• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Geometry and Shape on the Mechanical Behaviors of Silicon Nanowires

    2015-12-12 08:27:36QunfengLiuLiangWangandShengpingShen
    Computers Materials&Continua 2015年5期
    關(guān)鍵詞:病號(hào)???/a>身體

    Qunfeng Liu,Liang Wangand Shengping Shen

    Effects of Geometry and Shape on the Mechanical Behaviors of Silicon Nanowires

    Qunfeng Liu1,2,Liang Wang1and Shengping Shen1

    Molecular dynamics simulations have been performed to investigate the effects of cross section geometry and shape on the mechanical behaviors of silicon nanowires(Si NWs)under tensile loading.The results show that elasticity of<100>rectangular Si NWs depends on their cross section aspect ratios while the elastic limits of<110>and<111>wires show geometry independence.Despite the significant influence of axial orientation,both yield stress and Young’s Modulus show the remarkable shape dependence for wires with various regular cross sections.Additionally,underlying mechanism for the geometry and shape effects on mechanical behavior are discussed based on the fundamental energy theory.From energy view,edge energy is the crucial factor that determines shape dependence of the elastic limits.

    Silicon nanowire,Cross section,Geometry effect,Shape effect,Elastic limits.

    1 Introduction

    Silicon nanowires(Si NWs)have been considered as fundamental building blocks in the future nano-electro-mechanical systems(NEMS)[Cui et al.(2003)]and have been extensively investigated due to their unique mechanical,electric,optoelectronic and thermal properties[Shir et al.(2006);Jin et al.(2007);Donadio and Galli(2010);Sivakov et al.(2010);Sohn et al.(2010)].These interesting physical properties in Si NWs proved to result from their high surface-to-volume ratios that are quite different from those of bulk silicon.Since surface atoms with uncoordinated lattice structures behave distinctively from that of fully coordinated interior atoms,nanowires subjected to external loading will undergo a unique mechanical behaviors during the deformation process[Sohn et al.(2010)].Furthermore,thestability of the physical properties of Si NWs is related to the robustness of mechanical properties determined by large proportional surface atoms.Thus,investigations on the mechanical behaviors of SiNWs are crucial for future engineering applications.

    Experiments have reported that Si NWs can be synthesized in different cross section shapes,geometries and axial orientations with respect to different synthesis methods[Shi et al.(2000);Bandaru and Pichanusakorn(2010)].By varying temperatures,the geometry of nanomaterials can be rectified artificially to obtain some modified physical and mechanical properties[Qu et al.(2004);Qian et al.(2008)].For ZnO nanobelts,the Young’s modulus was observed to depend strongly on the aspect ratio of their cross sections[Lucas et al.(2007)].It was reported that metal nano-particles with different cross section geometries have different optical properties[Mclaren et al.(2009)].Besides,cross-sectional shape effect plays a significant role in determining mechanical properties of nanostructures[Cao and Ma(2008);Sohn et al.(2010)].The structural,electrical,optical and magnetic properties of ZnO nanowires can be profoundly modulated by altering their cross-sectional shapes[Qu et al.(2004);Qian et al.(2008)].This shape effect on the mechanical properties of nanowires has also been investigated by some molecular dynamics simulations[Ji and Park(2006);Yang et al.(2009)].The results demonstrated that transverse shape and geometry affect the mechanical properties of nanowires in a different way.However,the underlying mechanism of both effects on the mechanical behavior and yield responses are limited.

    In previous researches,mechanical properties of silicon nanowires have been intensively studied,particularly on the wires with square or circular cross sections[Yang et al.(2009);Sohn et al.(2010)].Little work has been done on wires with other cross section shapes,even though they are energetically favorable during synthesis process.In essence,regular cross sections are composed of surfaces and edges.Thus,effects of geometry and shape can be considered as the combined effects of intrinsic surfaces and edges.Therefore,by studying the surface and edge effects,we can provide a general understanding of the combined effects of cross section geometry,shape,as well as axial orientation on the mechanical behavior of Si NWs.This can not only explain the geometry and shape effects in a generic sense,but can provide alternative ways for engineering the mechanical properties of Si NWs as well.

    In this work,we firstly describe the simulation methodology and the fundamental energy based mechanics used to analyze the mechanical behaviors of the SiNWs.Then we employ molecular dynamics(MD)simulations to investigate the effect of cross section geometry on the elastic limits of silicon nanowires with different axial orientations.The influence of cross section shape on the elasticity is also studied according to the correlation between mechanical behaviors and their cross sections.Finally,we discuss the underlying mechanism of the mechanical behaviors by comparing the influential factors between geometry effect and shape effect.

    2 Methodology

    According to the fundamental energy based mechanics approach[Shuttleworth(1950);Zhang et al.(2008)],the total potential energy of a nanowire can be regarded to be the sum of bulk energies,surface energies,and edge energies.For the initial nanowire model,the total potential energy Utcan be expressed by

    where U0is the reference energy of the strain-free bulk counterpart,are the initial surface energy and edge energy,respectively.In this work,we first statically relaxed the nanowires with free boundaries,which can effectively diminish the initial residual surface stress and cause an initial strain along axial orientation.After static relaxation,all wires were dynamically equilibrated with two ends fixed in NVT and NVE ensembles,leading to a minimized total potential energy.Thus,the total system energy can be simplified as

    whereUexc=Us+Ueis the total excess energy due to surface energy(Us)and edge energy(Ue)of wire at equilibrium;Ub=U0+is the total bulk energy arising from the nonlinear elasticity[Liang et al.(2005)]within the nanowire core due to the relaxation of excess energy,whereis the introduced equilibrium strain energy.Particularly,if wire cross section is regular polygon,which comprises k edges and k facets,the total excess energy per unit length Uˉexccan be calculated from

    where γiis the surface energy per unit area,liis the facet length on the cross section of the i?th facet,and ηiis the edge energy per unit length of the i?th edge.

