• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Tactile Sensing Based on the Smart Materials

    2015-12-12 08:27:33LigiaMunteanuDanDumitriuVeturiaChiroiuCornelBrisanMirceaBaraandDoinaMarin
    Computers Materials&Continua 2015年5期

    Ligia Munteanu,Dan Dumitriu,Veturia Chiroiu,Cornel Bri?san,Mircea Baraand Doina Marin

    On the Tactile Sensing Based on the Smart Materials

    Ligia Munteanu1,Dan Dumitriu1,Veturia Chiroiu1,Cornel Bri?san2,Mircea Bara2and Doina Marin1

    A flexible finger with muscles made of Nitinol wires and the skin made of auxetic material is analyzed from the tactile sensing point of view.The recognizing of the shape and texture of 3D objects is performed by simulation the action of an array of nanopiezotronic transistors integrated into the skin.The array of nanopiezotronic transistors makes possible the detection of the pressure-induced changes in the auxetic skin.The shape and texture of the objects is best estimated by determining the surface and texture as an n-ellipsoid defined by 12 parameters.An inverse problem is solved in order to find these parameters from the condition that the n-ellipsoid best fits the set of data points probed by touch with the finger.

    Nitinol,auxetic material,tactile sensing,shape and texture of 3D objects.

    1 Introduction

    Robotic tactile sensing involves techniques for knowledge transfer from human to robot[Dahiya and Valle(2013)].The robotic tactile sensing in touching,grasping and manipulating of the objects is the base for exploring and differentiating the objects from one another with respect to shape,surface texture,stiffness,temperature etc.[Ernst and Banks(2002);Shikida et al.(2003);Fearing(1990)].

    The experiments involving stroking and vertical indentation of the skin,with the force equal to that exerted by humans during natural manipulation(15–90g/m),indicate that the object shape and orientation are signaled by spatio-temporal functions which characterize the mechanoreceptors of the skin[Weinberg et al.(2005);Rucci and Bajcsy(1995);Liu et al.(2005);Goodwin et al.(1997);Ju et al.(2014)].Geometrically and structurally,the skin is a complex mechanical system supported by the deformable system of muscles and tendons.The stiffness of various skin layers significantly varies with epidermis being considerably stiffer than the dermis(the Young’s modulus of base layer,i.e.the epidermis is 10–10000 times that of the dermis).Skin acts as a multilayered,nonlinear,nonhomogeneous and viscoelastic medium in order to convert the surface indentation into stress and strain fields.The thickness of skin in adult humans vary between 0.6–0.8 mm and the Young’s modulus is around 4×105 N/m2[Schiffman(2001);Escoffier et al.(1989)].

    In order to mimic the tactile sensing capabilities of the human skin,a flexible finger with the muscles and skin made of Nitinol(NiTi)wires and auxetic material,respectively,is considered in this paper.The robotic shape detection of the objects within the contact area(7–12 mm)of the fingertip may be realized by using the interface piezotronic effect[Wu et al.(2013)].The piezotronic effect arises as a result of the polarization of non-mobile ions in the crystal,unlike the piezoresistive effect which results from a change in band gap,charge carrier density,or density of states in the conduction band of the strained semiconductor material.Therefore,the piezoresistive effect is a symmetric volume effect without polarity,whereas the piezotronic effect is an interface effect that asymmetrically modulates local contacts at different terminals of the device because of the polarity of the piezoelectric potential[Wang(2010,2012a,b,2013);Zhang et al.(2011)].

    Using the piezoelectric semiconductor nanowires that typically have wurtzite and zinc blend structures(such as ZnO and GaN),a piezotronic transistor design was introduced[Zhou et al(2008);Wu et al.(2010);Chen et al.(2012)]that has a two terminal metal-semiconductor-metal structure and whose charge carrier transport is modulated by the piezoelectric polarization charge–induced inner-crystal potential in the nanowires at the contacts.

    As mentioned above,the muscles are made of NiTi wires.The phase change in the NiTi wires is achieved by heat exchange with a heat source and a heat sink.The actuation frequency of the NiTi wires is only dependent on the rate of heat transfer with its surroundings.The heat transfer mechanism for most Nitinol wires are based on resistive heating and cooling with forced convection or natural convection.Because this is an inefficient heat exchange mechanism[Boyd and Lagoudas(1994)]which requires the use of electrical power,we chose the semiconductors for which Peltier effect has shown high actuation frequency[Bhattcharyya et al.(1995)].In other words,we use the forced convection heating and cooling to actuate the NTi wires.This can overcome the low energy density resistive heating systems and the low efficiency of the thermoelectric heat transfer mechanism,even though it should need additional devices such as a pump and valves[Rediniotis et al.(2002)].

    The cyclic behavior of NiTi wires can be described by using the Bouc-Wen model coupled to the intrinsic time measure,other than the clock time which governs the behavior of the materials[Chiroiu et al.(2015)].As a consequence,the thermodynamic admissibility of the Bouc–Wen model is provided by the endochronic theory of plasticity.The role of the intrinsic time measure is described by capturing the stiffness and strength degradation and the opposite phenomena.Such behavior is due to the permanent strains addition of the residual martensite and alterations in the properties of the texture during the phase transformation

    Finally,as mentioned above,the skin is made by auxetic material.By definition,an auxetic material expands in all directions when pulled in one direction and this behavior does not contradict the classical theory of elasticity[Love(1944)].According to this theory,the variations of the Poisson’s ratio range from-1 to 0.5 for 3D isotropic materials,and from-1 to 1 for 2D isotropic systems.For anisotropic materials,the values of the Poisson’s ratio could be larger in magnitude.A negative Poisson’s ratio allows for the existence,in the orthogonal lateral directions,of positive Poisson’s ratios up to the stability limit 2 for cubic crystals[Munteanu et al.(2014);Baughman et al.(1998);Alderson et al.(1997)].Conventional foam exhibits pores with an average diameter of around 1mm,while the auxetic foam has a possible average diameter of a few micrometers or even nanometers.Processing manufacturing techniques of auxetic materials can control various features of the pore shapes and is performed by a compression process[Chan and Evans(1997);Munteanu et al.(2008,2012);Scarpa et al.(2004);Bezazi and Scarpa(2007)].The measured density of the auxetic foam was 0.118g/cm3.The conventional foam has a positive Poisson’s ratio(0.25)for a compressive strain of 10%,which decreases sharply with the increase of the compressive loading,to become slightly negative for a tensile strain ranging from 60 to 80%.The auxetic foam exhibits a negative Poisson’s ratio(-0.185)for a compressive strain ranging from 10 to 25%,showing a sharp increase for an increasing compressive strain,reaching then a zero value for a compressive strain of 55%and a positive Poisson’s ratio(1.33)for a compressive strain of 80%.

    A properly auxetic version of the conventional foam is constructed by spatial compression according to[Munteanu et al.(2008,2012)]and a 3D array of piezotronic transistors are incorporated into internal pores in order to convert mechanical stimuli applied to the foam into local electronic controlling signals[Wu et al(2013)].The transistors consist in a matrix of vertical zinc oxide nanowires which are active to detect the pressure and forces for tactile imaging.The auxetic material coupled with the array of nanopiezotronic transistors is described as an elastic Cosserat material with internal degree of freedom[33-36].

