Javaheri,R.;Eslami,M.R.(2002):Thermal buckling of functionally graded plates.AIAA Journal,vol.40,no.1,pp.162-169.

    Jha,D.K.;Kant,T.;Singh,R.K.(2013):A critical review of recent research on functionally graded plates.Composite Structures,vol.96,pp.833-849.

    Lee,S.L.;Kim,J.H.(2010):Thermal post-buckling and the stability boundaries of structurally damped functionally graded panels in supersonic airflows.Composite Structures,vol.92,no.2,pp.422-429.

    Li,S.R.;Zhang,J.H.;Zhao,Y.G.(2007):Nonlinear thermomechanical postbuckling of circular FGM plate with geometric imperfection.Thin-Walled Structures,vol.45,no.5,pp.528-536.

    Ma,L.S.;Wang,T.J.(2004):Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory.International Journal of Solids and Structures,vol.41,pp.85-101.

    Na,K.S.;Kim,J.H.(2004):Three-dimensional thermal buckling analysis of functionally graded materials.Composites Part B:Engineering,vol.35,no.5,pp.429-437.

    Prakash,T.;Singha,M.K.;Ganapathi,M.(2008):Thermal postbuckling analysis of FGM skew plates.Engineering Structures,vol.30,no.1,pp.22-32.

    Prakash,T.;Singha,M.K.;Ganapathi,M.(2009a):Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates.Computational Mechanics,vol.43,no.3,pp.341-350.

    Prakash,T.;Singha,M.K.;Ganapathi,M.(2009b):Thermal snapping of functionally graded materials plates.Materials and Design,vol.30,no.10,pp.4532-4536.

    Reddy,J.N.;Chin,C.D.(1998):Thermomechanical analysis of functionally graded cylinders and plates.Journal of Thermal Stresses,vol.21,no.6,pp.593-626.

    Reddy,J.N.(2000):Analysis of functionally graded plates.International Journal for Numerical Methods in Engineering,vol.47,no.1-3,pp.663-684.

    Shen,H.S.(2007):Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties.International Journal of Mechanical Sciences,vol.49,no.4,pp.466-478.

    Singha,M.K.;Prakash,T.;Ganapathi,M.(2011):Finite element analysis of functionally graded plates under transverse load.Finite Elements in Analysis and Design,vol.47,no.4,pp.453-460.

    Sohn,K.J.;Kim,J.H.(2008):Structural stability of functionally graded panels subjected to aero-thermal loads.Composite Structures,vol.82,no.3,pp.317-325.

    Tessler,A.;Hughes,T.(1985):A three-node Mindlin plate element with improved transverse shear.Computer Methods in Applied Mechanics and Engineering,vol.50,pp.71-101.

    Wu,L.(2004):Thermal buckling of a simply supported moderately thick rectangular FGM plate.Composite Structures,vol.64,no.2,pp.211-218.

    Yang,J.;Liew,K.M.;Kitipornchai,S.(2006):Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates.International Journal of Solids and Structures,vol.43,no.17,pp.5247-5266.

    1Corresponding author.State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,28 Xianning West Road,Xi’an 710049,P.R.China.Tel:86-29-82668754;E-mail:xwei@mail.xjtu.edu.cn

    2State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,P.R.China.

    3State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,P.R.China.

