• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and Optimization of an Unstructured Kinetic Model for Sodium Gluconate Fermentation Process

    2015-12-11 04:47:24YamingDongXuefengYanFeiLuMeijinGuoYingpingZhuang
    Computers Materials&Continua 2015年10期

    Yaming Dong,Xuefeng Yan,2,Fei Lu,Meijin Guo,Yingping Zhuang

    Development and Optimization of an Unstructured Kinetic Model for Sodium Gluconate Fermentation Process

    Yaming Dong1,Xuefeng Yan1,2,Fei Lu3,Meijin Guo3,Yingping Zhuang3

    This study proposed a modified unstructured kinetic model for sodium gluconate fermentation byAspergillus niger.Four specific growth rate equations(Monod,Tessier,Contois,and logistic)were considered in the biomass growth equation.The growth,instantaneous biomass concentration,instantaneous product,and substrate concentration were considered in the equations of product formation and substrate consumption.Option parameters were introduced to determine the form of the unstructured model.A double-nested optimization strategy was proposed to optimize the option and kinetic parameters.The proposed unstructured kinetic model based on the estimated optimal parameters efficiently simulated sodium gluconate fermentation.The obtained option parameters of the kinetic model indicated that the Monod equation-based unstructured model displayed better performance than the three other specific growth rate equation-based kinetic models.

    Fermentation;Growth kinetics;Kinetic parameters;Optimization;Sodium gluconate;Unstructured kinetic model.

    1 Introduction

    Gluconic acid and its salt sodium gluconate are bulk chemicals with many uses in the food,pharmaceutical,detergent,leather,and beverage industries[Das and Kundu(1987);Milsom and Merers(1985);Sawyer(1964)].The future of these applications principally depends on the commercial availability of gluconates.Gluconic acid is produced via submerged fermentation using strains ofAspergillus nigerand glucose as the carbon source[Singh and Kumar(2007)].Gluconic acid production byA.nigeris an aerobic fermentation with a high oxygen demand, and the biotrans-formation of glucose to gluconic acid represents a simple dehydrogenation reaction without the involvement of complex metabolic cell pathways[Znad,Marko?,and Bale?(2004)].

    Kinetic models are useful because they enable engineers to design and control industrial processes[Gianoli,Fisher,Maeder,and Hungerbühler(2007);Salmi,Murzin,M?ki-Arvela,Kusema,Holmbom,Willf?r,and W?m?(2014);Zhang,Yang,Zhu,Li,and Gui(2013)].The behavior of these processes can be evaluated more rapidly and accurately with kinetic models than laboratory analytical methods only.Two types of kinetic models are available for the microbial process:structured[Mustafa,Elkamel,Lohi,Ibrahim,and Elnashaie(2014)]and unstructured[Schill,Van Gulik,Voisard,and Von Stockar(1996)].Structured models consider certain basic principles of cell structure,function,and composition,whereas unstructured models describe the biological system only by cell mass[Znad,Blazej,Bales,and Markos(2004)].

    Many scholars have investigated the kinetic modeling of gluconic acid byA.niger.Takamatsu et al.developed a structured model to describe gluconic acid fermentation byA.niger[Takamatsu,Shioya,and Furuya(1981)].Liu et al.proposed a simple unstructured model in which the logistic equation was used for cell growth,the Luedeking-Piret equation for gluconic acid production,and the Luedeking-Piretlike equation for glucose consumption[Liu,Weng,Zhang,Xu,and Ji(2003)].Znad et al.proposed an unstructured model for gluconic acid fermentation byA.niger[Znad,Blazej,Bales,and Markos(2004)].The Contois-type model was used to simulate growth.The obtained results show that gluconic acid production is mostly associated with growth.

    Although structured models can describe cell activities,they are complicated for normal use because they require more equations to solve as compared with unstructured models.Several equations are required to describe cell growth,substrate consumption,and product formation for unstructured models;thus,these models are much easier and faster to develop than structured models and can accurately predict the behavior of fermentation processes[Feng,Zhang,Jia,Yang,Liu,and Lin(2014);Jang and Barford(2000)].