    Previous researches demonstrated that the size dependence of elastic Young’s modulus in nanowires[Diao et al.(2004);Liang et al.(2005);Zhang et al.(2008)]was primarily due to the relaxation of the total system energy.Under a uniaxial loading,wires are stretched by a strain increment in the NVE ensemble.The total potential energy Utis given by

    where W is the work done by the applied strain ε.The effective Young’s modulus E can be expressed as the second derivative of the strain energy with respect to the applied strain,

    where V is the instantaneous volume of wire.The volume change due to lateral Poisson’s effect can be negligible during the first elastic deformation stage,where W can be expressed as 1/2Eεε2and the second derivative of W is a constant Eε.Besides,bulk strain energy Ubdue to surface effect can be considered as an extra contribution to the wire core energy induced by surface excess energiesUexc.Thus,according to equations(4)and(5),it was concluded that the elastic properties of nanowires are determined not only by the bulk strain energy of hypothetical wire,but also by their surface and edge energies which differ with their cross section geometries and shapes.

    To calculate bulk strain energy,both continuum method[Huang et al.(2013);Joseph and Lu(2014)]and atomistic method can be utilized;while for surface and edge energies calculation,atomistic simulation has the merit to descript the surface deformation details based on their atomic coordinates.Thus,we performed molecular dynamics simulations with a MEAM potential for Si-Si interactions to study the uniaxial tensile deformation behaviors of Si NWs.The empirical MEAM potential was developed by Maria and Thijsse[Timonova and Thijsse(2011)]and successfully used to reproduce brittle or ductile fracture behaviors of Si NWs corresponding to different axial orientations and temperatures[Kang and Cai(2010);Liu and Shen(2012)],which were in agreement with experimental results[Zheng et al.(2009)].Besides,the potential is useful for determining elastic properties of Si NWs because of its reliable depiction of elastic constant,defect energies,cohesive energy,bulk modulus,surface energy,and vacancy formation energy,which are crucial for accurate calculation of elastic limits and incipient plastic responses of Si NWs under loading conditions[Liu and Shen(2012)].

    All Si NWs models utilized in this work were cut from bulk single crystal silicon along a specific axial orientation. According to their axial orientations, three typical nanowires:<100>wires,<110>wires and<111>wires were constructed with different cross section shapes.Here,we first investigate the influence of aspect ratio by using rectangular cross section wires where the geometry effect is eminent.Then,the shape effect of cross section on the mechanical and fracture behaviors was studied in nanowires with different regular polygon cross sections,i.e.octagon,hexagon,and square.All wires had the same length of 543.1 Angstrom in the x direction,where lattice constant for silicon is 5.431 Angstrom.All wire surfaces,including lateral surfaces and end surfaces,are created as free surfaces.To consider the effect of the aspect ratio,we investigated a set of rectangular Si NWs.All wires considered are of the same length and nearly identical cross section area.Wire height h increases as wire width w decreases,forming different aspect ratios h:w at about 1:1,2:1,3:1 and 4:1 respectively.This length bias of two adjacent sides can cause the variation of mechanical properties.Besides,wires with different orientations are built to consider the axial orientation effect.The lattice orientations of each set of wires and cross section dimensions are listed in Table 1.

    Table 1:Cross-section dimensions in terms of h:w for Si NWs with different lattice orientations,where w and h are defined in figure 1.All dimensions are in unit of nm.

    By using the conjugate gradient method,silicon nanowires were statically relaxed to energy minimum positions with one end fixed and the other free.Initially,the atomistic configurations in Si NWs are not in equilibrium state for they have large proportional surfaces.To obtain an equilibrium state,surface atoms will reconstruct to reduce the surface stresses by introducing the residual stress into wire core,causing lateral and axial contraction in wires to get an equilibrated length.This initial stable length of each wire is recognized as L0.Temperature was kept at 10K during relaxation by using Nose-Hoover thermostat[Nose(1984);Hoover(1985)]for 20ps in canonical(NVT)ensemble and by rescaling atomic velocities for 20ps in micro-canonical(NVE)ensemble.The time step for the relaxation and the following loading process is 1fs.After initial relaxation,all wires are subjected to uniaxial tensile loading at the strain rate of 2×108/s.The tensile loading process was conducted by fixing one end of the wire,and applying velocities to atoms along the x direction that goes linearly from zero at the fixed end to a maximum value at the free end,creating a ramp velocity profile.This ramp velocity was used to avoid the emission of shock waves from the fixed end.

    In this paper,all simulations are performed by using LAMMPS[Plimpton(1995);LAMMPS(2013)].The equations of motion are integrated by using velocity-Verlet algorithm.The axial stress and strain calculated here is global average for the entire system of atoms.The global stress represents uniaxial stress of the whole wire under tension,which is the average of the per-atom stress calculated using the virial theorem[Shen and Atluri(2004)],which takes the form α and

    where N is the total number of atoms,is the distance between the two atoms,U is the potential energy,and V is the volume of the nanowire.The strain used in this work is the engineering strain which is defined aswhere L is the current wire length.The atomic structures in this work are visualized by Atomeye[Li(2003)].

    3 Results and discussion

    3.1 Cross section geometry effect

    To investigate the cross-section geometry effect on the mechanical properties of silicon nanowires,we considered five sets of nanowires with different axial and surface orientations:[100]/[010][001](<100>a), [100]/[110][-110](<100>b),[110]/[001][-110](<110>a),[-110]/[110][001](<110>b),and[111]/[1-10][11-2](<111>).All wires have rectangular cross sections of the similar area but different aspect ratios ranging from 4:1,3:1,2:1,to 1:1 respectively,as listed in Table 1.Figure 2 and Figure 3 show the stress-strain responses of each case under uniaxial strain from zero to 30%.It was noted that stress of each case firstly increases linearly and then drops suddenly at a critical value,characterizing the onset of yielding.