    The paper is organized as follows:Section 2 is devoted to solving of the inverse problem of determining the set of parameters for reconstructing the shape and texture of a 3D object.The condition that the n-ellipsoid best fits the set of data points probed by touch with the finger ensures the uniqueness of the solution.Section 3 summarizes the results.

    The last Section is devoted to Conclusions,and the Appendix presents the set of equations for the finger motion.

    2 Inverse Problem

    Let us consider a flexible finger modeled as a cylindrically rod of length L=6cm and radius R=0.5cm,with three embedded Nitinol wires(yellow)in an aluminum matrix,at uniform absolute temperature T0(Figure 1).The NiTi wire has the length L and radius r,and are placed in a parallel arrangement to form the vertices of an equilateral triangle.The x-axis has the distal direction,the y-axis the radial(reference)direction,and z-axis the tangential direction.The rod is covered with a thin layer of auxetic material(red colour)representing the skin of the finger.

    Both the matrix and the NiTi wires are assumed to be initially straight at t=0 and T0=33?C.The NiTi wires are heated above the austenitic start temperature by passing an electrical current,and the deflected beam tends to return to the initial configuration.The NiTi alloy acts as an actuator transforming electrical energy into mechanical energy,annihilating the deformed shape of the rod.Topological view of the skin with hexagonal pores and the nanowires(red circle)is shown in Figure 2.

    Figure 1:A flexible finger.

    Figure 2:Topological view of the auxetic skin with hexagonal pores where the nanowires are positioned(red circle).

    The operation of the gripper finger relies on the elastic deformation of three embedded NiTi wires(55%Ni,45%Ti)in an aluminum matrix.Using a different force in each NiTi wire a range of extension forces causing the finger to bend according to the constraints provided by the end plate.The larger the force,the larger the resulting finger tip deflection.In addition to bending,the triangular arrangement enables the direction of fingertip movement to be controlled.

    The fundamental equations for NiTi wires are written in the spirit of Brocca et al.(2002);Otsuka and Wayman(1998);Boyd and Lagoudas(1994);Shu et al.(1997);Chiroiu and Munteanu(2003);Chiroiu et al.(2003).The fundamental equations for auxetic skin are written in the spirit of Eringen and Suhubi(1964);Eringen(1966a,b,1968);Mindlin (1964,1965); Gauthier(1982);Wang(2012)and Marin et al.(2014)..

    The finger motion is described by a complex set of equations containing the aluminum equations,the NiTi wires(muscles)equations,the equations of the auxetic skin coupled with the ZnO nanowires,the conditions on the interfaces between aluminum-NiTi wires,aluminum-auxetic material,NiTi wires-auxetic material,auxetic material-ZnO nanowires,boundary conditions and initial conditions.These equations are presented in Appendix.

    We assume that a finger is used to probe an object to detect its shape and the texture.The array of nanopiezotronic transistors makes possible the detection of the pressure-induced changes in the auxetic skin.

    Although it is difficult to detect the shape of the object only with one finger,we still consider this variant for simulation the detection of the shape of objects with well-defined geometry such as balls or eggs.Instead,the texture can be detected using a single finger.To detect both the shape and texture,the finger can walk,rub and rotate on the surface of the object until a control parameter reaches a value proposed by algorithm.

    Two simultaneously distinct system of coordinates are introduced:a fixed system with origin O and axes Ox1,Ox2,Ox3,in which a point belonging to the surface of the object is defined by(x1,x2,x3)≡(x,y,z)and a present system with origin in arbitrary centre O′coordinates xG,yG,zGof the object.Axesare determined from the finger-to-finger,and sweep directions respectively.We suppose that the object rotates about the verticalIn this system a point belonging to the surface of the object is defined by() ≡.The orientation of the axes(usually randomly oriented)is determined by the angle ψ .The transformation from(x′,y′,z′)to(x,y,z)is given by

    where Rijis the rotation matrix

    R=R(z,?)R(x,θ)R(z,ψ),

    and u the translation vector.The method for acquiring data is simulated to be capable of obtaining sufficiently accurate data.The estimation of the shape parameters of the surface is made for non-perturbed data and artificially perturbed data introduced by multiplication of the data values by 1+r,r being random numbers uniformly distributed in[?ε,ε].In this paper we consider ε=10?3.

    The algorithm for reconstructing of the shape and the texture of the surface is as follows:

    1.Track the surface using the finger and record the information required to determine the contact positions.This step is simulated to obtain a high number of 3D contact points in the system of coordinates(x′,y′,z′).M points along the surface are probed with the finger.Calculate the set of 12 shape parameters that define the surface Γsuch that the n-ellipsoid best fits the set of data points,by using a global volumetric deformation technique called FFD and a genetic algorithm[Asano et al.(2009);Fujiki et al.(2006)].

    2.Determine the best approximating shape of the object.

    3.Determine the best approximating texture of the object.

    The approximating texture of the object means to describe the structures contained in textures.The microstructure and its arrangement in the texture are regarded as fundamental entities.The texture is recognized as a repetitive pattern[Chang et al.(2014)].

    The model considered here is to determine the shape and texture of an unknown surface Γ of the object by using an n-ellipsoid.The goal of the inverse problem is to find the set of parameters(shape and texture parameters)that define the surface Γ such that the n-ellipsoid best fits the set of data points obtaining by the finger touching.The n-ellipsoid is defined by 12 parameters di,i=1,2,...,12:arbitrary center coordinates xG,yG,zG,principal axes a,b,c,the principal directions defined by Euler angles ξ,ψ,ζ,the exponent n and two positive numbers p and q needed to define the texture indicator J(I)

    where I is a partition indicator subjected to I(Pi)=0 for any Pi(xi,yi,zi),i=1,...,M belonging to the surface of this object,and I(Pi)=1 otherwise.X is a matrix with coordinates of the model points.The weight function w is defined at every point Pi[Couprie et al.(2011)].The advantage of this model is the small number of parameters needed to represent the shape and texture of an 3D object.

    The surface Γ is defined as the image of the unit n-sphere S of equation

    where rij=rij(ξ,ψ,ζ)are the components of the rotation,which transforms the coordinate axes into the principal axes of the ellipsoid.These components are given by(2)by replacing θ with ξ,and ? with ζ.For n=2(3)yields the usual unit sphere and for n=∞ the unit cube of vertices(±1,±1,±1).By using(4)and(5)the unit sphere and the unit cube are respectively transformed into ellipsoids and boxes,with arbitrary center,size and orientation.

    We refine the representation of the data using a global volumetric deformation technique called FFD[Bardinet et al.(1995);Bonnet(1993) ;Sederberg and Parry(1986)].The deformation of the box is given by the pressure-induced changes in the auxetic skin.This characteristic feature allows us to represent 3D data by a model defined by 12 parameters.An FFD is a mapping from R3to R3,defined by the tensor product of trivariate Bernstein polynomials.