    The most difficult and important step in modeling fermentation is to determine the form of the specific growth rate expression μ,which can describe the cell growth accurately.The Monod equation is one of the earliest and most widely used unstructured models to describe cell growth[Monod(1949)].Much more sophisticated models such as the Tessier,Contois,and logistic equations have been proposed to describe cell growth.In our previous work[Dong,Fan,Yan,Guo,and Lu(2014)],a back propagation neural network(BPNN)was used to model the mycelium growth rate of sodium gluconate fermentation without considering the mechanism of the process.

    However,how to determine the appropriate form of an unstructured model for a given fermentation process remains an open issue.Therefore,the present research aims to develop a modified unstructured kinetic model for gluconic acid production byA.niger.Four specific growth rate equations(Monod,Tessier,Contois,and logistic)were considered in the biomass growth equation.The growth,instantaneous biomass concentration,instantaneous product,and substrate concentration were considered in the equations of product formation and substrate consumption.Option parameters were introduced to determine the appropriate form of kinetic model.A double-nested optimization strategy was proposed to search the optimal option and kinetic parameters for the unstructured model.The experimental fermentation data obtained from a 50 L batch fermenter of sodium gluconate byA.nigerwere used to develop and evaluate the performance of the unstructured kinetic model.

    The remainder of the paper is organized as follows.Section 2 describes the experimental setup and procedure.Section 3 introduces the unstructured kinetic model of sodium gluconate fermentation.In Section 4,a modified unstructured kinetic model is proposed and optimized using a double-nested optimization strategy.Section 5 contains the results and discussion.Section 6 concludes the paper.

    2 Experimental setup and procedure

    The experimental setup and procedure are described in detail by our previous work[Dong,Fan,Yan,Guo,and Lu(2014)].In brief,they were described in the following.

    2.1 Culture conditions

    A.niger(AN14)with high activities of glucose oxidase and catalase was obtained from the National Engineering Research Center of Biotechnology,Shanghai,China.

    The fungus was grown in a 15 L tank with a working volume of 9 L and stirred with a rotary shaker at 300 rpm and 38°C for 20 h.The air f l ow and pressure were 600 L/h and 0.1 MPa,respectively.The inoculum medium contained 6.0%glucose,2.0%agar,0.3%corn steep liquor,0.05%CON2H4,0.03%KH2PO4,and 0.005%MgSO4·7H2O.Mycelium was transferred to the fermentation reactor after its formation(15%inoculation ratio).

    Sodium gluconate fermentation was carried out in a 50 L stirred tank bioreactor with a working volume of 33 L.The fermentation medium contained 6.0%glucose,2.0%agar,0.1%corn steep liquor,0.02%CON2H4,0.013%KH2PO4,and 0.002%MgSO4·7H2O.A defoamer was used to reduce foaming.The fermentation conditions were as follows:air f l ow,1200 L/h;agitation rate,500 rpm;pressure,0.1 MPa;and temperature,38°C.The pH was controlled at 5.8 using 20%(v/v)NaOH.

    2.2 Analytical methods

    During fermentation,the following parameters were measured and recorded online:dissolved oxygen concentration,pH,temperature,agitation rate,air f l ow,pressure of inlet and outlet gas streams,and volume.

    The biomass concentration was calculated by mycelial dry weight,which was determined through a gravimetric method.The mycelial suspension was filtered,washed several times with distilled water,and then dried to a constant weight at 80°C.The filtrate was subjected to high-performance liquid chromatography(HPLC).The gluconic acid concentration was determined by HPLC analysis with a UV detector.Fehling’s test was performed to determine glucose concentration.The experimental errors of the measurements are approximately 3%to 5%.

    3 Unstructured kinetic model

    The rate equations of biomass(X),sodium gluconate(P),and glucose(S)were used for the model to describe the fermentation process.The material balances of the biomass,sodium gluconate,and glucose can be written as

    with the initial conditions att=0,

    where the formation ratesrX,rP,andrSshould be described by the appropriate unstructured kinetic models.

    3.1 Biomass growth

    The Monod equation is one of the most widely used models to describe cell growth[Monod(1949)].This model is deterministic,distributed,and unstructured.The biomass growth can be defined as

    where μ is the specific growth rate and can be given by the Monod equation as

    where μmaxis the maximum specific growth rate,andKSis the substrate saturation constant.

    Sophisticated models such as the Tessier,Contois,and logistic equations were also proposed to describe the specific growth rate.The expressions of these equations are listed in Table 1.