    Figure 2(a)shows the stress-strain curves of<100>a wires with varying aspect ratios.In the first deformation stage,tensile stresses of all wires increase almost linearly with increasing strain until the yielding points,where a typical crystalamorphous lattice transition initiates on the{100}side surfaces,as seen in Figure 5(a).In this case,by keeping cross section area constant at about 30 nm2,larger height corresponds with smaller width and hence larger aspect ratio(h:w).Among all cases,square wire,with the smallest height,has the largest yield stress.It is shown that yield stresses increase with decreasing aspect ratio.Here,we define the slop of stress-strain curve within the initial small strain regime as the effective Young’s modulus.As seen from Figure 4(c),the Young’s modulus of<100>a wire increases with decreasing aspect ratio.This increasing trend of yield stress in<100>a wire is also observed in Figure 4(b).It indicates that both yield stress and Young’s modulus are related to the cross section geometry in<100>a wires.The aspect ratio dependence of yield stress was also observed in<100>b rectangular wires,as shown in Figure 2(b).Similar to that of<100>a wires,<100>b wires have an increasing trend of yield stress with increasing aspect ratio.However,their stress-strain curves in the first deformation stage are overlapped,indicating that the effective Young’s Modulus is independent of the cross-sectional aspect ratio,as illustrated in Figure 4(c).

    Figure 1:Atomic diagrams for rectangular(a),hexagonal(f),and octagonal(g)cross-section of<100>,<110>,and<111>SiNWs.The axial direction is along X.Surface normal to Y and Z directions are traction free.The lattice orientation along each direction is listed in Table 1.(b)-(e)present the different rectangular cross-sections with different aspect ratios,h:w,at 1:1,2:1,3:1,and 4:1,respectively.

    Figure 2:Stress-strain curves of<100>a(a)and<100>b(b)Si NWs with varying aspect ratios.

    It was reported that the primary defect nucleation events of Si NWs vary distinctively according to their axial orientations[Liu and Shen(2012)].To study geometry effect on the yield stress,the influence of axial orientation on yield response should be considered.By using the same simulation technology,we modeled the tensile deformation of<110>a,<110>b and<111>wires.Their stress-strain curves are presented in Figure 3.For both<110>cases,yield stresses do not show a clear geometry dependence like that of two<100>cases.In<111>cases,stress-strain curves overlap in the initial deformation stage,indicating a constant elastic modulus.However,there is no linear correlation between elastic limits and their cross-section aspect ratios,as shown in Figure 3(c).

    Figure 3:Stress-strain curves of(a)<110>a,(b)<110>b and(c)<111>Si NWs with varying aspect ratios.

    Figure 4summarize the variations of yield strain,yieldstress,and Young’s modulus as a function of aspect ratios for Si NWs with different axial orientations.As shown in Figure 4(a),yield strains are almost constant regardless of aspect ratios for each axial orientation.The similar geometry independence can also be found for yield stress and Young’s Modulus.Except<100>a case,both yield stresses and Young’s Modulus for other kinds of wires fluctuate moderately,as can be seen in Figure 4(b)and(c).This geometry independence of Young’s Modulus is clearly confirmed by the variation of the normalized Young’s modulus(divided by the corresponding Young’s modulus of square wires),as presented in Figure 4(d).

    Figure 4:Yield stress,yield strain,Young’s modulus and normalized Young’s modulus as a function of aspect ratios for different sets of Si NWs.

    From Figure 4,we note that the geometry dependence of<100>a wires is the most evident among all cases.To study this distinctive geometry dependence,we modeled a set of large<100>a wires by two-folding their transverse dimensions(with area of about 120 nm2).The stress-strain curves of large<100>a wires are shown in Figure 2(c).The curves are totally overlapped regardless of cross-section aspect ratios,even after the yielding.It illustrates that geometry effect of<100>a wires is negligible when the cross section length is larger than 10nm.With increasing transverse size,the surface-to-volume ratio decreases readily.Thus,the surface energy difference due to the change of cross section geometry can be neglected compared with the dominant bulk energy.

    Figure 5:The incipient yield responses for different wires:(a)<100>a;(b)<100>b;(c)<110>b,and(d)<111>.Atoms in(a),(b),and(d)are colored by coordinate number with red,gray,green and burlywood for 5,4,3 and 2,respectively.Atoms in(c)are colored by the value of local shear strain(over 0.1)to highlight shear bands[Shimizu et al.(2007)].

    Figure 5 presents the snapshots of incipient yielding responses for wires with different axial orientations. Typical inelastic yielding responses of<100>a,<100>b,<110>b and<111>wires are illustrated in Figure 5(a)-5(d),respectively.After the elastic limits,<110>b wires yield with partial dislocations nucleating from the lateral{110}surfaces,leaving multiple evident shear bands;<111>wires break with brittle cracking from lateral surfaces;while both<100>wires yield with crystal-to-amorphous(c-a)transition.These yielding responses do not change with varying aspect ratios.

    Particularly,<100>a wires prefer to yield from the{100}surfaces(Figure 5(a));while<100>b wires tend to yield from the wire edges(Figure 5(b)).These preferential yielding sites are consistent with previous predictions by Zhu et al.[Zhu et al.

    (2008)]and Isumi et al.[Izumi and Yip(2008)]based on activation energy theory.By correlating the nucleation sites with their local energetic states,we note that for<100>a wires,yielding events occur at high energetic{100}surfaces;while for<100>b wires,edges become more preferential than{110}surfaces to initiate c-a transition.

    The geometry effect can also be explained to the excess energy based on equation(3).The excess energy per unit length for five sets of wires is listed in Table 2. From table 2,we notice that there are three factors that determine the specific excess energy of SiNWs.The first factor is the cross-section perimeter.With the same cross-section area,wires with larger aspect ratios will have longer perimeters and hence higher surface energy.Some researcher also reported that size dependent Young’s modulus was more likely to depend on cross-sectional perimeter than wire diameter[Justo et al.(2007)].The second factor is the specific surface energy.For example, unrelaxed surface energy of{100}facet is higher than that of{110}facet [Stekolnikov and Bechstedt(2005);Kang and Cai(2010)],thus<100>a wires have higher surface energy than<100>b wires.Furthermore,<100>a wires,with larger excess energy,show a more significant size dependence of Young’s modulus.The third factor is the specific edge energy.Although we simplified all the edges in this work as straight intersections of two dividing flat facets,there are still some ambiguities in the definition of edge energies[Hamilton(2006)],like edge length,facet area,and precise position of dividing facets.In this work,we only focus on the qualitative contribution of edge energies to the total excess energies,which will be further discussed in the next section.