    The principle of FFDs is as follows: the n-ellipsoid is embedded in a 3D box.Inside this box,a volumetric grid of points is defined,which links the box to the object(by the trivariate polynomial which defines the deformation function).This can be written in a matrix form X =BP, where Bis the deformation matrix ND×NP(ND is the number of points on the discretized n-ellipsoid and NP is the number of control points of the grid),P is a matrix NP which contains coordinates of the control points and X is a matrix ND with coordinates of the model points.The box is then deformed by the displacement of its lattice,and the position and the texture pattern of each point of the real object is computed.The force Fjacting by the finger on each point j into the n-ellipsoid is given by

    where cjand kjare stiffness and damping coefficients associated to the point j,and sjare displacement functions furnished by the inverse technique.These functions are used to reconstruct the cross-sectional slices of the image of the object.

    Now we need to solve the following inverse problem:first compute a displacement field δX between the n-ellipsoid and M point data,and then,after inserting the n-ellipsoid into 3D box,search for the deformation δPof this box which will best minimize the displacement field δX

    The partition indicator I is a solution of(8).The deformation of the box is given by the strain given by the pressure-induced changes in the skin and I is the partition indicator.

    In other words,the shape and texture of the object is classically sought as the minimizer of some distances J(Γ)+J(I)between the measured data and the computed n-ellipsoid data.To represent 3D data with our model,we use an iterative two-step algorithm:

    Step 1:Computation of the displacement field between the previous estimation Xnand its projection on data Xan,δXnsuch as

    Step 2:Computation of the control points Pn+1by minimization of||BP?Xan||2.Computation of the deformed model

    Stop test on the least-squares error

    The quantity P0is defined as a uniformly spaced parallelepiped box of control points and X0=BP0represents the set of points of the initial discretized n-ellipsoid.The method is performed in simulation on cylindrical,spherical and other objects.The best results in terms of accuracy and computational efficiency are found to be obtained using a genetic algorithm.As the same n-ellipsoid can result from many combinations of Euler angles and permutations of principal axes,it is difficult to measure the accuracy of the identification of Γ by means of comparison of the identified parameters di,1=1,...,12 with those defining the“true”Γ and used to compute the simulated data.Instead,the relative errors εV,εA,εIfor the volume,boundary area and geometrical inertia tensor(with respect to the fixed coordinates Ox1x2x3)are computed.

    The indicator εIis very sensitive to the orientation of Γ in space,together with the ratio Jn/J0,where Jn=J(Γn)and Γnis the current Γ after the n?th iteration of the minimization process.

    Expressions of indicators εV,εA,εIin terms of boundary integrals are as follows[Bonnet(1993)]

    The number of iterations of genetic algorithm,the values of Jfinal/J0,εV,εA,εIand the least square error||BP?X||are displayed in table 1 for five objects for different sizes for the box of control points,in the case of non-perturbed data.

    3 Results

    Consider a damaged a graphite plate of length 9cm.height 5cm and thickness 1cm(figure 3).The material is strongly anisotropic and damages make the texture to contain shallows,cracks and bumps.Therefore the finger will have to touch the material along 25 arbitrary paths shown in figure 4.If results require,the path traveled by the finger will have to get thicker where the texture is difficult.The finger walks without press the surface of the object with the velocity of 1cm/sec.The surface irregularities,elevations and simples not exceed the limit of the spatial resolution of the sensor.

    The contact can be identified by checking the minimum distance between bodies[Karnopp(1985);Munteanu et al.(2015)]

    where r1and r2are the position vectors of two points belonging to the tire and the road,respectively,and f1and f2are bounding surface constraints.The interference distance is defined as

    where d is the interference distance and e1and e2are the unit vectors.

    Three problems are important to be discussed here,i.e.the modeling of the unknown contact domains between the finger and the surface of the object,the contact and the friction forces in the contact domain.

    To shape of the unknown contact domain Dcis taken as a superellipse defined by a Lamé curve[Munteanu et al.(2015)]

    where x and y define the envelope of the contact area,a is half of the contact length,and b is half of the contact width(radii of the oval shape are depending of time),and n the power of the ellipsoid.The advantage of the Lamé curve consists in the effect of n to rounding the sharp corners.It provides a smooth transition between the oval and the rectangle shape.

    Figure 3:A damaged graphite plate.

    Figure 4:The finger tracking the plate.To the left the trajectories of the finger are shown.

    The parametric representation of(16)is given by

    Table 1:Dimensions of the contact patches for arbitrary paths.

    In what concerns the contact force,the indentation δ is the principal factor in defining it Fc=f(δ,˙δ).A particular form is given by[59]

    with k and?b constants depending on the material and geometry.

    We consider that the friction Ftoccurring at the contact point during sticking is defined as[Johnson(1985)]

    where δtis the tangential component of displacement at the contact point,due to the tangential loadings,and ktis the tangential stiffness which is determined by the geometry and the material of the contacting objects.

    Figure 5:The maximum pressure distribution along different paths.

    Figure 6:Some arbitrary cross-sectional slices of the image of the object.

    The contact domain Dcis unknown and it is modeled as a superellipse shape defined by(16).Table 1 shows the characteristics of the contact patches identified for arbitrary chosen paths 3,4,6,7,14,15,20 and 21 for touch forces of 0.04,0.06,0.07 and 0.09 N,respectively.Some arbitrary cross-sectional slices of the image of the object furnished by the inverse technique are shown in figure 6.These slices are constructed by using the displacement functions sjin each pointj belonging to discretized n-ellipsoid.The estimation of Jfin/J0, εV, εAand εIwith respect to the size of the FFD is shown in table 2.For the object,the numbers of points ND=80 and NP=51 are acceptable for a good accuracy if we use boxes of different size.The least square error||BP?X||is 0.05-1.4%for non-perturbed data and 3-8.3%for perturbed data.The numerical solution of the inverse problem hence behaves well with respect to perturbed data.This is probably a consequence of the fact that unknown geometry is described using only 12 parameters.

    Table 2:Results for non-perturbed and perturbed data.

    4 Conclusions

    The aim of this work is to present a virtual experiment concerning the recognizing of the shape and texture of a 3D object performed by simulation the action of an array of nanopiezotronic transistors integrated into the skin.A flexible finger with the muscles made of Nitinol wires and the skin made of auxetic material is considered.The array of nanopiezotronic transistors makes possible the detection of the pressure-induced changes in the auxetic skin.The shape and texture of the 3D object is best estimated by determining the surface and texture of the object as an n-ellipsoid defined by 12 parameters.An inverse problem is solved in order to find these parameters from the condition that the n-ellipsoid best fits the set of data points probed by touch with the finger.

    Acknowledgement: The authors gratefully acknowledge the financial support of the National Authority for Scientific Research ANCS/UEFISCDI through the project PN-II-ID-PCE-2012-4-0023 Contract nr.3/2013 and the project PN-II-PTPCCA-2011-3.1-0190 Contract nr.149/2012.The authors acknowledge the similar and equal contributions to this article.