    国产极品粉嫩免费观看在线| av在线播放免费不卡| 老司机影院毛片| 国产成人影院久久av| 精品欧美一区二区三区在线| 99国产精品一区二区三区| 成人国产一区最新在线观看| av有码第一页| 99热国产这里只有精品6| 黑人欧美特级aaaaaa片| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 1024香蕉在线观看| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| 欧美乱妇无乱码| svipshipincom国产片| 国产精品二区激情视频| 19禁男女啪啪无遮挡网站| 十八禁人妻一区二区| 国产精品免费大片| 在线十欧美十亚洲十日本专区| av天堂在线播放| 久久香蕉国产精品| 精品无人区乱码1区二区| 中文字幕av电影在线播放| 亚洲一区中文字幕在线| 亚洲国产看品久久| 最近最新免费中文字幕在线| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频| 国产在线一区二区三区精| 五月开心婷婷网| 国产欧美日韩一区二区精品| 欧美久久黑人一区二区| 久久婷婷成人综合色麻豆| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 国产aⅴ精品一区二区三区波| 下体分泌物呈黄色| 午夜免费观看网址| 国产av又大| 我的亚洲天堂| 飞空精品影院首页| 欧美午夜高清在线| 这个男人来自地球电影免费观看| 9色porny在线观看| 自线自在国产av| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 亚洲精品乱久久久久久| 咕卡用的链子| 国产不卡一卡二| 99国产精品一区二区蜜桃av | 黄色成人免费大全| av欧美777| av有码第一页| 大型av网站在线播放| 国产成人精品久久二区二区91| 男人的好看免费观看在线视频 | 亚洲精品在线美女| 欧美日韩亚洲高清精品| 亚洲国产精品sss在线观看 | 一进一出抽搐gif免费好疼 | 欧美在线黄色| 中文字幕人妻丝袜一区二区| 91av网站免费观看| 亚洲五月婷婷丁香| 亚洲成国产人片在线观看| 看免费av毛片| 国产精品久久久久成人av| 午夜影院日韩av| 国产av精品麻豆| 国产97色在线日韩免费| 手机成人av网站| 亚洲片人在线观看| 久久精品亚洲av国产电影网| 高潮久久久久久久久久久不卡| 国产一区二区三区视频了| 亚洲精品美女久久av网站| av福利片在线| 久久精品亚洲精品国产色婷小说| 精品人妻在线不人妻| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 亚洲综合色网址| 水蜜桃什么品种好| 亚洲精品粉嫩美女一区| 中文字幕色久视频| 久久香蕉精品热| 人妻一区二区av| 欧美精品一区二区免费开放| 韩国av一区二区三区四区| 午夜影院日韩av| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 精品国产亚洲在线| 亚洲人成77777在线视频| 国产97色在线日韩免费| 久久香蕉精品热| 精品人妻熟女毛片av久久网站| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 欧美黑人精品巨大| 国产av又大| 真人做人爱边吃奶动态| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 欧美在线一区亚洲| 久久热在线av| 亚洲av成人不卡在线观看播放网| 在线看a的网站| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区三区在线| 午夜福利免费观看在线| 校园春色视频在线观看| 一边摸一边做爽爽视频免费| 天堂动漫精品| 中出人妻视频一区二区| 久久久久久免费高清国产稀缺| 国产欧美亚洲国产| 婷婷丁香在线五月| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区 | 精品福利观看| 在线天堂中文资源库| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黄色片欧美黄色片| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 免费在线观看完整版高清| 午夜老司机福利片| 97人妻天天添夜夜摸| 天堂动漫精品| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 99国产综合亚洲精品| 国产激情久久老熟女| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 精品国产一区二区久久| 一级黄色大片毛片| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| 身体一侧抽搐| cao死你这个sao货| 亚洲中文日韩欧美视频| 人妻 亚洲 视频| 久久午夜亚洲精品久久| 色老头精品视频在线观看| 一本一本久久a久久精品综合妖精| 精品无人区乱码1区二区| 亚洲一区中文字幕在线| videosex国产| 欧美中文综合在线视频| 午夜免费成人在线视频| 18在线观看网站| 一级毛片高清免费大全| 80岁老熟妇乱子伦牲交| 国产97色在线日韩免费| 久久婷婷成人综合色麻豆| 久久中文字幕一级| xxxhd国产人妻xxx| 国产真人三级小视频在线观看| 亚洲精华国产精华精| 人人澡人人妻人| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 久久精品国产综合久久久| 在线观看免费视频网站a站| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 国产精品av久久久久免费| 高清在线国产一区| 欧美av亚洲av综合av国产av| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| 国产麻豆69| 九色亚洲精品在线播放| 大香蕉久久网| 高清av免费在线| 丝袜在线中文字幕| 最近最新免费中文字幕在线| 又黄又粗又硬又大视频| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 精品亚洲成国产av| 亚洲人成电影免费在线| 国产视频一区二区在线看| 