• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Buckling Response of Offshore Pipelines under Combined Tension,Bending,and External Pressure

    2015-12-11 04:47:16YanbinWangDeliGaoJunFang
    Computers Materials&Continua 2015年10期

    Yanbin Wang,Deli Gao,Jun Fang

    On the Buckling Response of Offshore Pipelines under Combined Tension,Bending,and External Pressure

    Yanbin Wang1,2,Deli Gao1,Jun Fang1

    In this paper,the buckling and collapse analysis of offshore pipeline under combined tension,bending moment,and external pressure has been presented with theoretical analysis and FE(finite element)simulation method respectively.Based on the model initially proposed by Kyriakides,a 2-D theoretical model has been further developed.To verify the correctness and accuracy of the model proposed in this paper,numerical simulations have been conducted with 3-D FE model using ABAQUS software.Good consistency has been shown between the calculation results which validate the availability of the theoretical analysis.On this basis,the influence of load path,material properties,and diameter-to-thickness ratio on the buckling behaviors of the pipes have been discussed.Based upon the discussion mentioned above,some significant conclusions have been drawn.

    Offshore pipelines;Bucking analysis;Combined loads;Theoretical model;FE simulation

    1 Introduction

    Submarine pipelines are important parts in offshore oil and gas drilling and exploitation.Severe loads will be induced during the installation of pipelines,which will result in unpredictable risks and challenges.Combined tension,bending,and external pressure will cause to happen during installation regardless of the installation method[Kashani and Young(2005);Li,Wang,He,and Zhao(2008)].Under the loads mentioned above,pipelines are vulnerable to ovalization in the cross section.Localized deformation caused by pipe-laying operation or initial imperfection can lead to local buckling,which will,in turn,have the potential of initiating a propagating buckle,and then the buckling rapidly advances in the longitudinal direction,resulting the failure of pipelines and causing huge economic loss.

    Due to the importance of the buckling response of the pipes,great efforts have been devoted to this topic in the past few decades.Gellin(1980)has addressed the effect of nonlinear material behavior on the bucking behavior of a cylindrical shell under pure bending.Kyriakides and Shaw(1982)have analyzed the response and stability of elastoplastic circular pipes under combined bending and external pressure,and have figured out the maximum moment and curvature as a function of the material and geometric parameters for different pressures.Subsequently,the stability of tubes under combined bending and external pressure has been studied by Corona and Kyriakides(1988)who have found that the buckling response of pipes,critical collapse loads,and the characteristics of instabilities have been strongly affected by the loading path in their research(bending followed by pressure and pressure followed by bending).Besides,Kyriakides,and Shaw(1985)have conducted the inelastic analysis of circular tubes under cyclic bending,in which several nonlinear hardening plasticity models have been adopted to predict the growth of the ovalization.Dyau and Kyriakides(1992)have developed a 2-D model to study the buckling response of tubes under combined bending and tension.A deterministic model have been proposed by Al-Sharif and Preston(1996)to calculate the collapse of the pipes under combined bending and pressure,and a numerical model has been developed to verify the effective of the theoretical analysis.Moreover,Kyriakides and Corona(2007)have given some analysis on the collapse of thickwalled pipes under different load combinations,i.e.,pressure and bending,presure and tension,and tension and bending.Numerical studies on the behavior of thick-walled tubes with simultaneous tension,bending,and external pressure have been performed by Bai,Igland,and Moan(1997)using ABAQUS.Recently,the buckling characteristics of offshore pipes under pure bending,and combined bending and external pressure have been investigated by Yuan,Gong,Jin,and Zhao(2009),who have indicated the buckling performance of the pipes is closely related with the diameter-to-thickness ratio and the initial curvature.

    This paper aims to present a further investigation on the buckling performance of thick-walled tubes under combined tension,bending,and external pressure based on the general theory proposed by Kyriakides and his co-workers.We assume that the buckling behavior is symmetric about the neutral plane and the deformation is uniform along the axis of the tube.The strain-displacement relationship is obtained according to the nonlinear ring theory,and then a set of equilibrium equations is formulated based on virtual work approach.Meanwhile,a 3-D numerical model is developed to compare the results between the two methods.Furthermore,the buckling responses under different load paths have been studied,and corresponding parametric study concerning several important influence factors have been conducted.At last,some significant conclusions have been drawn in the end of the paper.