    Appendix

    The finger motion is described by a complex set of equations containing the aluminum equations,the NiTi wires(muscles)equations,the equations of the auxetic skin coupled with the ZnO nanowires,the conditions on the interfaces between aluminum-NiTi wires,aluminum-auxetic material,NiTi wires-auxetic material,auxetic material-ZnO nanwires,boundary conditions and initial conditions.Since a nanopiezotronic transistor involves a semiconductor that is piezoelectric,the fundamental governing equations for both semiconductor and piezoelectric theories are required.The basic equations for piezotronics are electrostatic equations,current–density equations,and continuity equations,which describe the static and dynamic transport behavior of the charge carriers in semiconductors,as well as the piezoelectric equations,which describe the piezoelectric behavior of the material under dynamic strains.

    We use the summation convection throughout.A superposed dot denotes differentiation with respect to time while a comma is used for material derivatives.The usual Einstein summation convention for repeated indices is used and the comma denotes differentiation with respect to spatial coordinates and a superposed dot indicates the time rate.

    1.The constitutive law for the isotropic aluminum rod is

    where σijare components of the stress tensor, εij=components of the strain tensor,uithe components of displacements,T absolute temperature,T0initial temperature,constants of the aluminum,βal=2μal)αal,with αalthe coefficient of linear thermal expansions.

    The heat equation for the isotropic aluminum rod is given by

    2.The constitutive law for NiTi wires are

    where i,j,k=1,2,3.The quantitiesare the transformation strain,andThe Lamémoduliand the coefficient of linear thermal expansions αNiTiobey the rule of mixtures

    where the superscripts‘A’is for austenite and ‘M’for martensite,respectively,and ξ is the current volume fraction of the martensitic phase.The transformation strain rate evolution law is given by

    which provides the directions in which the transformation strains develop.Here,

    In the above,ρais the density of the NiTi wires,the difference of the entropy at the reference state,Y the threshold value of transformationprovides the isotropic hardening term characterized by theThe above criterion is valid for both reverse and forward transformation but with different values of the parametersY,b1which accounts for the hysteresis of shape memory alloys.During cooling we have

    The heat equation for for the NiTi wire is

    where Cv= ρacais the heat capacity,kathe thermal conductivity,ρethe electrical resistivity and J the magnitude of the current density,

    3.The constitutive law for auxetic material are

    in which σklis the stress tensor(which is a symmetric tensor in classical elasticity but is asymmetric here),mklis the couple stress tensor(or moment per unit area),ekl=()is the small strain tensor(macrostrain vector),u is the displacement vector,and=1,and all other εklm=0)is the permutation symbol.The microrotation vector ?kin Cosserat elasticity is kinematically distinct from the macrorotation vector rk=The quantitiesrefers to the rotation of points themselves,while rkrefers to the rotation associated with movement of nearby points.Here2μaux)αaux,with αauxthe coefficient of linear thermal expansions.

    There are six independent elastic constants required to describe the auxetic material:Lamé elastic constants λaux,and μaux,Cosserat rotation modulus κ and the Cosserat rotation gradient moduli α,β,γ.For α = β = γ= κ =0 eqns(A4)and(A5)reduce to the constitutive equations of classical isotropic linear elasticity theory

    The heat equation for the auxetic material

    whereCaux=ρauxcauxis the heat capacity,kauxthe thermal conductivity.

    The basic topological profile of the auxetic skin is presented in Figure 2.In the leftfigure,the hexagonal pores of the auxetic skin are presented together with the ZnO nanowires(red circles)positioned in the center of the hexagon).The 3D vertical array of nanowires is viewed in the yellow square at the right figure.

    The 3D array of ZnO nanowires is viewed in the yellow square in the right figure.Each ZnO nanowire experiences axial strain when subjected to external mechanical deformation,with piezopotential induced inside the wire as a result of polarization of nonmobile ions distributed at the two ends[Wang(2012,2013);Zhang et al.(2011)].

    Since a nanopiezotronic transistor involves a semiconductor that is piezoelectric,the fundamental governing equations for both semiconductor and piezoelectric theories are required.The basic equations for piezotronics are electrostatic equations,current–density equations,and continuity equations,which describe the static and dynamic transport behavior of the charge carriers in semiconductors,as well as the piezoelectric equations,which describe the piezoelectric behavior of the material under dynamic strains.The Poisson equation is the basic equation for describing the electrostatic behavior of charges[Wang(2012)]

    where ψiis the electric potential distribution and ρ (r)is the charge density distribution,εsis the permittivity of the material.The current–density equations that correlate the local fields,charge densities and local currents are

    where Jnand Jpare the electron and hole current densities,q is the absolute value of unit electronic charge,μnand μpare electron and hole mobilities,n and p are concentrations of free electrons and free holes,Dnand Dpare diffusion coefficients for electrons and holes,respectively,E is the electric field,and Jcondis the total current density.

    The charge transport under the driving of a field is described by the continuity equations

    where Gnand Gpare the electron and hole generation rates,Unand Upare the recombination rates,respectively.The piezoelectric behavior of the material is described by a polarization vector P.For a small uniform mechanical strain εk,the polarization vector P is given in terms of strain as

    where the third order tensor eijkis the piezoelectric tensor.According to the conventional theory of piezoelectric and elasticity,the constituting equations can be written as

    where σ is the stress tensor,E is the electric field,D is the electric displacement,cEis the elasticity tensor,and k is the dielectric tensor.

    Consider the case of metal-wurtzite semiconductor contact,such as Au–ZnO or Ag–ZnO.For the ZnO the elasticity tensor is given by

    the piezoelectric tensor nanowire along the c-axis(the direction of the growth of nanowires)the piezocoefficient matrix is

    4.Boundary conditions

    Boundary conditions do not depend on assumed material symmetry.We can prescribe the displacements uior the surface traction t(n)kand the microrotations ?k,or the surface couples m(n)kon the surface which has exterior normal nl

    The conditions on the interfaces between aluminum-NiTi wires,aluminum-auxetic material,NiTi wires-auxetic material are written as

    with F0the total force acting by the finger on the interface

    The boundary conditions for the finger are

    The laws of motion also are independent of material symmetry. For the case without body forces and body couples,these equations are given by

    Alderson,K.L.;Alderson,A.;Evans,K.E.(1997):The interpretation of strain dependent Poisson’s ratio in auxetic polyethylene. J.Strain Anal.,vol.32,pp.201-212.

    Asano,A.;Saiki,M.;Fujio,M.(2009):Texture analysis based on mathematical morphology and MDL principle.Int.Workshop on Smart Info-media Systems in Asia(SISA2009),pp.155-159,October 22-23.

    Bardinet,E.;Cohen,L.D.;Ayache,N.(1995):Analyzing the deformation of the left ventricle of the heart with a parametric deformable model.in Proceedings Conferenceon Computer Vision,Virtual Reality and Robotics in Medecine(CVRMed),Nice,France.

    Baughman,H.;Shacklette,J.M.;Zakhidov,A.A.;Stafstrom,S.(1998):Negative Poisson’s ratios as a common feature of cubic metals.Nature,vol.392,pp.362-365.

    Bezazi,A.;Scarpa,F.(2007):Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading.International Journal of Fatique,vol.29,pp.922–930.