    Table 1:Expressions of specific growth rate equations.

    3.2 Product formation

    The kinetics of gluconic acid formation was based on the Luedeking-Piret equation[Luedeking and Piret(1959)].This model was first developed for lactic acid formation.This unstructured model shows that product formation is associated with growth and non-growth contributions.The product formation can be described as

    where α and β are the kinetic parameters for growth-and non-growth-associated product formation,respectively.

    3.3 Substrate consumption

    Glucose is used in the formation of cell materials and metabolic products,as well as in the maintenance of cells.The kinetics of glucose consumption was based on a Luedeking-Piret-like equation.The substrate consumption can be described as

    whereYX/Sis the yield coefficient,andmSis the maintenance coefficient.

    4 Kinetic model optimization

    4.1 modified unstructured kinetic model

    On the basis of the unstructured model of sodium gluconate fermentation provided in Section 3,a modified unstructured kinetic model was proposed and described as

    wherek1,k2,k3,k4are the introduced option parameters to determine the form of the biomass growth;m1,m2,···,m8are the introduced option parameters to determine the form of product formation and substrate consumption;anda1,a2,···,a8are the kinetic parameters of the unstructured model.

    Four specific growth rate equations(Monod,Tessier,Contois,and logistic)were considered in the biomass growth equation for the proposed modified unstructured model.The option parameters ofk1,k2,k3,k4were used to select one that can describe the biomass growth.The values ofk1,k2,k3,k4are 0 or 1,andThe growth,instantaneous biomass concentrationX,instantaneous productP,and substrate concentrationSwere considered in the equations of product formation and substrate consumption.The option parametersm1,m2,···,m8were used to determine the appropriate form that can accurately describe the product formation and substrate consumption.The values ofm1,m2,···,m8are random 0 or 1.

    4.2 Model parameter optimization

    For the unstructured model proposed in Section 4.1,two types of parameters(i.e.,option and kinetic)need to be determined before the kinetic model can be used to describe fermentation.The option parameters were used to determine the form of the unstructured model,and their values should be the integer 0 or 1.If the value of the option parameter is 1,then the influence of this part multiplied by it is considered in the kinetic model equation.If the value of the option parameter is 0,then its influence is ignored.To obtain a relevant kinetic model,the kinetic parameters should be estimated by comparing the assumed kinetic model with the experimental data after the option parameters are determined.

    Figure 1:Flowchart of the double-nested optimization strategy.

    In the present study,a double-nested optimization strategy was proposed to optimize the unstructured kinetic model.In the fi rst step,the option parameters were determined with the 0-1 programming method.In the second step,the kinetic parameters were estimated by minimizing the difference between the model simulation results and the experimental data.The second process is similar to the estimation process in the reference[Praveen and Sinha(2009)].Iterations were performed between two steps until the convergence.The simplex method was employed as an optimizer to estimate the kinetic parameters.The optimization objective was defined as follows:

    After the optimal option and kinetic parameters were determined by the double-nested optimization strategy,the optimal form of the proposed unstructured kinetic model was developed,and the obtained kinetic model was used to simulate the fermentation process.

    5 Results and discussion

    5.1 Model performance evaluation indices

    Two model evaluation indices were used to analyze the obtained unstructured model statistically.These indices were described as

    Root mean squared error:

    Table 2:Optimal values of the option and kinetic parameters of the four unstructured kinetic models.

    Figure 2:Simulation results of the obtained optimal unstructured kinetic model based on the Monod equation.

    5.2 Kinetic model performance

    In accordance with the 0-1 programming method,four biomass growth models were obtained when one ofki(i=1,2,3,4)is equal to 1.The four biomass growth models were based on the Monod,Tessier,Contois,and logistic equations.With the double-nested optimization strategy,the optimal values of the option and kinetic parameters of these four unstructured kinetic models were obtained and are listed in Table 2.The simulation results of the four unstructured kinetic models with the obtained optimal parameters are shown in Figures 2 to 5.The figures show that the obtained unstructured kinetic models displayed satisfactory performances.The evaluation indices RMSE and RE were calculated to evaluate further the performances of the four unstructured kinetic models.The results are listed in Table 3,and the best results are shown in bold.Table 3 shows that the Monod-based unstructured kinetic model with the obtained optimal option and kinetic parameters had the least RMSE and RE values.These results show that the optimal option and kinetic parameters can be determined using the proposed double-nested optimization strategy and that the developed unstructured kinetic model based on the Monod equation demonstrated a good performance in simulating gluconate acid fermentation.