亚洲av电影在线进入| 伦理电影免费视频| 亚洲国产毛片av蜜桃av| 热99re8久久精品国产| 欧美不卡视频在线免费观看 | 久久这里只有精品19| 变态另类成人亚洲欧美熟女 | 欧美日本中文国产一区发布| 男女高潮啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 国产国语露脸激情在线看| 国产精品99久久99久久久不卡| videosex国产| 怎么达到女性高潮| 日本欧美视频一区| x7x7x7水蜜桃| 热re99久久精品国产66热6| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 在线视频色国产色| 99香蕉大伊视频| 国产乱人伦免费视频| 人人妻人人澡人人爽人人夜夜| 欧美精品av麻豆av| 国产又色又爽无遮挡免费看| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 大香蕉久久成人网| 好看av亚洲va欧美ⅴa在| 91精品三级在线观看| 高清av免费在线| 日韩制服丝袜自拍偷拍| a在线观看视频网站| 欧美乱色亚洲激情| 91成年电影在线观看| 最新美女视频免费是黄的| 亚洲欧美色中文字幕在线| 欧美色视频一区免费| a级毛片黄视频| 久久精品人人爽人人爽视色| 黄片播放在线免费| 国产精品国产av在线观看| 成人国语在线视频| 嫩草影视91久久| 视频在线观看一区二区三区| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 热re99久久国产66热| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面| 大型黄色视频在线免费观看| 久久香蕉激情| 动漫黄色视频在线观看| 亚洲精品自拍成人| a级毛片黄视频| 欧美黑人欧美精品刺激| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 国产成人精品无人区| 午夜久久久在线观看| 三上悠亚av全集在线观看| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 欧美精品av麻豆av| 国产蜜桃级精品一区二区三区 | 亚洲精品一二三| 少妇的丰满在线观看| 久久久久久久国产电影| 一级作爱视频免费观看| 久久国产精品影院| 免费人成视频x8x8入口观看| 不卡av一区二区三区| 国产免费现黄频在线看| 真人做人爱边吃奶动态| 大香蕉久久网| 国精品久久久久久国模美| 亚洲视频免费观看视频| 欧美另类亚洲清纯唯美| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 精品电影一区二区在线| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 亚洲少妇的诱惑av| 精品久久久久久电影网| 国产在线一区二区三区精| 一级作爱视频免费观看| 欧美日韩亚洲高清精品| 两性夫妻黄色片| 国产精品1区2区在线观看. | 免费在线观看视频国产中文字幕亚洲| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 久久久精品免费免费高清| 久久久久久久午夜电影 | 欧美日韩黄片免| 午夜福利在线观看吧| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 日韩三级视频一区二区三区| 国产精品电影一区二区三区 | netflix在线观看网站| 免费在线观看完整版高清| 黄色丝袜av网址大全| 亚洲片人在线观看| 色尼玛亚洲综合影院| 国产又爽黄色视频| 欧美黄色淫秽网站| 亚洲第一av免费看| 亚洲综合色网址| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡| e午夜精品久久久久久久| 身体一侧抽搐| 欧美人与性动交α欧美精品济南到| 动漫黄色视频在线观看| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看. | 欧美乱色亚洲激情| 狠狠狠狠99中文字幕| 国产亚洲精品一区二区www | 亚洲三区欧美一区| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 中文字幕制服av| 免费观看a级毛片全部| 超碰97精品在线观看| 成人手机av| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| 午夜两性在线视频| 制服诱惑二区| 精品电影一区二区在线| 黄色片一级片一级黄色片| 中文字幕制服av| 欧美日韩一级在线毛片| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| av线在线观看网站| 夜夜夜夜夜久久久久| 精品人妻1区二区| 精品国产一区二区久久| 亚洲美女黄片视频| 校园春色视频在线观看| 久久精品国产亚洲av香蕉五月 | 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 久久人妻熟女aⅴ| 国产成+人综合+亚洲专区| 国产男女超爽视频在线观看| 国产免费男女视频| 国产成人精品无人区| 手机成人av网站| 久久久久久久久久久久大奶| 中文亚洲av片在线观看爽 | 99国产极品粉嫩在线观看| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕 | 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 亚洲片人在线观看| 欧美久久黑人一区二区| 大香蕉久久网| 亚洲一区二区三区不卡视频| 亚洲av第一区精品v没综合| 欧美性长视频在线观看| 电影成人av| 女同久久另类99精品国产91| 国产av又大| 国产精品综合久久久久久久免费 | 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 色94色欧美一区二区| 在线国产一区二区在线| 国产伦人伦偷精品视频| a级毛片黄视频| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 18在线观看网站| 国产99白浆流出| 久9热在线精品视频| 自线自在国产av| 女人精品久久久久毛片| 精品一区二区三卡| 高清在线国产一区| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 