    For rectangular wires,edge energies do not change with varying aspect ratios.The variation of excess energy only results from the variation of surface energy,which has been proved to have limited influence on the elastic limits.First,the perimeter increment due to increasing aspect ratios is very small compared with the value of perimeter.Second,surface energy increases only when the longer sides of rectangular are of the higher energy facets.Therefore,for<100>wires,the variation of excess energy due to geometry effect is very limited and is only remarkable in small size.While for<110>and<111>wires,where the yielding events are determined by their axial orientation,the surface energy gap due to geometry effect is not sufficient to affect the elastic limits.

    3.2 Cross section shape effect

    Figure 6 shows the stress-strain responses of wires with three regular cross-section shapes:square,hexagon,and octagon.To consider the influence of axial orientation,we build five sets of cuboid boxes with different axial and surface orientations,as listed in Table 1.All wires considered here have the same length and transverse area.Figure 6 shows the stress-strain responses of each case for different regular shapes.Under the same loading,axial stress of each wire increases linearly until a critical yielding point,characterizing the initiation of inelastic event.For each axial orientation,yield stresses decrease in the same sequence:square wire has the largest yield stress;octagon wire has the moderate one;and hexagon wire has the smallest one.

    Figure 7(a)shows yield stresses of wires with different axial orientations as a function of cross-section shape.For a certain axial orientation,yield stresses of each case show the same decreasing sequence with respect to their cross section shapes:square,octagon,and hexagon.The similar decreasing sequence is also observed for the Young’s Modulus of each case,as shown in Figure 7(b).Comparing the results of<100>a and<100>b wires with a specific shape,we note that yield stress and Young’s Modulus do not change significantly with varying lateral surfaces.Besides,previous results have suggested that geometry effect is not remarkable for<110>and<111>wires.Thus,we can conclude that surface effect is not a critical role for determining the shape dependence of elastic limits.

    To understand the cross-section shape effect,we need to analyze the following influential factors:cross-sectional perimeter,specific surface energy,specific edge energy,and the individual contribution of either surface energy or edge energy.Among these factors,cross section perimeter and specific surface energy are primary constitutes of surface energies.For wires with different shapes,edge energy changes significantly with varying cross section shapes.However,the precise calculation of edge energy seems difficult due to the ambiguity in the definition of edge configuration and the quantitative calculation of edge energy.First,edge en-ergy is closely related to the precise definition of edge length and facet areas that are determined by the edge atomic configurations[Hamilton(2006)].Second,regular polygons with different number of sides have different inner angles.Third,edge atomic configuration and their adjacent facets may vary arbitrarily as lateral surfaces rotate around the axial orientation.

    Figure 6:Stress-strain curves of(a)<100>a,(b)<100>b,(c)<110>a,(d)<110>b and(e)<111>Si NWs with varying shapes.

    Figure 7:Yield stress and Young’s Modulus as a function of cross-section shape for different sets of Si NWs.

    Nevertheless,by analyzing the mechanical behavior difference induced by geometry and shape effects,we can investigate the underlying mechanism based on fundamental energy theory.From energy view,the excess energy for rectangular wires with different aspect ratios is only determined by surface energy,while the excess energy for wires with different shapes is determined by both surface energy and edge energy.Edge energy is the only excess energy difference between the two effects.Considering the distinctive roles of the two effects,we can conclude that the edge energy is a crucial factor to determine the elasticity and subsequent yielding responses of SiNWs,which is consistent with our previous works[Liu et al.(2015)].Additionally,the decrease in yield stress of<100>a due to shape effect(4.1 GPa)is in the same level with the average gap due to axial orientation effect(i.e.yield stress gap between<100>and<111>wires is around 4.8 GPa).This indicates that shape dependence of elastic limits induced by edge effect can be considered as a comparable effect as that of axial orientation in SiNWs with diameter at a few nanometers.

    4 Conclusions

    In this work,atomistic simulations have been performed to investigate the geometry effect and shape effect on the elastic limits of silicon nanowires subjected to uniaxial tensile loading.For<100>wires with diameter less than 10 nm,the yield stress and the Young’s Modulus are remarkably dependent of their cross section aspect ratios.While for wires with<110>and<111>wires,no clear geometry dependence of elasticity is observed.It indicates that the geometry effect is easily affected by yielding responses determined by axial orientations.However,for wires with various regular cross sections,both yield stress and Young’s Modulus show the significant shape dependence regardless of their axial orientations.

    老福點(diǎn)了一支煙,靜靜地坐下,突然想到應(yīng)該去醫(yī)院看看母親了。他母親是個(gè)虔誠(chéng)的基督教徒,因?yàn)樯眢w不好一直是醫(yī)院的???。久病成醫(yī),她經(jīng)常給新來(lái)的病號(hào)當(dāng)健康顧問(wèn)。

    Based on fundamental energy-based mechanics,we derive that the excess energy,including surface and edge energy,dominates the elasticity of silicon nanowires.For wires with the nearly small size,geometry effect arises from surface energy while shape effect originates from both surface energy and edge energy.Thus,the comparison between weak geometry effect and strong shape effect strongly suggests that the contribution of edge energy variation is crucial factor to determine the elastic limits of SiNWs.This could not only provide some insights into the effect of surface structure on the mechanical properties of silicon nanowires,but may be utilized in future engineering application as well.