    Figure 3:Simulation results of the obtained optimal unstructured kinetic model based on the Tessier equation.

    Figure 4:Simulation results of the obtained optimal unstructured kinetic model based on the Contois equation.

    Figure 5:Simulation results of the obtained optimal unstructured kinetic model based on the logistic equation.

    Table 3:RMSE and RE of the four unstructured kinetic models.

    6 Conclusions

    This study proposed a modified unstructured kinetic model for sodium gluconate fermentation byA.niger.Four specific growth rate equations were considered in the biomass growth equation.The growththe instantaneous biomass concentrationX,the instantaneous productP,and the substrate concentrationSwere considered in the equations of product formation and substrate consumption.A double-nested optimization strategy was proposed to optimize the unstructured kinetic model option and kinetic parameters.Results showed that the optimal parameters can be determined by the proposed optimization strategy.The modified unstructured kinetic model with the obtained optimal parameters efficiently simulated sodium gluconate fermentation.The Monod equation-based unstructured kinetic model demonstrated better performance than the three other biomass growth equation-based models.

    Acknowledgement:The authors gratefully acknowledge the support from the following foundations:973 project of China(2013CB733600),National Natural Science Foundation of China(21176073),and the Fundamental Research Funds for the Central Universities.

    Das,A.;Kundu,P.(1987):Microbial production of gluconic acid.J.Sci.Ind.Res.,vol.46,pp.307-331.

    Dong,Y.;Fan,Q.;Yan,X.;Guo,M.;Lu,F.(2014):Development of a hybrid model for sodium gluconate fermentation by Aspergillus niger.J.Chem.Technol.Biot.,vol.89,pp.1875-1882.

    Feng,J.;Zhang,J.;Jia,W.;Yang,Y.;Liu,F.;Lin,C.(2014):An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect.Biotechnol.Bioproc.Eng.,vol.19,pp.727-732.

    Gianoli,S.I.;Puxty,G.;Fisher,U.;Maeder,M.;Hungerb uhler,K.(2007):Empirical kinetic modeling of on line simultaneous infrared and calorimetric measurement using a Pareto optimal approach and multi-objective genetic algorithm.Chemometr.Intell.Lab.,vol.85,pp.47-62.

    Jang,J.;Barford,J.P.(2000):An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody.Biochem.Eng.J.,vol.4,pp.153-168.

    Liu,J.;Weng,L.;Zhang,Q.;Xu,H.;Ji,L.(2003):A mathematical model for gluconic acid fermentation by Aspergillus niger.Biochem.Eng.J.,vol.14,pp.137-141.

    Luedeking,R.;Piret,E.L.(1959):A kinetic study of the lactic acid fermentation.Batch process at controlled pH.J.Biochem.Microbiol.Technol.Eng.,vol.1,pp.393-412.

    Milsom,P.;Merers,J.(1985):Gluconic&Itaconic acids,Comprehensive Biotechnology,vol.4,M.Moo-Young(ed.),pp.631-700.

    Monod,J.(1949):The growth of bacterial cultures.Annu.Rev.Microbiol.,vol.3,pp.371-394.

    Mustafa,I.H.;Elkamel,A.;Lohi,A.;Ibrahim,G.;Elnashaie,S.S.E.H.(2014):Structured mathematical modeling,bifurcation,and simulation for the bioethanol fermentation process using Zymomonas mobilis.Ind.Eng.Chem.Res.,vol.53,pp.5954-5972.

    Praveen,C.;Sinha,S.(2009):Strategic Estimation of Kinetic Parameters in VGO Cracking.CMC-Computers Materials&Continua,vol.9,pp.41-50.

    Salmi,T.;Murzin,D.Y.;M aki-Arvela,P.;Kusema,B.;Holmbom,B.;Willf or,S.;W arn? J.(2014):Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts.AIChE J.,vol.60,pp.1066-1077.

    Sawyer,D.T.(1964).Metal-gluconate complexes.Chem.Rev.,vol.64,pp.633-643.