    Bhattcharya,A.;Lagoudas,D.C.;Wang,Yand,Kinra,V.K.(1995):On the role of thermoelectric heat transfer in the design of SMA actuators;theoretical modeling and experiment.Smart Materials and Structures,vol.4,pp.252-263.

    Bonnet,M.(1993):Shape identification problems using boundary elements and shape differentiation.Proc.of the 2-nd National Conf.on Boundary and Finite Element,ELFIN2,Sibiu,pp.35-48.

    Boyd,J.G.;Lagoudas,D.C.(1994):Thermomechanical response of shape memory composites.J.Intell.Mater.Struct.,vol.5,pp.336-346.

    Brocca,M.;Brinson,L.C.;Bazzant,Z.P.(2002):Three-dimensional constitutive model for shape memory alloys based on microplane model.Journal of the Mechanics and Physics of Solids,vol.50,pp.1051–1077.

    Chan,N.;Evans,K.E.(1997):Fabrication methods for auxetic foams.Journal of Materials Science,vol.32,pp.5725–5736.

    Chang,M.;Chou,Y.C.;Lin,P.T.;Gabayno,J.L.(2014):Fast and high resolution optical inspection system for in-line detection and labeling of surface defects.CMC:Computers,Materials&Continua,vol.42,no.2,pp.125-140.

    Chen,K.T.;Huang,S.D.;Chien,Y.H.;Chang,W.C.;Lee,C.K.(2012):Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film.Smart Materials and Structures,vol.21,no.11,115025.

    Chiroiu,V.;Ionescu,M.F.;Sireteanu,T.;Ioan,R.;Munteanu,L.(2015):On intrinsic time measure in the modeling of cyclic behavior of a Nitinol cubic block.Smart Materials and Structures,vol.24,no.3,035022.

    Chiroiu,V.;Munteanu,L.(2003):A flexible beam actuated by a shape memory alloy ribbon.Proc.of the Romanian Academy,Series A:Mathematics,Physics,Technical Sciences,Information Science,vol.4,no.1.

    Chiroiu,V.;Munteanu,L.;Nicolescu,C.M.(2003):A shape description model by using sensor data from touch.Fourth Symposium on Multibody Dynamics and Vibration at the Nineteenth Biennial Conference on Mechanical Vibration and Noise ASME International Design Engineering Technical Conf.Chicago,sept 2–6,paper nr.DETC2003/VIB-48337.

    Cosserat,E.(1909):Theorie des Corps Deformables.,Hermann et Fils,Paris.

    Couprie,C.;Bresson,X.;Najman,L.;Talbot,H.;Grady,L.(2011):Surface Reconstruction using power watershed,pp.381-392.In:P.Soille,M.Pesaresi,G.G.Ouzounis(Eds.)Mathematical morphology and its applications to image and signal processing,10thInternational Symposium ISMM 2011,Verbania-Intra Italy,Springer.

    Dahiya,R.S.;Valle,M.(2013):Robotic Tactile Sensing,Technologies and System.Springer.

    Eringen,A.C.;Suhubi,E.S.(1964):Nonlinear Theory of Simple Microelastic Solids.part I-Int.J.Eng.Sci.2,pp.189-203,part II-Int.J.Eng.Sci.,vol.2,pp.389-404.

    Eringen,A.C.(1966a):Theory of micropolar fluids,J.Math.Mech.,vol.16,pp.1-18.

    Eringen,A.C.(1966b):Linear Theory of Micropolar Elasticity.J.Math.&Mech.,vol.15,pp.909-924.

    Eringen,A.C.(1968):Theory of micropolar elasticity.In Fracture(ed.R.Liebowitz),Academic Press,vol.2,pp.621-729.

    Ernst,M.O.;Banks,M.S.(2002):Humans integrate visual and haptic information in a statistically optimal fashion.Nature,vol.415,pp.429–433.

    Escoffier,C.;Rigal,J.;Rochefort,A.;Vasselet,R.;Leveque,J.L.;Agache,P.G.(1989):Age-related mechanical properties of human skin-an in vivo study.J.Invest.Dermatol.,vol.93,pp.353–357.

    Fearing,R.S.(1990):Tactile sensing mechanisms.Int.J.Robot.Res.,vol.9,no.3,pp.3–23.

    Fujiki,A.;Asano,A.;Muneyasu,M.(2006):Unsupervised optimization of morphological filters for noise removal in texture images.Proc.Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems,pp.1794-1799.

    Gauthier,R.D.(1982):Experimental investigations on micropolar media,pp.395-463,in:Mechanics of Micropolar Media,CISM Courses and lectures,edited by O.Brulin and R.K.T.Hsieh,World Scientific

    Goodwin,A.W.;Macefield,V.G.;Bisley,J.W.(1997):Encoding of object curvature by tactile afferents from human fingers.J.Neurophysiol.,vol.78,no.6,pp.2881–2888.

    Johnson,K.L.(1985):Contact Mechanics.Cambridge University Press,Cambridge

    Ju,W.E.;Moon,Y.J.;Park,C.H.;Choi,S.T.(2014):A flexible tactile feedback touch screen using transparent ferroelectric polymer film vibrators.Smart Materials and Structures,vol.23,no.7,074004.

    Karnopp,D.(1985):Computer simulation of stick-slip friction in mechanical dynamic systems.Journal of Dynamic Systems,Measurement,and Control,vol.107,pp.100–103.

    Lakes,R.S.;Benedict,R.L.(1982):Noncentrosymmetry in micropolar elasticity.Int.J.Engng.Sci.,vol.20,no.10,pp.1161-1167.

    Lakes,R.S.(2001):Elastic and viscoelastic behaviour of chiral materials.Int.J.of Mechanical Sciences,vol.43,pp.1579-1589.

    Lakes,R.S.(1986):Experimental microielasticity of two porous solids.Int.J.of Solids and Structures,vol.22,no.1,pp.55-63.

    Liu,Y.;Davidson,R.;Taylor,P.(2005):Touch sensitive electrorheological fluid based tactile display.Smart Materials and Structures,vol.14,no.6,pp.1563-1568.

    Love,A.(1944):A Treatise on the Mathematical Theory of Elasticity.Dover Publications,New York.

    Marin Marin;Agarwal,Ravi,P.;Othman,M.(2014):Localization in time of solutions for thermoelastic micropolar materials with voids.CMC:Computers,Materials&Continua,vol.40,no.1,pp.35-48.

    Mindlin,R.D.(1964):Microstructure in linear elasticity.Arch.Rat.Mech.Anal.,vol.16,pp.51-78.

    Mindlin,R.D.(1965):Stress functions for a Cosserat continuum.Int J.Solids Structures,vol.1,pp.265-271.

    Munteanu,L.;Chiroiu,V.;Bri?san,C.;Dumitriu,D.;Sireteanu,T.;Petre,S.(2015):On the 3D normal tire/off-road vibro-contact problem with friction.Mechanical Systems and Signal Processing,vol.54-55,pp.377-393.

    Munteanu,L.;Chiroiu,V.;Serban,V.(2014):From geometric transformations to auxetic materials.CMC:Computers,Materials&Continua,42(3):175-203.