    2 Theoretical formulations

    2.1 Kinematics

    The geometric parameters and coordinate system is presented in Figure 1.As shown in Figure 1,the coordinatezis the radial distance from the mid-surface of the tube wall,and the axial,circumferential and radial coordinates are denoted asx,θ andz.The displacements of a point on the mid-surface areu,vandwwith respect tox,θ andzrespectively.Uniform tensionT,bending momentM,curvature κ and external pressurePare assumed to be applied along the length of the tube.In order for convenient calculation and formula derivation,the following assumptions are used to stipulate the present formulation[Gellin(1980)]:

    ·The plane sections are normal to the mid-surface of the tube cross-section before and during deformation.

    ·Small strain and finite rotations about the axes are accepted.

    ·The pipe is a circular and thick-walled tube with mean radiusRand thicknesst.

    Figure 1:Geometric parameters and coordinate system ? is the distance from the neutral axis to the tube wall.

    The circumferential tension strain can be denoted as:

    Whereeand β are defined by:

    and

    A finite rotation φ about the axis is defined as:

    Thus,the circumferential curvature can be expressed as:

    The circumferential strain of the deformed cross section can be denoted as:

    and

    Where(′)denotes the differentiation with respect to θ.

    The axial strain can be described as:

    1,which is:

    2.2 Constitutive model

    Due to the good plastic deformation performance of deep water pipelines,the tube can be modeled as an elastoplastic material.In this paper,the Ramberg-Osgood model,as shown in Figure 2,is used to describe the nonlinear stress-strain relationships of the material,which is given by:

    WhereEis Young’s modulus,σyis the effective yield stress andnis the hardening parameter of the material.

    Figure 2:Stress-strain relationship for the Ramberg-Osgood constitutive model.

    In this paper,the incrementalJ2plastic f l ow theory with isotropic hardening is adopted to model the plastic behavior of material.The components of radial stress(σr)and shear stress(σrx,σrθ,σθx)are disregarded due to the fact that these components are quite small as compared with the axial stress and the circumferential stress.Therefore,the incremental constitutive model can be simplified as follows:

    Where σeis the equivalent stress andEt=Et(σe)is the tangent modulus of the material.They are given as follows:

    WhereSijis the deviatoric stress tensor,σijis the stress tensor,σkkis the first invariant stress tensor,and δijis the Kronecker Delta function.

    2.3 Principle of Virtual Work

    According to the principle of virtual work,the equation below must be satisfied when the tube is in an equilibrium state,which is:

    Where δWis the virtual work of the external loads,andVis the volume of the material of the tube.For the case of incremental loads,the equation becomes:

    On the left side of Eq.18 is the increment of virtual work done by the internal stress,whereas the right side is the increment of virtual work done by the external pressure.When it comes to the problem of pure bending,external work on the right side equals zero because of the prescribed curvature.σijand εijrepresent the stress strain component respectively.(·)denotes an increment in(),while(∧)denotes for the next equilibrium state.

    The left side of Eq.18 can be expressed as:

    From Eq.6,Eq.9 and Eq.10,the following equations can be obtained:

    Where,

    It is assumed that the deformations of the cross section,i.e.,the in-plane displacementwandv,are symmetric about the axis θ=0,and they are the functions of θ.Therefore,wandvcan be approximated by the following expressions[Gellin(1980)].

    Substituting Eq.24 into Eq.20~Eq.23 and then substituting the results into Eq.18,since Eq.18 is an identical equation for arbitrary δ?an,δ?bnand δ?ε0x,the following nonlinear algebraic equations can be obtained:

    When 1≤n≤N,

    WhenN+1≤n≤2N-1,

    A set of 2N+1 nonlinear algebraic equations is determined by Eq.25~Eq.28.The solution of the equations is obtained by Newton-Raphson method.The iteration scheme encompasses nested iterations for the constitutive relations,which is provided by Shaw and Kyriakides(1985)in detail.

    2.4 Numerical solution

    A set of 2N+1 nonlinear algebraic equations is included in the present solution.Some parameters should be prescribed,namely geometric dimensions,material parameters,as well as initial imperfections and initial stress of tube.In the numerical calculation,the numbers of integration points,for the half cross section of the tube,along the circumferential direction and through the thickness arekandl,respectively.In the case of pure bending,the calculation procedure is controlled by curvature κ.By the specification of the curvature increment?κ,the converged solution of the previous step is regarded as the initial estimate of the nodal displacements for the next step.Subsequently,strain increment can be obtained through nodal displacements and curvature,and then the stress increment can be achieved according to the constitutive model.After obtaining the stress components of each integration points,Eq.25~Eq.28 can be solved by the Newton-Raphson method.Strains,stresses as well displacements are updated when the converged solution is achieved.It is found that the solution can meet the precision requirements whenNranges from 4 to 6.In the case of pure bending,k=12 andl=5 are appropriate.While for the combined case,the mesh should be finer,therefore,integration points through the thickness,i.e.l=7 would be more reasonable.