亚洲精品中文字幕一二三四区| 成年版毛片免费区| 国产精品成人在线| 韩国精品一区二区三区| 精品午夜福利视频在线观看一区| 国产免费av片在线观看野外av| 搡老乐熟女国产| 美女高潮喷水抽搐中文字幕| 黄色毛片三级朝国网站| 久久久国产精品麻豆| 亚洲专区字幕在线| 亚洲精品自拍成人| 久久久久久人人人人人| 国产区一区二久久| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 国精品久久久久久国模美| 国产精品自产拍在线观看55亚洲 | 两性夫妻黄色片| 999久久久国产精品视频| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 成人影院久久| 亚洲精品粉嫩美女一区| 一本大道久久a久久精品| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 香蕉国产在线看| 91字幕亚洲| 国产单亲对白刺激| av视频免费观看在线观看| 精品久久久久久久久久免费视频 | 亚洲熟女精品中文字幕| 精品一区二区三区视频在线观看免费 | 人成视频在线观看免费观看| 国产亚洲一区二区精品| 黄色片一级片一级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 久久ye,这里只有精品| 天堂√8在线中文| 9191精品国产免费久久| 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 日韩有码中文字幕| 欧美精品高潮呻吟av久久| 欧美国产精品一级二级三级| 亚洲熟妇中文字幕五十中出 | 亚洲成人免费av在线播放| 亚洲avbb在线观看| 中文字幕人妻丝袜一区二区| 丝袜美足系列| 交换朋友夫妻互换小说| 老司机靠b影院| 两人在一起打扑克的视频| 99re在线观看精品视频| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲 | 99精品久久久久人妻精品| 午夜免费成人在线视频| 欧美国产精品一级二级三级| 国产欧美亚洲国产| www日本在线高清视频| 超色免费av| 精品电影一区二区在线| 成熟少妇高潮喷水视频| 一二三四社区在线视频社区8| 天天躁日日躁夜夜躁夜夜| 精品福利永久在线观看| 老汉色∧v一级毛片| 日韩一卡2卡3卡4卡2021年| 精品视频人人做人人爽| 一级毛片女人18水好多| 日韩欧美免费精品| 建设人人有责人人尽责人人享有的| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 久久久久久久久久久久大奶| 欧美 日韩 精品 国产| 少妇的丰满在线观看| 亚洲成人国产一区在线观看| 黑人操中国人逼视频| 色精品久久人妻99蜜桃| 嫩草影视91久久| 免费久久久久久久精品成人欧美视频| 亚洲熟妇熟女久久| 免费日韩欧美在线观看| 男人操女人黄网站| 亚洲欧美色中文字幕在线| 精品第一国产精品| 日韩欧美免费精品| 精品国产亚洲在线| 女人被狂操c到高潮| 亚洲视频免费观看视频| 亚洲午夜理论影院| 在线观看午夜福利视频| 日本五十路高清| 夫妻午夜视频| 大香蕉久久网| 欧美不卡视频在线免费观看 | 午夜日韩欧美国产| 午夜福利在线观看吧| 好男人电影高清在线观看| 国产精品免费大片| 国产亚洲欧美在线一区二区| 欧美性长视频在线观看| tocl精华| 国产又爽黄色视频| 亚洲 欧美一区二区三区| 最近最新中文字幕大全免费视频| 亚洲国产欧美日韩在线播放| 色综合欧美亚洲国产小说| 日本黄色日本黄色录像| 久久久久国产精品人妻aⅴ院 | 一级a爱片免费观看的视频| 人人澡人人妻人| 性色av乱码一区二区三区2| 一区二区三区激情视频| 国产区一区二久久| 99精品欧美一区二区三区四区| 中文字幕精品免费在线观看视频| 亚洲国产欧美一区二区综合| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 国产精品.久久久| 国产精品99久久99久久久不卡| 热99re8久久精品国产| 少妇被粗大的猛进出69影院| 王馨瑶露胸无遮挡在线观看| 欧美亚洲 丝袜 人妻 在线| av天堂在线播放| 一级片'在线观看视频| 黄色女人牲交| 一级毛片女人18水好多| 91成年电影在线观看| 高清欧美精品videossex| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频| 国产精品自产拍在线观看55亚洲 | 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 午夜福利一区二区在线看| 久久人妻av系列| 成年人免费黄色播放视频| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| 99国产精品一区二区三区| av网站免费在线观看视频| 亚洲成人免费电影在线观看| tocl精华| 老熟女久久久| 91麻豆av在线| 国产精品久久久人人做人人爽| 亚洲在线自拍视频| 亚洲av日韩精品久久久久久密| 亚洲专区字幕在线| 色精品久久人妻99蜜桃| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 国产精品影院久久| 色综合欧美亚洲国产小说| 国产不卡av网站在线观看| 久久青草综合色| 国产av精品麻豆| 亚洲色图av天堂| 久久性视频一级片| 嫩草影视91久久| 99久久综合精品五月天人人| 国产欧美日韩一区二区三| 亚洲精品av麻豆狂野| 麻豆av在线久日| 免费黄频网站在线观看国产| 亚洲色图综合在线观看| 一级片免费观看大全| 国产野战对白在线观看| 国产99久久九九免费精品| 母亲3免费完整高清在线观看| 国产男靠女视频免费网站| 人妻丰满熟妇av一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 欧美精品一区二区免费开放| 一区福利在线观看| 精品久久久精品久久久| 波多野结衣一区麻豆| 国产av一区二区精品久久| 日韩免费高清中文字幕av| 一级作爱视频免费观看| 亚洲视频免费观看视频| 老司机亚洲免费影院| 国产麻豆69| 十八禁网站免费在线| 一级黄色大片毛片| 久久久久国产一级毛片高清牌| 成人亚洲精品一区在线观看| 久久久久久免费高清国产稀缺| 法律面前人人平等表现在哪些方面| 国产有黄有色有爽视频| 日韩免费av在线播放|