    Acknowledgement:The supports from NSFC(Grant No.11302161),China Postdoctoral Science Foundation(Grant No.2013M542339)and Open Research Fund of Key Laboratory of High Performance Complex Manufacturing,Central South University(Grant No.Kfkt2013-10)are appreciated.

    Bandaru,P.;Pichanusakorn,P.(2010):An outline of the synthesis and properties of silicon nanowires.Semiconductor science and technology,vol.25,no.2,024003.

    Cao,A.;Ma,E.(2008):Sample shape and temperature strongly influence the yield strength of metallic nanopillars.Acta Materialia,vol.56,no.17,pp.4816-4828.

    Cui,Y.;Zhong,Z.;Wang,D.;Wang,W.U.;Lieber,C.M.(2003):High Performance Silicon Nanowire Field Effect Transistors.Nano Letters,vol.3,no.2,pp.149-152.

    Diao,J.;Gall,K.;L.Dunn,M.(2004):Atomistic simulation of the structure and elastic properties of gold nanowires.Journal of the Mechanics and Physics of Solids,vol.52,no.9,pp.1935-1962.

    Donadio,D.;Galli,G.(2010):Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires.Nano Letters,vol.10,no.3,pp.847-851.

    Hamilton,J.C.(2006):Edge energies:Atomistic calculations of a continuum quantity.Physical Review B,vol.73,no.12,125447.

    Hoover,W.G.(1985):Canonical dynamics:equilibrium phase-space distributions.Physical Review A,vol.31,no.3,pp.1695-1697.

    Huang,C.J.;Hung,T.Y.;Chiang,K.N.(2013).Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods.CMC:Computers,Materials&Continua,vol.36,no.2,pp.99-133.

    Izumi,S.;Yip,S.(2008):Dislocation nucleation from a sharp corner in silicon.Journal of Applied Physics,vol.104,no.3,033513.

    Ji,C.;Park,H.S.(2006):Geometric effects on the inelastic deformation of metal nanowires.Applied physics letters,vol.89,no.18,181916.

    Jin,S.;Fischetti,M.V.;Tang,T.-W.(2007):Modeling of electron mobility in gated silicon nanowires at room temperature:Surface roughness scattering,dielectric screening,and band nonparabolicity.Journal of Applied Physics,vol.102,no.8,083715.

    Joseph,J.;Lu,Y.C.(2014):Finite Element Modeling of Compressive Deformation of Super-long Vertically Aligned Carbon Nanotubes.CMC:Computers,Materials&Continua,vol.42,no.1,pp.63-73.

    Justo,J.;Menezes,R.;Assali,L.(2007):Stability and plasticity of silicon nanowires:The role of wire perimeter.Physical Review B,vol.75,no.4,045303.

    Kang,K.;Cai,W.(2010):Size and temperature effects on the fracture mechanisms of silicon nanowires:Molecular dynamics simulations.International Journal of Plasticity,vol.26,no.9,pp.1387-1401.

    LAMMPS.(2013):Available from:http://lammps.sandia.gov/.

    Liang,H.;Upmanyu,M.;Huang,H.(2005):Size-dependent elasticity of nanowires:Nonlinear effects.Physical Review B,vol.71,no.24,241403.

    Liu,Q.;Shen,S.(2012):On the large-strain plasticity of silicon nanowires:Effects of axial orientation and surface.International Journal of Plasticity,vol.38,no.0,pp.146-158.

    Liu,Q.;Wang,L.;Shen,S.(2015):Effect of surface roughness on elastic limit of silicon nanowires.Computational Materials Science,vol.101,pp.267-274.

    Lucas,M.;Mai,W.;Yang,R.;Wang,Z.L.;Riedo,E.(2007):Aspect ratio dependence of the elastic properties of ZnO nanobelts.Nano letters,vol.7,no.5,pp.1314-1317.

    Mclaren,A.;Valdes-Solis,T.;Li,G.;Tsang,S.C.(2009):Shape and size effects of ZnO nanocrystals on photocatalytic activity.Journal of the American Chemical Society,vol.131,no.35,pp.12540-12541.

    Nose,S.(1984):A unified formulation of the constant temperature molecular dynamics methods.The Journal of Chemical Physics,vol.81,no.1,pp.511-519.

    Plimpton,S.(1995):Fast parallel algorithms for short-range molecular dynamics.Journal of Computational Physics,vol.117,no.1,pp.1-19.

    Qian,X.;Liu,H.;Guo,Y.;Song,Y.;Li,Y.(2008):Effect of aspect ratio on field emission properties of ZnO nanorod arrays.Nanoscale research letters,vol.3,no.8,pp.303-307.

    Qu,F.;Santos,D.;Dantas,N.;Monte,A.;Morais,P.(2004):Effects of nanocrystal shape on the physical properties of colloidal ZnO quantum dots.Physica E:Low-dimensional Systems and Nanostructures,vol.23,no.3,pp.410-415.

    Shen,S.;Atluri,S.(2004):Atomic-level stress calculation and continuum-molecular system equivalence.Computer Modeling in Engineering and Sciences,vol.6,pp.91-104.

    Shi,W.-S.;Peng,H.Y.;Zheng,Y.F.;Wang,N.;Shang,N.G.;Pan,Z.W.;Lee,C.S.;Lee,S.T.(2000):Synthesis of large areas of highly oriented,very long silicon nanowires.Advanced Materials,vol.12,no.18,pp.1343-1345.

    Shimizu,F.;Ogata,S.;Li,J.(2007):Theory of shear banding in metallic glasses and molecular dynamics calculations.Materials transactions,vol.48,no.11,pp.2923-2927.

    Shir,D.;Liu,B.Z.;Mohammad,A.M.;Lew,K.K.;Mohney,S.E.(2006):Oxidation of silicon nanowires.Journal of Vacuum Science&Technology B,vol.24,no.3,pp.1333-1336.

    Shuttleworth,R.(1950):The surface tension of solids,Proceedings of the Physical Society.Section A,vol.63,no.5,pp.444.