    Schill,N.;Van Gulik,W.;Voisard,D.;Von Stockar,U.(1996):Continuous cultures limited by a gaseous substrate:development of a simple,unstructured mathematical model and experimental verification with Methanobacterium ther-moautotrophicum.Biotechnol.Bioeng.,vol.51,pp.645-658.

    Singh,O.V.;Kumar,R.(2007):Biotechnological production of gluconic acid:future implications.Appl.Microbiol.Biot.,vol.75,pp.713-722.

    Takamatsu,T.;Shioya,S.;Furuya,T.(1981):Mathematical model of gluconic acid fermentation by Aspergillus niger.J.Chem.Technol.Biot.,vol.31,pp.697-704.

    Zhang,B.;Yang,C.;Zhu,H.;Li,Y.;Gui,W.(2013):Kinetic Modeling and Parameter Estimation for Competing Reactions in Copper Removal Process from Zinc Sulfate Solution.Ind.Eng.Chem.Res.,vol.52,pp.17074-17086.

    Znad,H.;Blazej,M.;Bales,V.;Markos,J.(2004):A kinetic model for gluconic acid production by Aspergillus niger.Chem.Pap.,vol.58,pp.23-28.

    Znad,H.;Marko? J.;Bale? V.(2004):Production of gluconic acid from glucose by Aspergillus niger:growth and non-growth conditions.Process Biochem.,vol.39,pp.1341-1345.

    1Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,P.R.China

    2Corresponding author:Prof.Xuefeng Yan

    Email address:xfyan@ecust.edu.cn

    Address:P.O.BOX 293,MeiLong Road 130,Shanghai,200237,P.R.China

    Tel/Fax:+86 21 64251036

    3State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology,Shanghai 200237,P.R.China