    In the case of the combined loads,the calculation procedure is controlled by prescribing curvature?κ as well pressure increment?Por the increment of the displace-ment coefficienta2(mainly concerned with the ovality).The control of displacement is required to identify the limit pressure more accurately.As to the value of the parameters,the pressure increment?Pshould not exceed 0.1 MPa,and the ellipticity increment(ΔD/D)should not exceed 0.01%.

    After the solution of each load increment being calculated,the moment can be expressed as follows:

    The main steps of solution procedure for the combined loading case are shown in the f l ow chart in Figure 3.If the prescribedPin the f l ow chart equals zero,it would be reduce to the pure bending case.

    Figure 3:Flow chart of numerical solution procedure.

    3 Numerical simulations

    A finite element model is developed within the framework of the software ABAQUS to simulate the buckling behavior of pipes under simultaneous tension,bending,and external pressure.3D,eight-node incompatible solid element,C3D8I,is chosen to model the pipe.Since this type of element is enhanced by incompatible modes to bending behavior,it is best suited for the present problem[Simo and Armero(1992);Hibbitt,Karlsson,and Sorensen 2006].TheJ2f l ow theory of plasticity with isotropic hardening proposed by Cotuna,Lee,and Kyriakides(2006)is adopted to describe the plastic behavior of material,and the Ramberg-Osgood constitutive model is used by multi-linear approximations of the stress-strain curve shown in Figure 2.

    The symmetry of the loads and deformations reduces the problem to a quarter of a pipe.As a result,symmetrical boundary conditions are applied at the mid-span(X=0)andZ=0 planes(Figure 4).Besides,additional spring constraints along vertical direction(Y)are applied at the mid-span plane.This kind of elastic constraints is desirable for this problem since it can avoid the stress concentration phenomenon which is inevitable if rigid constraints are applied.

    Figure 4:Finite element mesh and loadings.

    Kinematic coupling relationship is imposed between the nodes on the right end of the tube and a reference point(the central node or the bottom one are both suitable).The right end plane is constrained to remain plane in the loading process,and at the same time the cross-section should be free to deform.The curvature is applied by prescribing the angle of rotation at the reference point,φ,Likewise,uniform tension is applied to the model through this reference point,and hydrostatic pressure is implemented on the external surface of the pipe.Thus,the average curvature of the section can be given by:

    To facilitate the development of buckling deformation,the length of the pipe,L=3Dis considered to be suitable.The pipe model is meshed into 6 parts through the thickness,100 parts around the half circumference and 100 parts along the length,which is found to be adequate.Figure 4 illustrates a typical finite element mesh used in the analyses.Furthermore,the Nlgeom option is selected for the nonlinear calculation,and the Riks algorithm(arch length method)is adopted here.

    4 Results and discussion

    4.1 Illustrative example using theoretical formulations

    The maximum curvature in the sag-bend region of marine pipelines often occurs close to the seabed where the maximum water depth is reached.Considering that the curvature and hydrostatic pressure exerted on the pipes increases with the depth of the water,while axial tension is nearly maintained constant,the case ofT→Radial(κ,P)loading path is examined.

    The pipe is first tensioned incrementally to a chosen valueT=1000 KN,and then curvature and external pressure are increased proportionately until the values of κ=0.15 andP=10 MPa are reached.The main features of the pipe response subjected to the combined loads are illustrated in Figure 5 for a pipe with its diameterD=254 mm(10 inch)andD/t=20.The predicted ellipticity-water depth,ellipticity curvature,axial strain-curvature,and moment-curvature curves are shown in this figure.The increase of ellipticity is approximately proportional to the curvature and water depth at the beginning.However,the nonlinearity becomes more and more notable as the loads augment.As to the axial strain of the pipe,it nearly experiences a linear growth with curvature.In addition,it can be seen from moment-curvature response that there exhibits a limit moment before collapse.Once attaining the limit moment,localized deformation would quickly develop in a region of about 5 to 6 times of the tube diameters,which can be taken as the critical state of buckling.