    Sivakov,V.A.;Voigt,F.;Berger,A.;Bauer,G.;Christiansen,S.H.(2010):Roughness of silicon nanowire sidewalls and room temperature photoluminescence.Physical Review B,vol.82,no.12,125446.

    Sohn,Y.-S.;Park,J.;Yoon,G.;Song,J.;Jee,S.-W.;Lee,J.-H.;Na,S.;Kwon,T.;Eom,K.(2010):Mechanical properties of silicon nanowires.Nanoscale research letters,vol.5,no.1,pp.211-216.

    Stekolnikov,A.;Bechstedt,F.(2005):Shape of free and constrained group-IV crystallites:Influence of surface energies.Physical Review B,vol.72,no.12,125326.

    Timonova,M.;Thijsse,B.J.(2011):Optimizing the MEAM potential for silicon.Modelling and Simulation in Materials Science and Engineering,vol.19,no.1,015003.

    Yang,Z.;Lu,Z.;Zhao,Y.-P.(2009):Shape effects on the yield stress and deformation of silicon nanowires:A molecular dynamics simulation.Journal of Applied Physics,vol.106,no.2,023537.

    Zhang,T.-Y.;Luo,M.;Chan,W.K.(2008):Size-dependent surface stress,surface stiffness,and Young’s modulus of hexagonal prism[111] β-SiC nanowires.Journal of Applied Physics,vol.103,no.10,104308.

    Zheng,K.;Han,X.;Wang,L.;Zhang,Y.;Yue,Y.;Qin,Y.;Zhang,X.;Zhang,Z.(2009):Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires.Nano Letters,vol.9,no.6,pp.2471-2476.

    Zhu,T.;Li,J.;Samanta,A.;Leach,A.;Gall,K.(2008):Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation.Physical Review Letters,vol.100,no.2,025502.

    1State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,PR China.