    免费看十八禁软件| 日韩三级视频一区二区三区| 五月天丁香电影| 国产av国产精品国产| 高清在线国产一区| 大片电影免费在线观看免费| 美女主播在线视频| 操出白浆在线播放| 在线观看免费日韩欧美大片| av网站免费在线观看视频| 免费黄频网站在线观看国产| 日韩中文字幕欧美一区二区| 精品少妇一区二区三区视频日本电影| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 老熟妇乱子伦视频在线观看| av网站在线播放免费| 极品教师在线免费播放| 久久99一区二区三区| 亚洲av国产av综合av卡| 中国美女看黄片| 青草久久国产| 国产精品成人在线| 免费女性裸体啪啪无遮挡网站| 99精品欧美一区二区三区四区| 日韩视频在线欧美| 日韩欧美一区视频在线观看| 久久亚洲精品不卡| 成人av一区二区三区在线看| 国产野战对白在线观看| 丝袜喷水一区| 在线观看人妻少妇| 日韩制服丝袜自拍偷拍| 丁香六月天网| h视频一区二区三区| 成年动漫av网址| 久热爱精品视频在线9| 久久ye,这里只有精品| 国产日韩一区二区三区精品不卡| 中文字幕最新亚洲高清| 91老司机精品| 成人影院久久| www.精华液| 高清av免费在线| 狂野欧美激情性xxxx| 国产成人一区二区三区免费视频网站| 国产精品秋霞免费鲁丝片| 99热国产这里只有精品6| 一边摸一边抽搐一进一小说 | 黑人操中国人逼视频| 丝袜美足系列| 午夜福利视频精品| 高清欧美精品videossex| 欧美国产精品va在线观看不卡| 国产亚洲一区二区精品| 伊人久久大香线蕉亚洲五| 妹子高潮喷水视频| 精品国产国语对白av| 麻豆国产av国片精品| 免费女性裸体啪啪无遮挡网站| av天堂在线播放| 黄色丝袜av网址大全| 国产成人精品在线电影| 欧美日韩亚洲高清精品| 亚洲综合色网址| 一夜夜www| tube8黄色片| 搡老熟女国产l中国老女人| 色婷婷av一区二区三区视频| 一级,二级,三级黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人啪精品午夜网站| 成年女人毛片免费观看观看9 | 国产91精品成人一区二区三区 | 天天操日日干夜夜撸| 五月开心婷婷网| 国产精品 国内视频| 18在线观看网站| 免费观看a级毛片全部| 极品人妻少妇av视频| 91成年电影在线观看| 亚洲av美国av| 国产欧美日韩一区二区三| 午夜福利,免费看| 久久精品国产亚洲av香蕉五月 | 宅男免费午夜| 国产一卡二卡三卡精品| 久久久欧美国产精品| 一本一本久久a久久精品综合妖精| 国产在线视频一区二区| 天天添夜夜摸| 老司机影院毛片| 黄色视频,在线免费观看| 精品国产一区二区三区久久久樱花| 久久久久久久精品吃奶| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 日本av免费视频播放| 香蕉国产在线看| 中文字幕人妻熟女乱码| 精品午夜福利视频在线观看一区 | 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 国产精品国产av在线观看| 亚洲,欧美精品.| 精品乱码久久久久久99久播| 精品亚洲成a人片在线观看| 一级a爱视频在线免费观看| 黄色成人免费大全| 伊人久久大香线蕉亚洲五| 国产一区有黄有色的免费视频| 一个人免费看片子| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 18在线观看网站| 黄色片一级片一级黄色片| 国产欧美日韩综合在线一区二区| 久久这里只有精品19| 欧美精品av麻豆av| 99国产精品99久久久久| 黑人巨大精品欧美一区二区mp4| 欧美日韩黄片免| 9热在线视频观看99| 热re99久久精品国产66热6| 欧美av亚洲av综合av国产av| 丁香欧美五月| 18禁观看日本| 日韩欧美一区视频在线观看| 性高湖久久久久久久久免费观看| 啪啪无遮挡十八禁网站| 一区二区av电影网| 日本一区二区免费在线视频| 国产黄色免费在线视频| 亚洲七黄色美女视频| 啦啦啦 在线观看视频| 亚洲精品一二三| 国产真人三级小视频在线观看| 午夜视频精品福利| 亚洲成人免费电影在线观看| 免费日韩欧美在线观看| 悠悠久久av| 91成人精品电影| 久久天堂一区二区三区四区| 久久精品国产亚洲av高清一级| 99riav亚洲国产免费| 色婷婷av一区二区三区视频| 欧美大码av| 天天躁日日躁夜夜躁夜夜| 午夜两性在线视频| 一个人免费在线观看的高清视频| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 亚洲精品av麻豆狂野| av天堂在线播放| 最近最新中文字幕大全免费视频| 一级毛片电影观看| 午夜精品国产一区二区电影| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 亚洲 国产 在线| 国产有黄有色有爽视频| 色尼玛亚洲综合影院| 精品国产亚洲在线| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 午夜激情av网站| 国产一卡二卡三卡精品| 亚洲成a人片在线一区二区| a级毛片黄视频| 国产91精品成人一区二区三区 | 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频 | 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 免费在线观看黄色视频的| 咕卡用的链子| 18禁国产床啪视频网站| 日本一区二区免费在线视频| 777久久人妻少妇嫩草av网站| 亚洲成人免费av在线播放| 亚洲中文av在线| 国产欧美日韩一区二区精品| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 91国产中文字幕| 色综合婷婷激情| 精品视频人人做人人爽| 99久久国产精品久久久| 在线观看免费视频日本深夜| 亚洲性夜色夜夜综合| 午夜激情久久久久久久| 妹子高潮喷水视频| 国产成人精品无人区| 久久国产精品人妻蜜桃| 亚洲第一av免费看| 欧美日韩福利视频一区二区| 黄色视频在线播放观看不卡| 在线永久观看黄色视频| 男女免费视频国产| 亚洲第一欧美日韩一区二区三区 | 免费观看人在逋| 成人影院久久| 亚洲欧美色中文字幕在线| 午夜福利在线观看吧| 国产av国产精品国产| 