    4.2 Comparisons of finite element analysis results with theoretical solutions

    Numerical simulations and theoretical calculations are carried out respectively for the scenario of Radial(T,P,κ)loading path.In other words,three loading parameters{ΔT,ΔP,Δκ}are simultaneously applied to the model.The analyses are performed for the pipe model based on the parameters ofD=254 mm,D/t=20,σy=400 MPa,T=600 kN,P=35 MPa and κ =0.013.The sequences of deformed configuration and stress distribution during the loading process are depicted in Figure 6.

    Figure 5:Predicted responses for T → Radial(κ,P)loading path.σy=400 MPa,D/t=20,n=10.7.

    The comparison of responses calculated by the two methods is shown in Figure 7.The predicted ellipticity of two models is quite close in the elastic range.However,the increase of theoretical result slightly lags behind that of finite element simulation at high values of loadings.

    The main reason for the difference is that ABAQUS uses a finite deformationJ2fl ow theory of plasticity whereas the theoretical formulation in Eqs.(12)~(16)is small deformation.In addition,the theoretical model simplifies this 3D problem to a 2D one,which only takes into account the stresses along the axial and circumferential directions.The disregard of the secondary radial stress and shear stress will not generate much error in the elastic range.However,with the increase of stress in the radial direction,the discrepancies become more and more notable.Moreover,due to the disregard of radial stress and shear stress,the equivalent stress will be smaller compared with the practical situation,hence,later occurrence of plastic plateau.Likewise,the growth of ellipticity is somewhat delayed.The suitability of the theoretical method used in predicting the buckling response of deepwater pipes has been validated herein.

    Figure 6:Deformed configuration and stress Distribution during loading process.

    Figure 7:Comparisons of finite element analysis results with theoretical solutions.

    4.3 Parametric study

    The theoretical model is adopted to examine the effects of several important factors including tensionT,strain-hardening parametern,yield stress σyas well as diameter-to-thickness ratioD/t.T→Radial(κ,P)is the loading path considered in the present section.Besides,some discussions and comparisons are made concerning the design of pipes in engineering practice.

    The buckling of tube is related to several factors,such as the diameterD,wall thicknesst,material properties,initial ellipticity ΔD/D,and load history.In addition,residual stress induced in the manufacturing process as well as yield anisotropyplay an important role in the occurrence of tube buckling. For offshore applications,aD/tvalue ranging from 10 to 70 is recommended.While for deep water application,aD/tvalue ranging from 10 to 35 is more suitable.In addition,the yield strength of steel for typical offshore pipelines is commonly between 276 MPa and 448 MPa.Besides,the tubes,with initial ellipticity exceeding 0.5%,should be avoided in the deep water applications[Ju and Kyriakides(1991)].

    Figure 8:Limit moment versus applied tension.

    Figure 9:Effects of tension on critical pressure and curvature.

    Figure 8 and Figure 9 show that axial tension has a significant effect on bending moment carrying capacity of a pipe.The tension is prescribed to 500 kN,1000 kN,1500kN respectively,and the ratio of(P/P0):(κ/κ0)ranges from5:1,1:1,1:3to 1:8,respectively denoted as Radial 1-Radial 4,which consists of 12 different load combinations.The result indicates that the presence of tension impairs bending moment carrying capacity greatly.With the increase of tension applied,the limit momentMcdrops.Furthermore,it can also be observed that the increase of external pressure will cause the value of limit moment to decrease.Additionally,as can be seen in Fig.9,the predicted critical pressurePcand critical curvature κcbecome smaller when the value of tension increases.It is important to note that the results are normalized to dimensionless factors by the following variables:

    Where mean diameterD0=D-t,and σ0is API yield stress[API(2004)],i.e.,the stress at a strain of 0.005.

    Figure 10 shows how the critical pressure and critical curvature vary with the material yield stress σywith other parameters kept constant.Clearly,the tubes with larger yield stress possess higher critical pressure and curvature.In addition,it is also worth noting that at higher curvatures the effect of yield stress is less pronounced compared with the cases of lower curvatures.

    Larger strain-hardening parameternmeans larger strain-hardening effect.Figure 11 presents the variation of critical pressure and critical curvature with the strain-hardening parametern.It can be observed that tubes with larger n can sustain larger critical pressure and curvature,i.e.,higher load-carrying capacity.

    Figure10:Effects of yield stress on critical pressure and curvature.

    Figure 11:Effects of strain-hardening parameter on critical pressure and curvature.

    The effect of diameter-to-thickness ratioD/ton the critical pressure and curvature is examined in Figure 12.ThreeD/tvalues 15,20 and 25 are adopted,while keeping other parameters constant.Just as expected,the limit values corresponding to lowerD/ttubes are higher than those of largerD/tones.In addition,note that the degree of its influence varies with different combinations of loads applied.