    2E-mail:qunfengliu@mail.xjtu.edu.cn

    猜你喜歡
    病號(hào)???/a>身體
    最多可以做多少面
    ???/a>
    人為什么會(huì)打哈欠
    認(rèn)識(shí)鐘表兩病號(hào)
    雞蛋也搞笑
    加法減法五病號(hào)
    我de身體
    我們的身體
    大灰狼(2016年9期)2016-10-13 11:15:26
    身體力“形”
    健康女性(2016年2期)2016-03-11 09:39:54
    話(huà)說(shuō)不等式x1x2<0
    成人亚洲精品av一区二区| 在线观看一区二区三区激情| 一级毛片aaaaaa免费看小| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 下体分泌物呈黄色| 国产成人精品一,二区| av福利片在线观看| 男女下面进入的视频免费午夜| 久久人人爽av亚洲精品天堂 | 人妻少妇偷人精品九色| 联通29元200g的流量卡| 国产免费一级a男人的天堂| 搡女人真爽免费视频火全软件| 久久久久久久精品精品| 久热久热在线精品观看| 久久鲁丝午夜福利片| 男人舔奶头视频| 久久人人爽人人爽人人片va| 国产淫片久久久久久久久| tube8黄色片| 国产老妇女一区| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 黄片无遮挡物在线观看| 综合色丁香网| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| 国内揄拍国产精品人妻在线| av卡一久久| 精品99又大又爽又粗少妇毛片| 十八禁网站网址无遮挡 | 国产爱豆传媒在线观看| 久久精品综合一区二区三区| 国产成人aa在线观看| av专区在线播放| 国产免费一级a男人的天堂| 在线观看三级黄色| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 国产精品99久久99久久久不卡 | 欧美xxxx黑人xx丫x性爽| 香蕉精品网在线| 内射极品少妇av片p| av播播在线观看一区| 欧美性猛交╳xxx乱大交人| 建设人人有责人人尽责人人享有的 | 一级a做视频免费观看| 国产片特级美女逼逼视频| 亚洲在线观看片| 1000部很黄的大片| 国产亚洲午夜精品一区二区久久 | 欧美日韩精品成人综合77777| 视频中文字幕在线观看| 美女视频免费永久观看网站| 久久久久国产网址| 亚洲av.av天堂| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 国产成人精品久久久久久| 亚州av有码| 国内精品宾馆在线| 80岁老熟妇乱子伦牲交| 神马国产精品三级电影在线观看| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 少妇丰满av| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 成人亚洲精品一区在线观看 | 一级毛片电影观看| 麻豆精品久久久久久蜜桃| 伦精品一区二区三区| 国产 一区精品| 久久99热这里只频精品6学生| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 国产成人免费无遮挡视频| 97热精品久久久久久| 久久久久国产精品人妻一区二区| 成人美女网站在线观看视频| av天堂中文字幕网| 亚洲欧美一区二区三区黑人 | 最近中文字幕高清免费大全6| 好男人视频免费观看在线| 在线亚洲精品国产二区图片欧美 | 在线观看人妻少妇| 亚洲经典国产精华液单| 亚洲美女视频黄频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品日韩av片在线观看| 中文字幕av成人在线电影| 国产精品国产三级国产av玫瑰| 亚洲aⅴ乱码一区二区在线播放| 美女高潮的动态| 亚洲欧美成人精品一区二区| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| 国产视频首页在线观看| 禁无遮挡网站| 中文字幕亚洲精品专区| 午夜免费男女啪啪视频观看| 国产免费福利视频在线观看| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 亚洲国产色片| av线在线观看网站| 亚洲,欧美,日韩| 精品人妻偷拍中文字幕| 国产精品国产三级国产av玫瑰| 丝袜美腿在线中文| 天堂俺去俺来也www色官网| 成年女人在线观看亚洲视频 | 99久国产av精品国产电影| 高清毛片免费看| 久久精品国产亚洲av涩爱| 亚洲精品亚洲一区二区| 久久久国产一区二区| 精品久久久久久久末码| 国产精品久久久久久精品古装| 精品久久久噜噜| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 国产视频首页在线观看| 简卡轻食公司| 另类亚洲欧美激情| 日韩av在线免费看完整版不卡| 国产视频首页在线观看| 国产一区二区三区av在线| 全区人妻精品视频| 日韩欧美精品v在线| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜爱| 久久久久网色| 国产乱人偷精品视频| 午夜视频国产福利| 大话2 男鬼变身卡| 国产欧美另类精品又又久久亚洲欧美| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 一级爰片在线观看| 国产一区二区三区综合在线观看 | 看免费成人av毛片| 亚洲欧美日韩无卡精品| 丰满乱子伦码专区| 在现免费观看毛片| 日日啪夜夜爽| 精品少妇黑人巨大在线播放| 国产av码专区亚洲av| 亚洲精品日韩av片在线观看| 亚洲av男天堂| av在线播放精品| 欧美 日韩 精品 国产| 亚洲丝袜综合中文字幕| 亚洲精品一二三| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 久久97久久精品| 成人二区视频| 国产伦理片在线播放av一区| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕免费大全7| 亚洲国产精品成人综合色| 婷婷色av中文字幕| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 亚洲精品国产成人久久av| 午夜激情福利司机影院| 日韩欧美一区视频在线观看 | av线在线观看网站| 欧美日韩综合久久久久久| 日韩精品有码人妻一区| 久久久色成人| 国产毛片a区久久久久| 亚洲av免费在线观看| 一级黄片播放器| 白带黄色成豆腐渣| 中国国产av一级| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 在现免费观看毛片| 一个人看的www免费观看视频| 一级片'在线观看视频| 美女视频免费永久观看网站| 身体一侧抽搐| 青青草视频在线视频观看| 成人二区视频| 亚洲精品乱久久久久久| freevideosex欧美| 国产亚洲91精品色在线| 国产高清有码在线观看视频| 在线观看国产h片| 精品一区在线观看国产| 国产老妇伦熟女老妇高清| 久久精品夜色国产| av在线亚洲专区| 97人妻精品一区二区三区麻豆| 日本爱情动作片www.在线观看| 性色av一级| 色5月婷婷丁香| 日本与韩国留学比较| 听说在线观看完整版免费高清| 一级av片app| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 激情五月婷婷亚洲| 少妇 在线观看| 国产精品不卡视频一区二区| 韩国av在线不卡| 日日摸夜夜添夜夜添av毛片| 国产精品无大码| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 一级毛片我不卡| 成人一区二区视频在线观看| 亚洲精品亚洲一区二区| 视频中文字幕在线观看| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 亚洲欧洲国产日韩| 性插视频无遮挡在线免费观看| 女人被狂操c到高潮| 亚洲成人av在线免费| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 一区二区av电影网| 美女高潮的动态| 三级国产精品欧美在线观看| 精品久久久精品久久久| 大香蕉久久网| 国产综合精华液| 亚洲三级黄色毛片| 亚洲av.av天堂| 美女视频免费永久观看网站| 一区二区三区精品91| 婷婷色综合www| 国产探花极品一区二区| 在线观看国产h片| 免费少妇av软件| 视频区图区小说| 99热6这里只有精品| 免费观看av网站的网址| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 国产黄a三级三级三级人| 嘟嘟电影网在线观看| 天天一区二区日本电影三级| 自拍欧美九色日韩亚洲蝌蚪91 | 草草在线视频免费看| 建设人人有责人人尽责人人享有的 | 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 新久久久久国产一级毛片| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花 | 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看| 哪个播放器可以免费观看大片| 狂野欧美白嫩少妇大欣赏| 美女脱内裤让男人舔精品视频| av在线播放精品| 日韩在线高清观看一区二区三区| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| av免费观看日本| 免费在线观看成人毛片| 亚洲精品视频女| 在现免费观看毛片| 永久网站在线| 亚洲精品国产av成人精品| 成人高潮视频无遮挡免费网站| 舔av片在线| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 亚洲精品久久久久久婷婷小说| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 亚洲国产精品999| 