    Munteanu,L.;Bri?san,C.;Donescu St.;Chiroiu,V.(2012):On the compression viewed as a geometric transformation.CMC:Computers,Materials&Continua,vol.31,no.2,pp.127–146.

    Munteanu,L.;Chiroiu,V.;Dumitriu,D.;Beldiman,M.(2008):On the characterization of auxetic composites.Proceedings of the Romanian Academy,Series A:Mathematics,Physics,Technical Sciences,Information Science,vol.9,no.1,pp.33-40.

    Otsuka,K.;Wayman,C.M.(1998):Shape Memory Materials.Cambridge Univ.Press,Cambridge.

    Shu,S.G.;Lagoudas,D.C.;Hughes,D.;Wen.J.T.(1997):Modeling of a flexible beam actuated by shape memory alloy wires.Smart Materials and Structures,vol.6,pp.265–277.

    Rediniotis,O.K.;Lagoudas,D.C.;Jun,H.Y.;Allen,R.D.(2002):Fuel-Powered Compact SMA Actuator.Proceedings of SPIE–The International Society for Optical Engineering,vol.4698,441.

    Rucci,M.;Bajcsy,R.(1995):Learning visuo-tactile coordination in robotic systems.In:IEEE International Conference on Robotics and Automation,pp.2678-2683.

    Scarpa,F.;Pastorino,P.;Garelli,A.;Patsias,S.;Ruzzene,M.(2004):Auxetic compliant flexible PU foams:static and dynamic properties.Physica Status Solidi B,vol.242,no.3,pp.681–694.

    Schiffman,H.R.(2001):Sensation and Perception-An Integrated Approach.Wiley,New York

    Sederberg,T.W.;Parry,S.R.(1986):Free-form deformation of solid geometric models.Proceedings of the 13thannual Conference on Computer graphics and interactive technologies,Newsletter ACM SIGGRAPH Computer Graphics,vol.20,no.4,pp.151-160.

    Shikida,M.;Shimizu,T.;Sato,K.;Itoigawa,K.(2003):Active tactile sensor for detecting contact force and hardness of an object.Sens.Actuators A,Phys.vol.103,pp.213–218.

    Wang,Z.L.(2010):Piezopotential gated nanowire devices:Piezotronics and piezo-phototronics.Nano Today,vol.5,pp.540-552.

    Wang,Z.L.(2012a):Piezotronics and Piezo-Phototronics Springer-Verlag Berlin Heidelberg.

    Wang,Z.L.(2012b):Progress in piesotronics and piezo-phototronics.Adv.Mater.,vol.24,no.34,pp.4632-4646.

    Wang,Z.L.(2013):Piezotronics and Piezo-Phototronics.Springer,New York.

    Weinberg,B.;Nikitczuk,J.;Fisch,A.;Mavroidis,C.(2005):Development of electro-rheological fluidic resistive actuators for haptic vehicular instrument controls.Smart Materials and Structures,vol.14,pp.1107–1119.

    Wu,W.;Wen,X.;Wang,Z.L.(2013):Taxel-addressable matrix of verticalnanowire piezotronic transisyors for active and adaptive tactile imaging.Science,vol.340.

    Wu,W.Z.;Wei,Y.G.;Wang,Z.L.(2010):Strain-gated piezotronic logic nanodevices.Adv.Mater.,vol.22,no.42,pp.4711-4715.

    Zhou,J.;Fei,P.;Gu,Y.;Mai,W.;Gao,Y.;Yang,R.;Bao,G.;Wang,Z.L.(2008):Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires.Nano Lett.vol.8,no.11,pp.3973-3977.

    Zhang,Y.;Liu,Y.;Wang,Z.L.(2011):Fundamental theory of piezotronics.Adv.Mater.,vol.23,no.27,pp.3004-3013.

    1Institute of Solid Mechanics,Romanian Academy,Ctin Mille 15,010141Bucharest,Romania.

    E-mails:ligia_munteanu@hotmail.com;dumitri04@yahoo.com;veturiachiroiu@yahoo.com;marin_doina@yahoo.com

    2Technical University of Cluj-Napoca,Memorandumului 28,400114 Cluj-Napoca,Romania.