    Figure 12:Effects of D/t on critical pressure and curvature.

    5 Conclusions

    1.The load-carrying capacity of the tube is significantly affected by the tension applied.With the increase of tension,the limit moment obviously drops,and the predicted critical pressure and curvature would become smaller.In the case of equal proportional loading between external pressure and curvature,the effect of tension on load-carrying capacity of the tube is less conspicuous compared with other loading ratio.

    2.The buckling behavior and load-carrying capacity of pipes is quite sensitive to material properties.Larger yield stress σyand strain-hardening parameternalways lead to higher limit pressure and curvature,i.e.,stronger resistance to pipe buckling.The critical pressure of the pipe is more susceptible to yield stress rather than strain-hardening parameter,whereas the critical curvature is just the contrary.Therefore,the high strength steel is preferred to improve the resistance to external pressure for deepwater pipes in the practical engineering.

    3.Diameter-to-thickness ratioD/tplays a very important role in buckling response of pipes.In general,pipes with lowerD/tvalues possess stronger capability to resist the buckling deformation.But,the degree of its influence varies with different combination of loads applied.In summary,it can be concluded that the theoretical formulation and solution method described in this context could provide a reasonably-accurate estimate of the buckling and collapse of deep water pipes.In addition,it should be mentioned that experiments under simultaneous tension,bending,and external pressure should be carried out,and thus,effectiveness of this theoretical method can be carefully examined.

    Acknowledgement:The authors gratefully acknowledge the financial support from the Natural Science Foundation of China(NSFC,51521063,U1262201).

    Al-Sharif,A.M.;Preston,R.(1996):Simulation of Thick-Walled Submarine Pipeline Collapse under Bending and Hydrostatic Pressure.Proceedings of Offshore Technology Conferences,Houston,Texas,USA,OTC8212,pp.589-598.

    American Petroleum Insitute.(2004):API specifications SL:specifications for Line Pipe(43rd Ed)API Publishing Services,Washington DC,USA

    Bai,Y.;Igland,R.T.;Moan,T.(1997):Tube collapse under combined external pressure,tension and bending.Marine Structures,vol.10,no.5,pp.89-410.

    Corona,E.;Kyriakides,S.(1988):On the collapse of inelastic tubes under combined bending and pressure.International Journal of Solids and Structures,vol.24,no.5,pp.505-535.

    Corona,E.;Lee,L.H.;Kyriakides,S.(2006):Yield anisotropy effects on buckling of circular tubes under bending.International Journal of Solids and Structures,vol.43,no.22,pp.7099-7118.

    Dyau,J.Y.;Kyriakides,S.(1992):On the response of elastic plastic tubes under combined bending and tension.Journal of Offshore Mechanics and Arctic Engineering,vol.114,no.1,pp.50-62.

    Gellin,S.(1980):Plastic buckling of long cylindrical shells under pure bending.International Journal of Solids and Structures,vol.16,no.5,pp.397-407.

    Hibbitt,H.D.;Karlsson,B.I.;Sorensen,P.(2006):ABAQUS Theory Manual,Version 6.3.Pawtucket,Rhode Island,USA.

    Ju,G.T.;Kyriakides,S.(1991):Bifurcation buckling versus limit load instabilities of elastic-plastic tubes under bending and external pressure.Journal of Offshore Mechanics and Arctic Engineering,vol.113,no.1,pp.43-52.

    Kashani,M.;Young,R.(2005):Installation load consideration in ultra-deepwater pipeline sizing.ASCE Journal of Transportation Engineering,vol.131,no.8,pp.632-639.

    Kyriakides,S.;Corona,E.(2007):Mechanics of Offshore Pipelines,Volume 1:Buckling and Collapse.Elsevier Science,Oxford,UK and Burlington,Massachusetts.

    Kyriakides,S.;Shaw,P.K.(1982):Response and stability of elastoplastic circular pipes under combined bending and external pressure.International Journal of Solids and Structures,vol.18.no.11,pp.957-973.

    Li,Z.G.;Wang,C.;He,N.;Zhao,D.Y.(2008):An overview of deepwater pipeline laying technology.China Ocean Engineering,vol.22,no.3,pp.521-532.

    Shaw,P.K.;Kyriakides,S.(1985):Inelastic analysis of thin-walled tubes under cyclic bending.International Journal of Solids and Structures,vol.21,no.11,pp.1073-1110.