国产在线观看jvid| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕| 操美女的视频在线观看| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 免费少妇av软件| 大香蕉久久成人网| 超碰成人久久| 成年人免费黄色播放视频| 亚洲第一欧美日韩一区二区三区 | 亚洲一码二码三码区别大吗| 成人精品一区二区免费| av在线播放免费不卡| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 久久久久视频综合| 日韩免费av在线播放| 纵有疾风起免费观看全集完整版| netflix在线观看网站| 热99久久久久精品小说推荐| 最新在线观看一区二区三区| 久久久久久人人人人人| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 五月开心婷婷网| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 99re6热这里在线精品视频| 国产麻豆69| 国产视频一区二区在线看| 大陆偷拍与自拍| 正在播放国产对白刺激| 国产真人三级小视频在线观看| 十八禁人妻一区二区| 天天躁日日躁夜夜躁夜夜| 黄片小视频在线播放| 最新在线观看一区二区三区| 三上悠亚av全集在线观看| cao死你这个sao货| 搡老熟女国产l中国老女人| 国产伦理片在线播放av一区| 国产亚洲欧美精品永久| 日本五十路高清| 这个男人来自地球电影免费观看| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 国产主播在线观看一区二区| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| 亚洲精品自拍成人| a级毛片黄视频| 久久久国产精品麻豆| 久久ye,这里只有精品| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 动漫黄色视频在线观看| 国产福利在线免费观看视频| 亚洲欧美一区二区三区久久| av有码第一页| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| 人成视频在线观看免费观看| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 欧美国产精品一级二级三级| 天天影视国产精品| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久 | 亚洲中文日韩欧美视频| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 午夜免费成人在线视频| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 汤姆久久久久久久影院中文字幕| 激情在线观看视频在线高清 | 性少妇av在线| 精品一区二区三区视频在线观看免费 | 国产在视频线精品| 国产免费现黄频在线看| 久久国产精品人妻蜜桃| 欧美黑人精品巨大| 亚洲avbb在线观看| 午夜福利欧美成人| 成人国语在线视频| videos熟女内射| 国产黄频视频在线观看| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 免费女性裸体啪啪无遮挡网站| 久久影院123| 999久久久精品免费观看国产| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看 | 变态另类成人亚洲欧美熟女 | 亚洲五月色婷婷综合| 国产免费福利视频在线观看| av电影中文网址| 免费一级毛片在线播放高清视频 | 日本av手机在线免费观看| 国产精品香港三级国产av潘金莲| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| 欧美成狂野欧美在线观看| 免费日韩欧美在线观看| 18禁美女被吸乳视频| 午夜日韩欧美国产| 亚洲中文av在线| 91老司机精品| 国产精品免费一区二区三区在线 | 亚洲精华国产精华精| 久久国产亚洲av麻豆专区| 男女床上黄色一级片免费看| 欧美大码av| 人妻 亚洲 视频| 欧美成人免费av一区二区三区 | 在线观看免费视频网站a站| 一本色道久久久久久精品综合| 韩国精品一区二区三区| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 欧美日韩视频精品一区| 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 久久久精品区二区三区| 一级片免费观看大全| 久久精品亚洲熟妇少妇任你| 亚洲av第一区精品v没综合| 丰满少妇做爰视频| 久久人妻福利社区极品人妻图片| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 国产在视频线精品| 性色av乱码一区二区三区2| 搡老熟女国产l中国老女人| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 99riav亚洲国产免费| netflix在线观看网站| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| av视频免费观看在线观看| 亚洲综合色网址| 在线观看一区二区三区激情| 最新在线观看一区二区三区| 十八禁高潮呻吟视频| 久久这里只有精品19| 亚洲 国产 在线| 99热国产这里只有精品6| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说 | 午夜激情av网站| 亚洲国产精品一区二区三区在线| a级毛片黄视频| 久久久久久久精品吃奶| 水蜜桃什么品种好| 国产精品 国内视频| 黄色视频在线播放观看不卡| 亚洲av国产av综合av卡| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 亚洲精品国产区一区二| 十八禁人妻一区二区| 黑人操中国人逼视频| tube8黄色片| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网| aaaaa片日本免费| www.