    E-mails:Cornel.Brisan@mmfm.utcluj.ro;bmvbara@yahoo.com

    9191精品国产免费久久| 欧美久久黑人一区二区| 一二三四社区在线视频社区8| 亚洲欧美清纯卡通| av有码第一页| 人妻人人澡人人爽人人| 日韩大片免费观看网站| 国产一区二区激情短视频 | 老司机午夜十八禁免费视频| 高清黄色对白视频在线免费看| 久久久欧美国产精品| 亚洲欧美色中文字幕在线| 天天躁夜夜躁狠狠躁躁| 国产精品1区2区在线观看. | 后天国语完整版免费观看| 国产免费福利视频在线观看| 国产精品久久久久久人妻精品电影 | 亚洲精品av麻豆狂野| 国产免费一区二区三区四区乱码| 欧美+亚洲+日韩+国产| 久久久久精品人妻al黑| tocl精华| 丁香六月欧美| 成人国产一区最新在线观看| 亚洲九九香蕉| 777米奇影视久久| 午夜福利视频精品| 三上悠亚av全集在线观看| 国产免费av片在线观看野外av| 青春草视频在线免费观看| 国产野战对白在线观看| 亚洲国产成人一精品久久久| 在线观看人妻少妇| 亚洲精品久久成人aⅴ小说| 中文字幕人妻丝袜一区二区| 狠狠狠狠99中文字幕| 免费高清在线观看视频在线观看| 久久精品国产亚洲av高清一级| 伊人亚洲综合成人网| 国产精品成人在线| 亚洲精品美女久久久久99蜜臀| 少妇被粗大的猛进出69影院| 欧美午夜高清在线| 亚洲精品美女久久久久99蜜臀| 狠狠婷婷综合久久久久久88av| 一本大道久久a久久精品| 国产片内射在线| 热99国产精品久久久久久7| 亚洲va日本ⅴa欧美va伊人久久 | 精品久久久精品久久久| 亚洲精品国产区一区二| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 俄罗斯特黄特色一大片| 亚洲国产精品一区二区三区在线| 高清黄色对白视频在线免费看| 嫁个100分男人电影在线观看| 日韩有码中文字幕| 人人澡人人妻人| 日韩免费高清中文字幕av| 老熟妇乱子伦视频在线观看 | 国产亚洲精品一区二区www | 大陆偷拍与自拍| 免费高清在线观看日韩| 黑丝袜美女国产一区| 亚洲欧美精品综合一区二区三区| 少妇精品久久久久久久| 国产一区二区三区在线臀色熟女 | www.999成人在线观看| 俄罗斯特黄特色一大片| 视频区图区小说| 法律面前人人平等表现在哪些方面 | 国产精品1区2区在线观看. | 久久人妻福利社区极品人妻图片| 超色免费av| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 女人爽到高潮嗷嗷叫在线视频| 麻豆乱淫一区二区| 97在线人人人人妻| 国产在线免费精品| 国产av又大| av网站在线播放免费| 啦啦啦视频在线资源免费观看| 超碰成人久久| 丝袜喷水一区| 国产一区二区激情短视频 | 亚洲自偷自拍图片 自拍| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲av高清不卡| a级毛片黄视频| 女人被躁到高潮嗷嗷叫费观| 99国产精品免费福利视频| 亚洲精品自拍成人| 大码成人一级视频| 99久久99久久久精品蜜桃| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 日本av免费视频播放| 丁香六月欧美| 男女无遮挡免费网站观看| 中国美女看黄片| 两个人看的免费小视频| 少妇粗大呻吟视频| 午夜福利在线免费观看网站| 久久久国产一区二区| 日韩 亚洲 欧美在线| 亚洲成人国产一区在线观看| 精品久久久久久电影网| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲五月婷婷丁香| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影 | av天堂久久9| 韩国高清视频一区二区三区| 国产一区二区三区在线臀色熟女 | 久久久欧美国产精品| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| av在线app专区| 国产福利在线免费观看视频| 中文字幕人妻熟女乱码| 久久精品人人爽人人爽视色| 老司机影院毛片| 久久久久久人人人人人| 国产精品久久久久成人av| 色老头精品视频在线观看| 曰老女人黄片| a级毛片黄视频| 男人爽女人下面视频在线观看| 国产精品免费视频内射| 久久国产精品影院| 免费在线观看影片大全网站| 亚洲精品国产av蜜桃| 欧美日韩精品网址| 国产视频一区二区在线看| 久久久精品区二区三区| 在线亚洲精品国产二区图片欧美| 亚洲专区中文字幕在线| 建设人人有责人人尽责人人享有的| 国产老妇伦熟女老妇高清| www日本在线高清视频| 岛国在线观看网站| 亚洲 国产 在线| 国产精品一区二区三区四区久久| 性色av乱码一区二区三区2| 国产成人aa在线观看| 国产黄色小视频在线观看| 熟妇人妻久久中文字幕3abv| 色老头精品视频在线观看| 日韩免费av在线播放| 亚洲成人久久性| 亚洲人成网站在线播放欧美日韩| 午夜免费观看网址| 90打野战视频偷拍视频| 国产精品日韩av在线免费观看| a级毛片在线看网站| 在线看三级毛片| 国产成人啪精品午夜网站| 亚洲天堂国产精品一区在线| 搡老熟女国产l中国老女人| 国产片内射在线| 国产亚洲精品一区二区www| 亚洲最大成人中文| 免费在线观看日本一区| 国产激情偷乱视频一区二区| 国产熟女xx| 国产在线精品亚洲第一网站| 日本一区二区免费在线视频| 亚洲精品国产一区二区精华液| 日本一区二区免费在线视频| 午夜日韩欧美国产| 神马国产精品三级电影在线观看 | 妹子高潮喷水视频| 午夜免费观看网址| 变态另类丝袜制服| 欧美黑人欧美精品刺激| 亚洲黑人精品在线| 视频区欧美日本亚洲| 日韩免费av在线播放| 国产精品日韩av在线免费观看| 男人舔女人的私密视频| 久久中文字幕一级| 久久国产精品人妻蜜桃| 国产三级中文精品| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 十八禁人妻一区二区| av在线天堂中文字幕| 亚洲中文字幕日韩| 又黄又爽又免费观看的视频| 日韩大尺度精品在线看网址| 日韩大码丰满熟妇| 又大又爽又粗| 在线看三级毛片| 制服诱惑二区| 精品日产1卡2卡| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看日本一区| 久久 成人 亚洲| 在线观看舔阴道视频| 黄色成人免费大全| 一区二区三区激情视频| 国产伦在线观看视频一区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久国产a免费观看| 久久久久久国产a免费观看| 亚洲色图av天堂| 成人永久免费在线观看视频| 久久国产精品影院| 国产男靠女视频免费网站| 不卡一级毛片| avwww免费| av在线天堂中文字幕| 亚洲五月婷婷丁香| 黄色片一级片一级黄色片| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av| 久久婷婷成人综合色麻豆| 久久久久亚洲av毛片大全| 久久99热这里只有精品18| 亚洲精品国产精品久久久不卡| 69av精品久久久久久| 一本一本综合久久| 国产成人欧美在线观看| 午夜久久久久精精品| 香蕉久久夜色| 久久久久久免费高清国产稀缺| 国产野战对白在线观看| 18禁国产床啪视频网站| 免费高清视频大片| 两个人视频免费观看高清| 99久久国产精品久久久| 99热这里只有精品一区 | 免费av毛片视频| 岛国视频午夜一区免费看| 久久中文字幕一级| www国产在线视频色| 欧美高清成人免费视频www| 两个人的视频大全免费| 亚洲,欧美精品.| 亚洲国产精品成人综合色| 成人av在线播放网站| 首页视频小说图片口味搜索| 亚洲av成人精品一区久久| 国产精品 欧美亚洲| 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡| 日本成人三级电影网站| 我的老师免费观看完整版| 久久欧美精品欧美久久欧美| 久久国产乱子伦精品免费另类| 久久婷婷人人爽人人干人人爱| 88av欧美| 国产亚洲精品久久久久5区| 久久久久国内视频| 在线观看免费午夜福利视频| 国内精品久久久久久久电影| 成熟少妇高潮喷水视频| 一本精品99久久精品77| 99久久99久久久精品蜜桃| 国产精品一区二区三区四区免费观看 | 亚洲精品久久成人aⅴ小说| 国产精品久久久av美女十八| 久久精品aⅴ一区二区三区四区| 香蕉丝袜av| 国产欧美日韩一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频内射| 在线观看免费午夜福利视频| 老司机午夜福利在线观看视频| 国产1区2区3区精品| 日本成人三级电影网站| 婷婷精品国产亚洲av在线| 黄色视频不卡| 俄罗斯特黄特色一大片| 亚洲中文字幕一区二区三区有码在线看 | 国产91精品成人一区二区三区| 亚洲无线在线观看| 国产成人精品无人区| 久久精品成人免费网站| 好男人在线观看高清免费视频| 久久久久国产一级毛片高清牌| 中文在线观看免费www的网站 | 无遮挡黄片免费观看| 国产精品免费一区二区三区在线| 在线观看美女被高潮喷水网站 | 神马国产精品三级电影在线观看 | 精品久久蜜臀av无| 窝窝影院91人妻| 欧美精品啪啪一区二区三区| 99国产极品粉嫩在线观看| 1024香蕉在线观看| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 99国产精品一区二区三区| 97碰自拍视频| 一个人免费在线观看的高清视频| tocl精华| 精品一区二区三区四区五区乱码| 淫妇啪啪啪对白视频| 久久久久久免费高清国产稀缺| 亚洲成人国产一区在线观看| 麻豆av在线久日| 