    Simo,J.C.;Armero,F.(1992):Geometrically non-linear enhanced strain mixed methods and the method of income-partible modes.International Journal for Numerical Methods in Engineering,vol.33,no.7,pp.1413-1449.

    Yuan,L.;Gong,S.F.;Jin,W.L.L,Z.G.;Zhao,D.Y.(2009):Analysis on buckling performance of submarine pipelines during deepwater pipe-laying operation.China Ocean Engineering,vol.23,no.2,pp.303-316.

    1MOE Key Laboratory of Petroleum Engineering,China University of Petroleum,Beijing102249,China

    2First and corresponding author:Yanbin Wang,Tel:+86 10 89733702,E-mail:wyb76219861@126.com

    日本免费一区二区三区高清不卡| 又大又爽又粗| 老司机福利观看| 可以在线观看毛片的网站| 又紧又爽又黄一区二区| 国产私拍福利视频在线观看| 亚洲五月天丁香| 日本撒尿小便嘘嘘汇集6| 啦啦啦韩国在线观看视频| 国产精品98久久久久久宅男小说| 97碰自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利18| 精品电影一区二区在线| 国产亚洲精品久久久久久毛片| 欧美日韩精品网址| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产高清在线一区二区三| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 欧美日本亚洲视频在线播放| 18禁黄网站禁片免费观看直播| 久久天堂一区二区三区四区| 长腿黑丝高跟| 90打野战视频偷拍视频| 亚洲欧美日韩卡通动漫| 一级作爱视频免费观看| 成人欧美大片| 日韩欧美国产一区二区入口| 淫秽高清视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产激情偷乱视频一区二区| 黄色 视频免费看| 免费电影在线观看免费观看| 久久九九热精品免费| 国产人伦9x9x在线观看| 色哟哟哟哟哟哟| 亚洲18禁久久av| 禁无遮挡网站| 人妻丰满熟妇av一区二区三区| 全区人妻精品视频| 一二三四社区在线视频社区8| 午夜免费激情av| 日韩欧美国产在线观看| 精品国产亚洲在线| 久久久国产精品麻豆| 操出白浆在线播放| 欧美日韩国产亚洲二区| 国产精品香港三级国产av潘金莲| 在线观看午夜福利视频| 久久热在线av| 亚洲专区中文字幕在线| 成在线人永久免费视频| aaaaa片日本免费| 中文资源天堂在线| 国产爱豆传媒在线观看| 国产蜜桃级精品一区二区三区| 精品国产美女av久久久久小说| 国产精品久久久久久精品电影| 宅男免费午夜| 久久久久久久午夜电影| 欧美zozozo另类| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| 校园春色视频在线观看| 国产探花在线观看一区二区| 亚洲欧美日韩东京热| 欧美三级亚洲精品| 久久精品人妻少妇| 久久精品aⅴ一区二区三区四区| 久久香蕉国产精品| 啪啪无遮挡十八禁网站| 日本撒尿小便嘘嘘汇集6| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 色哟哟哟哟哟哟| 精品人妻1区二区| 亚洲国产欧美人成| 最近最新免费中文字幕在线| 国产精品亚洲av一区麻豆| 亚洲在线自拍视频| 欧美丝袜亚洲另类 | 午夜福利在线观看免费完整高清在 | 18禁美女被吸乳视频| 在线免费观看不下载黄p国产 | 精品电影一区二区在线| 一二三四社区在线视频社区8| www.www免费av| www.精华液| 一个人看视频在线观看www免费 | 久久亚洲精品不卡| 综合色av麻豆| 欧美成狂野欧美在线观看| 美女扒开内裤让男人捅视频| 99久久99久久久精品蜜桃| 亚洲电影在线观看av| www日本黄色视频网| 男女之事视频高清在线观看| x7x7x7水蜜桃| 免费在线观看日本一区| 动漫黄色视频在线观看| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 久久天躁狠狠躁夜夜2o2o| 国产视频内射| 一级毛片女人18水好多| 白带黄色成豆腐渣| 精品久久久久久,| 国产一区二区激情短视频| 男女视频在线观看网站免费| 成人性生交大片免费视频hd| 日本三级黄在线观看| 一个人看视频在线观看www免费 | 国产极品精品免费视频能看的| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 精品免费久久久久久久清纯| 99久久国产精品久久久| 国产精品永久免费网站| 99久久99久久久精品蜜桃| 日本黄大片高清| 国产又色又爽无遮挡免费看| 久久久久久国产a免费观看| 青草久久国产| 亚洲欧美精品综合久久99| 在线国产一区二区在线| av欧美777| a在线观看视频网站| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 亚洲中文日韩欧美视频| 草草在线视频免费看| 嫁个100分男人电影在线观看| 欧美一级a爱片免费观看看| 18禁观看日本| a级毛片在线看网站| 久久久精品大字幕| 欧美av亚洲av综合av国产av| 1024手机看黄色片| 亚洲最大成人中文| 十八禁网站免费在线| 国产成人一区二区三区免费视频网站| 亚洲色图av天堂| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 