自偷自拍.com| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| e午夜精品久久久久久久| 97在线人人人人妻| 老司机午夜福利在线观看视频 | 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 成人国产av品久久久| 一区二区av电影网| 亚洲少妇的诱惑av| 日本wwww免费看| 久热爱精品视频在线9| 黄色视频,在线免费观看| 一级毛片女人18水好多| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 国产午夜精品久久久久久| 免费一级毛片在线播放高清视频 | 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 亚洲成a人片在线一区二区| 精品亚洲成国产av| 老司机福利观看| 久久久精品免费免费高清| 欧美精品av麻豆av| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 成年版毛片免费区| 一区二区三区精品91| 亚洲精品中文字幕在线视频| 一区二区av电影网| 欧美精品高潮呻吟av久久| 91麻豆av在线| kizo精华| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲黑人精品在线| 在线观看www视频免费| 制服诱惑二区| 国产精品影院久久| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 成年女人毛片免费观看观看9 | 一本一本久久a久久精品综合妖精| 久久青草综合色| 五月开心婷婷网| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 一本—道久久a久久精品蜜桃钙片| 国产真人三级小视频在线观看| 免费av中文字幕在线| 午夜福利,免费看| 啦啦啦在线免费观看视频4| 天天添夜夜摸| 欧美日韩av久久| 一区二区三区精品91| 亚洲国产成人一精品久久久| 色婷婷av一区二区三区视频| 一区福利在线观看| 91老司机精品| 黄色视频,在线免费观看| 久久久久网色| 国产精品偷伦视频观看了| 午夜精品国产一区二区电影| 国产单亲对白刺激| 久久毛片免费看一区二区三区| 亚洲精品久久午夜乱码| 国产av精品麻豆| 无限看片的www在线观看| 亚洲,欧美精品.| 亚洲国产av新网站| 18禁观看日本| 少妇的丰满在线观看| av欧美777| 久久热在线av| 99在线人妻在线中文字幕 | 丰满少妇做爰视频| 国产成人精品无人区| 国产午夜精品久久久久久| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 蜜桃国产av成人99| 一级片免费观看大全| 香蕉久久夜色| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 欧美 日韩 精品 国产| 久久精品成人免费网站| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 69av精品久久久久久 | 亚洲天堂av无毛| 国产精品影院久久| 午夜成年电影在线免费观看| 国产欧美亚洲国产| 亚洲自偷自拍图片 自拍| 男女边摸边吃奶| 又紧又爽又黄一区二区| 精品福利永久在线观看| 99国产精品一区二区三区| 91av网站免费观看| av不卡在线播放| 免费观看人在逋| 老司机亚洲免费影院| 亚洲一码二码三码区别大吗| 另类精品久久| 久久久久久亚洲精品国产蜜桃av| av视频免费观看在线观看| 国产av国产精品国产| 亚洲欧美一区二区三区黑人| 亚洲三区欧美一区| 亚洲国产av影院在线观看| 国产主播在线观看一区二区| 一级毛片精品| 大型av网站在线播放| 999精品在线视频| 亚洲成国产人片在线观看| 另类亚洲欧美激情| 大片免费播放器 马上看| 亚洲av电影在线进入| 国产1区2区3区精品| 国产91精品成人一区二区三区 | 国产在线观看jvid| 色婷婷av一区二区三区视频| 国产在线一区二区三区精| 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 欧美乱妇无乱码| 丰满饥渴人妻一区二区三| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 成年人黄色毛片网站| 老司机靠b影院| 操出白浆在线播放| 韩国精品一区二区三区| 99热网站在线观看| 91成人精品电影| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 夫妻午夜视频| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| www.999成人在线观看| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 99久久99久久久精品蜜桃| 精品国产乱码久久久久久男人| 久久久久网色| 99国产精品一区二区蜜桃av | av免费在线观看网站| 大型av网站在线播放| 欧美成人午夜精品| 国产色视频综合| 婷婷成人精品国产| 免费观看a级毛片全部| 韩国精品一区二区三区| 一本色道久久久久久精品综合| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9 | av不卡在线播放| 国产三级黄色录像| 久久午夜综合久久蜜桃| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| av一本久久久久| 国产在线观看jvid| 精品一区二区三区四区五区乱码| 一区二区三区激情视频| 国产亚洲精品久久久久5区| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av成人不卡在线观看播放网| 大香蕉久久成人网| 国产精品1区2区在线观看. | 人人澡人人妻人| 免费少妇av软件| 亚洲伊人久久精品综合| 18禁观看日本| 99riav亚洲国产免费| 女性被躁到高潮视频| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女 | 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 多毛熟女@视频| 天天添夜夜摸| 久久婷婷成人综合色麻豆| 国产精品欧美亚洲77777| 极品教师在线免费播放| 老司机靠b影院| 黄色丝袜av网址大全| 性色av乱码一区二区三区2|