一边亲一边摸免费视频| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| av播播在线观看一区| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 亚洲婷婷狠狠爱综合网| 国产欧美亚洲国产| 欧美激情在线99| 久久亚洲国产成人精品v| 国产男女内射视频| 成人一区二区视频在线观看| 国产成人福利小说| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 免费黄频网站在线观看国产| 日日撸夜夜添| 极品少妇高潮喷水抽搐| 色吧在线观看| 亚洲人成网站高清观看| 国产男人的电影天堂91| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 日韩一区二区三区影片| 亚洲欧美精品专区久久| 成人二区视频| 日韩中字成人| 成人亚洲精品av一区二区| 国产 一区精品| 韩国高清视频一区二区三区| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 国产高潮美女av| 男人和女人高潮做爰伦理| 国产av码专区亚洲av| 18禁在线无遮挡免费观看视频| 色综合色国产| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 视频中文字幕在线观看| 国产欧美亚洲国产| 毛片一级片免费看久久久久| 免费av不卡在线播放| 欧美成人a在线观看| 国产成人精品福利久久| 大片免费播放器 马上看| 色综合色国产| 久久午夜福利片| 夫妻性生交免费视频一级片| 国模一区二区三区四区视频| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| 国产探花极品一区二区| 精品久久久久久久久av| 免费黄色在线免费观看| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 国产精品麻豆人妻色哟哟久久| 国产一级毛片在线| 内射极品少妇av片p| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 伊人久久精品亚洲午夜| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 看黄色毛片网站| 七月丁香在线播放| 国产精品久久久久久精品古装| 在线看a的网站| 国产免费视频播放在线视频| 国产成人午夜福利电影在线观看| 久久久成人免费电影| 超碰97精品在线观看| 麻豆久久精品国产亚洲av| 亚洲欧美日韩另类电影网站 | h日本视频在线播放| av在线播放精品| 欧美日本视频| 视频中文字幕在线观看| 国产精品.久久久| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 亚洲综合精品二区| 免费观看av网站的网址| 黄色视频在线播放观看不卡| freevideosex欧美| 极品教师在线视频| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 成人国产麻豆网| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 国产淫语在线视频| 久久久久久久午夜电影| 尾随美女入室| av在线播放精品| 久久久久久久久久久免费av| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 黄色视频在线播放观看不卡| av播播在线观看一区| 美女视频免费永久观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| 久久这里有精品视频免费| 国产精品爽爽va在线观看网站| 欧美老熟妇乱子伦牲交| 欧美zozozo另类| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 纵有疾风起免费观看全集完整版| 青春草国产在线视频| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 色网站视频免费| 99久国产av精品国产电影| 国产爱豆传媒在线观看| 成人鲁丝片一二三区免费| 日本午夜av视频| 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 国产伦精品一区二区三区四那| 青春草亚洲视频在线观看| 亚洲最大成人中文| 一级毛片我不卡| 国产免费一级a男人的天堂| 午夜激情福利司机影院| 亚洲熟女精品中文字幕| av在线app专区| 国产av不卡久久| 97超碰精品成人国产| 亚洲av一区综合| 看十八女毛片水多多多| 日韩亚洲欧美综合| 亚洲真实伦在线观看| 极品教师在线视频| 丰满人妻一区二区三区视频av| 久久精品熟女亚洲av麻豆精品| 激情 狠狠 欧美| 搞女人的毛片| 久久久久九九精品影院| 久久热精品热| 欧美 日韩 精品 国产| 国产精品久久久久久精品电影| 成人美女网站在线观看视频| 在线观看国产h片| www.av在线官网国产| 国产在视频线精品| 久久久亚洲精品成人影院| 欧美3d第一页| 亚洲伊人久久精品综合| 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 国产精品久久久久久久电影| 少妇人妻精品综合一区二区| 久久精品久久久久久噜噜老黄| 老师上课跳d突然被开到最大视频| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久噜噜| 中国国产av一级| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 久久精品人妻少妇| 国产爽快片一区二区三区| 亚洲精品色激情综合| 80岁老熟妇乱子伦牲交| 亚洲国产精品成人综合色| 午夜福利在线观看免费完整高清在| 日韩 亚洲 欧美在线| av国产免费在线观看| 免费黄频网站在线观看国产| 91久久精品国产一区二区三区| www.av在线官网国产| 99久久精品国产国产毛片| 久久久午夜欧美精品| 成年av动漫网址| 午夜激情久久久久久久| 一个人看视频在线观看www免费| 丰满少妇做爰视频| 午夜日本视频在线| 久久精品国产亚洲av天美| 中文精品一卡2卡3卡4更新| 久久亚洲国产成人精品v| 亚洲高清免费不卡视频| 91午夜精品亚洲一区二区三区| 成人亚洲精品av一区二区| xxx大片免费视频| 人妻一区二区av| 亚洲国产最新在线播放| 午夜福利在线在线| 高清在线视频一区二区三区| 国产亚洲最大av| 黄色一级大片看看| 下体分泌物呈黄色| 少妇丰满av| 中文字幕久久专区| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 香蕉精品网在线| 大码成人一级视频| 欧美+日韩+精品| 亚洲欧美清纯卡通| 亚洲成人精品中文字幕电影| 又黄又爽又刺激的免费视频.| 久久ye,这里只有精品| 人人妻人人澡人人爽人人夜夜| 亚洲国产色片| 少妇丰满av| av专区在线播放| 亚洲aⅴ乱码一区二区在线播放| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 丰满人妻一区二区三区视频av| 熟女av电影| 国模一区二区三区四区视频| 国产精品国产三级专区第一集| 亚洲精品乱码久久久v下载方式| 国产一区二区亚洲精品在线观看| 国产精品一区二区三区四区免费观看| 国产片特级美女逼逼视频| 日本午夜av视频| 大又大粗又爽又黄少妇毛片口| 69人妻影院| 纵有疾风起免费观看全集完整版| 亚洲精品国产av蜜桃| 高清av免费在线| 精品酒店卫生间| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 小蜜桃在线观看免费完整版高清| av国产久精品久网站免费入址| 亚洲精品久久久久久婷婷小说| 国产v大片淫在线免费观看| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 黄色欧美视频在线观看| 国产成人免费观看mmmm| videos熟女内射| 亚洲精品乱久久久久久| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 色5月婷婷丁香| 丝袜美腿在线中文| 国产av码专区亚洲av| av女优亚洲男人天堂| 亚洲精品日韩在线中文字幕| 热re99久久精品国产66热6| 精品久久久久久久久亚洲| 久久精品国产鲁丝片午夜精品| 亚州av有码| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 亚洲一区二区三区欧美精品 | av.在线天堂| 日本一二三区视频观看| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 久久99热这里只有精品18| 久久久久久久亚洲中文字幕| 2018国产大陆天天弄谢| 日韩在线高清观看一区二区三区| 国精品久久久久久国模美| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 亚洲真实伦在线观看| 免费黄网站久久成人精品| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| 国产亚洲91精品色在线| 午夜福利视频精品| 亚洲无线观看免费| av在线播放精品| 欧美区成人在线视频| 国产片特级美女逼逼视频| 亚洲精品久久久久久婷婷小说| 国产一级毛片在线| 国产精品秋霞免费鲁丝片| 国产成人精品一,二区| 噜噜噜噜噜久久久久久91| 精品少妇黑人巨大在线播放| 国模一区二区三区四区视频| 欧美精品一区二区大全| 色视频www国产| 99久久精品热视频| 免费少妇av软件| 99九九线精品视频在线观看视频| 网址你懂的国产日韩在线| 久久久色成人| 国产精品无大码| 日日啪夜夜爽| 久久精品综合一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 亚洲精品国产av蜜桃| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 国产成人a∨麻豆精品| 1000部很黄的大片| 欧美丝袜亚洲另类| 亚洲精品,欧美精品| 涩涩av久久男人的天堂| 嫩草影院新地址| 国产极品天堂在线| 国产淫语在线视频|