亚洲精品在线美女| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 叶爱在线成人免费视频播放| 国产 一区 欧美 日韩| 男人舔女人的私密视频| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 亚洲精品一区av在线观看| 两个人视频免费观看高清| 国产综合懂色| 久久久国产欧美日韩av| 欧美乱妇无乱码| 一级毛片高清免费大全| 九九久久精品国产亚洲av麻豆 | 岛国在线观看网站| 国产私拍福利视频在线观看| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 亚洲国产欧美人成| 一本精品99久久精品77| 国产精品久久久av美女十八| 成人性生交大片免费视频hd| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清专用| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 亚洲欧美精品综合久久99| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 久久人妻av系列| 97碰自拍视频| 久久九九热精品免费| 国产亚洲精品一区二区www| 免费av毛片视频| 可以在线观看的亚洲视频| 一个人看视频在线观看www免费 | 精品无人区乱码1区二区| 国产乱人伦免费视频| 久久精品影院6| 国产精品亚洲av一区麻豆| 全区人妻精品视频| 69av精品久久久久久| 九色国产91popny在线| 男人舔奶头视频| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 午夜免费激情av| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 亚洲人与动物交配视频| 国产亚洲精品久久久久久毛片| 黄色视频,在线免费观看| 亚洲第一电影网av| 久久国产乱子伦精品免费另类| 免费观看的影片在线观看| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区久久| svipshipincom国产片| 日韩免费av在线播放| 欧美zozozo另类| 窝窝影院91人妻| 亚洲国产看品久久| xxxwww97欧美| 欧美日韩黄片免| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 国产高清视频在线观看网站| 91麻豆av在线| 人人妻,人人澡人人爽秒播| 国产精品久久视频播放| 亚洲av成人一区二区三| 国产高清视频在线观看网站| 国产av一区在线观看免费| 此物有八面人人有两片| 亚洲成av人片免费观看| 超碰成人久久| 露出奶头的视频| www.精华液| 神马国产精品三级电影在线观看| 一本一本综合久久| 国产视频一区二区在线看| 嫩草影院精品99| 观看免费一级毛片| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 欧美日韩乱码在线| 看黄色毛片网站| 色综合亚洲欧美另类图片| 国产亚洲欧美98| 动漫黄色视频在线观看| 免费看十八禁软件| 老熟妇乱子伦视频在线观看| 色综合站精品国产| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 国产视频一区二区在线看| 黄频高清免费视频| 欧美高清成人免费视频www| 1024香蕉在线观看| 久久伊人香网站| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 国产视频一区二区在线看| 精品免费久久久久久久清纯| 小蜜桃在线观看免费完整版高清| 美女黄网站色视频| 久久久久精品国产欧美久久久| 色在线成人网| 两人在一起打扑克的视频| 亚洲精品在线美女| 十八禁人妻一区二区| 欧美精品啪啪一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲在线自拍视频| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 亚洲成人精品中文字幕电影| 国产视频内射| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 在线a可以看的网站| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 亚洲精品色激情综合| 亚洲avbb在线观看| 国产不卡一卡二| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 在线观看午夜福利视频| av福利片在线观看| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 久久香蕉国产精品| 国产av麻豆久久久久久久| 在线免费观看的www视频| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 最近最新中文字幕大全电影3| 在线视频色国产色| 真人做人爱边吃奶动态| 岛国视频午夜一区免费看| 亚洲精品乱码久久久v下载方式 | 日本 欧美在线| 一本综合久久免费| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 久久精品国产清高在天天线| 欧美中文综合在线视频| 午夜福利欧美成人| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 久久人人精品亚洲av| 午夜激情福利司机影院| 欧美又色又爽又黄视频| aaaaa片日本免费| 日韩免费av在线播放| 男人和女人高潮做爰伦理| 黑人巨大精品欧美一区二区mp4| 91久久精品国产一区二区成人 | 午夜两性在线视频| cao死你这个sao货| 曰老女人黄片| 天天躁日日操中文字幕| 一二三四在线观看免费中文在| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 