伦理电影免费视频| www日本在线高清视频| 少妇被粗大的猛进出69影院| 欧美在线一区亚洲| svipshipincom国产片| 色老头精品视频在线观看| 国产精品av视频在线免费观看| av国产免费在线观看| 国内毛片毛片毛片毛片毛片| 成人三级做爰电影| 香蕉久久夜色| 国产私拍福利视频在线观看| 久9热在线精品视频| 国产亚洲精品av在线| 99久久精品热视频| xxxwww97欧美| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 五月伊人婷婷丁香| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 亚洲激情在线av| aaaaa片日本免费| 色老头精品视频在线观看| 国产黄a三级三级三级人| 久久伊人香网站| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 欧美最黄视频在线播放免费| 男人舔奶头视频| 色播亚洲综合网| 91老司机精品| 国产亚洲av高清不卡| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频 | 精品欧美一区二区三区在线| 白带黄色成豆腐渣| av在线播放免费不卡| 国产黄色小视频在线观看| 国产成人啪精品午夜网站| 亚洲熟女毛片儿| 国产高清视频在线观看网站| 啪啪无遮挡十八禁网站| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 我要搜黄色片| xxx96com| 亚洲美女黄片视频| 国产成人影院久久av| 无限看片的www在线观看| 一二三四社区在线视频社区8| www国产在线视频色| 亚洲欧美精品综合一区二区三区| 亚洲精品在线美女| 成人av在线播放网站| 亚洲欧美日韩高清在线视频| 美女大奶头视频| 精品欧美国产一区二区三| 一本综合久久免费| 亚洲,欧美精品.| 两人在一起打扑克的视频| 成年版毛片免费区| 亚洲国产欧洲综合997久久,| 国产野战对白在线观看| 欧美激情久久久久久爽电影| 五月伊人婷婷丁香| 老鸭窝网址在线观看| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 在线永久观看黄色视频| 欧美成人一区二区免费高清观看 | 日本a在线网址| 首页视频小说图片口味搜索| 国产伦在线观看视频一区| 午夜福利在线在线| 亚洲精品国产精品久久久不卡| 人成视频在线观看免费观看| 免费看日本二区| 亚洲va日本ⅴa欧美va伊人久久| 久久久久亚洲av毛片大全| 国产av不卡久久| 女警被强在线播放| 好看av亚洲va欧美ⅴa在| 国产亚洲精品第一综合不卡| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 九色国产91popny在线| 国产99白浆流出| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 特大巨黑吊av在线直播| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 欧美日韩一级在线毛片| 国产亚洲精品综合一区在线观看 | 一本一本综合久久| 老司机深夜福利视频在线观看| 国产精品免费一区二区三区在线| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 国产三级在线视频| 麻豆av在线久日| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 亚洲欧美一区二区三区黑人| 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲精品中文字幕一二三四区| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 身体一侧抽搐| 俄罗斯特黄特色一大片| svipshipincom国产片| 男人舔奶头视频| 1024视频免费在线观看| 脱女人内裤的视频| 国产男靠女视频免费网站| 亚洲五月天丁香| 国产熟女xx| 日韩欧美三级三区| 黄色视频不卡| 亚洲精品一区av在线观看| 少妇裸体淫交视频免费看高清 | 亚洲av成人精品一区久久| 国产爱豆传媒在线观看 | 亚洲人成网站高清观看| 妹子高潮喷水视频| 色综合站精品国产| 亚洲成人中文字幕在线播放| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 国产av在哪里看| 精品久久久久久久末码| 窝窝影院91人妻| 色噜噜av男人的天堂激情| 男人的好看免费观看在线视频 | 一区二区三区高清视频在线| 久久中文字幕人妻熟女| 制服人妻中文乱码| 好男人电影高清在线观看| 搡老妇女老女人老熟妇| 久久人妻av系列| 日韩精品青青久久久久久| www.www免费av| 日本熟妇午夜| 19禁男女啪啪无遮挡网站| 婷婷丁香在线五月| 天天躁狠狠躁夜夜躁狠狠躁| 国产真实乱freesex| 9191精品国产免费久久| 少妇被粗大的猛进出69影院| 国产成人av教育| 黄色成人免费大全| av在线天堂中文字幕| 国内精品久久久久精免费| 久久人人精品亚洲av| 男插女下体视频免费在线播放| 看片在线看免费视频| 在线观看一区二区三区| 热99re8久久精品国产| 国语自产精品视频在线第100页| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 在线观看免费视频日本深夜| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 欧美zozozo另类| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀| 高清在线国产一区| 精品久久久久久,| 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 国产精品亚洲一级av第二区| 大型av网站在线播放| 99国产精品99久久久久| 日本精品一区二区三区蜜桃| 久久草成人影院| 老汉色∧v一级毛片| 男女视频在线观看网站免费 | 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 婷婷亚洲欧美| 91成年电影在线观看| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 久久香蕉国产精品| 一本精品99久久精品77| avwww免费| 成年免费大片在线观看| 精品国产亚洲在线| 男女之事视频高清在线观看| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 欧美大码av| 亚洲美女视频黄频| 成人三级做爰电影| 国产成人系列免费观看| 亚洲成人久久爱视频| 黄色 视频免费看| 精品久久久久久久末码| 无限看片的www在线观看| 国产黄a三级三级三级人| 日韩欧美国产在线观看| 美女大奶头视频| 午夜老司机福利片| 国产精品久久久久久久电影 | 高潮久久久久久久久久久不卡| av在线播放免费不卡| 女人被狂操c到高潮| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 麻豆一二三区av精品| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 亚洲一区二区三区色噜噜| 日本一二三区视频观看| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 国产乱人伦免费视频| 亚洲一码二码三码区别大吗| 岛国在线观看网站| 久久精品国产亚洲av高清一级| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区久久| 两个人看的免费小视频| 免费电影在线观看免费观看| 国产人伦9x9x在线观看| 免费电影在线观看免费观看| 最新美女视频免费是黄的| 国产精品久久久久久精品电影| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 男人舔奶头视频| 国产麻豆成人av免费视频| 日韩欧美精品v在线| 国产97色在线日韩免费| 亚洲国产看品久久| 国产人伦9x9x在线观看| www.999成人在线观看| 日日爽夜夜爽网站| 91成年电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 精品少妇一区二区三区视频日本电影| a在线观看视频网站| 我的老师免费观看完整版| 一进一出抽搐动态| 国产av在哪里看| 99久久综合精品五月天人人| 一a级毛片在线观看| 伦理电影免费视频| 国产精品一区二区三区四区久久| 国产激情欧美一区二区| 亚洲最大成人中文| cao死你这个sao货| 婷婷亚洲欧美| 99久久无色码亚洲精品果冻| 高清毛片免费观看视频网站| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 色av中文字幕| 国产精品久久久久久精品电影| 久久国产精品人妻蜜桃| 久久精品影院6| netflix在线观看网站| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 欧美三级亚洲精品| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线美女| 成年人黄色毛片网站| 亚洲成a人片在线一区二区| 美女午夜性视频免费| 欧美在线一区亚洲| 看黄色毛片网站| 久久久久久大精品| 精品久久久久久成人av| 国产亚洲精品第一综合不卡| 夜夜夜夜夜久久久久| 久久国产乱子伦精品免费另类| 老司机午夜十八禁免费视频| 亚洲国产精品sss在线观看| 欧美国产日韩亚洲一区|