日本与韩国留学比较| 国产成人影院久久av| 久久午夜综合久久蜜桃| 久久久久亚洲av毛片大全| 亚洲成av人片免费观看| 九九在线视频观看精品| 久久天躁狠狠躁夜夜2o2o| 手机成人av网站| 制服丝袜大香蕉在线| 91在线观看av| 制服丝袜大香蕉在线| 欧美日本视频| 最近视频中文字幕2019在线8| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 天堂动漫精品| 脱女人内裤的视频| 变态另类丝袜制服| 波多野结衣巨乳人妻| 午夜久久久久精精品| 精品电影一区二区在线| 99久久国产精品久久久| av天堂在线播放| 久9热在线精品视频| 欧美三级亚洲精品| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 一本久久中文字幕| 999久久久精品免费观看国产| 男插女下体视频免费在线播放| av天堂中文字幕网| 性色avwww在线观看| 免费av不卡在线播放| 天天躁日日操中文字幕| 国产视频一区二区在线看| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 亚洲成av人片免费观看| 午夜福利高清视频| 午夜激情欧美在线| 欧美日本亚洲视频在线播放| 久久久久国产一级毛片高清牌| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 亚洲成人精品中文字幕电影| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久电影中文字幕| 国产伦精品一区二区三区视频9 | 丁香六月欧美| 噜噜噜噜噜久久久久久91| 91在线观看av| 亚洲精品中文字幕一二三四区| 少妇熟女aⅴ在线视频| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 一边摸一边抽搐一进一小说| 日韩中文字幕欧美一区二区| 成人av在线播放网站| 动漫黄色视频在线观看| 男女视频在线观看网站免费| 亚洲无线观看免费| 岛国视频午夜一区免费看| 免费在线观看亚洲国产| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 国产人伦9x9x在线观看| 久久久久亚洲av毛片大全| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩欧美精品在线观看 | 国产三级黄色录像| 亚洲在线观看片| 色综合亚洲欧美另类图片| www国产在线视频色| 日韩免费av在线播放| 亚洲五月天丁香| 亚洲无线观看免费| 欧美性猛交黑人性爽| 久久伊人香网站| 在线观看一区二区三区| 国产97色在线日韩免费| 999久久久国产精品视频| a在线观看视频网站| 又黄又爽又免费观看的视频| 国产精品精品国产色婷婷| 高潮久久久久久久久久久不卡| 久久亚洲精品不卡| 天堂√8在线中文| 久久久久精品国产欧美久久久| 女人高潮潮喷娇喘18禁视频| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区视频9 | 此物有八面人人有两片| 久久久久国内视频| 在线a可以看的网站| 国产精品久久久久久人妻精品电影| 中文资源天堂在线| 国产成人福利小说| 天堂影院成人在线观看| 色在线成人网| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 宅男免费午夜| www国产在线视频色| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲国产高清在线一区二区三| av女优亚洲男人天堂 | 99热这里只有精品一区 | 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 亚洲精品久久国产高清桃花| 中文字幕高清在线视频| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 丁香欧美五月| 一个人观看的视频www高清免费观看 | 熟女人妻精品中文字幕| 欧美一级毛片孕妇| 日本免费一区二区三区高清不卡| 老鸭窝网址在线观看| 亚洲av成人一区二区三| 日韩三级视频一区二区三区| 日韩欧美国产在线观看| 国产一区在线观看成人免费| 最新在线观看一区二区三区| 男人舔奶头视频| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 欧美黑人巨大hd| 一区二区三区激情视频| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 欧美乱色亚洲激情| 性色avwww在线观看| 18禁观看日本| 校园春色视频在线观看| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 又大又爽又粗| 人人妻,人人澡人人爽秒播| 欧美极品一区二区三区四区| 美女高潮喷水抽搐中文字幕| 在线观看舔阴道视频| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 日本免费一区二区三区高清不卡| 成人亚洲精品av一区二区| 欧美黑人欧美精品刺激| 国产精品99久久久久久久久| 日韩高清综合在线| 成人国产一区最新在线观看| 色av中文字幕| 十八禁网站免费在线| 欧美乱色亚洲激情| 禁无遮挡网站| 精品久久久久久,| 欧美大码av| 精品久久久久久久毛片微露脸| 老司机在亚洲福利影院| 熟女人妻精品中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片女人18水好多| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 国内精品久久久久久久电影| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| а√天堂www在线а√下载| 动漫黄色视频在线观看| 女人被狂操c到高潮| 亚洲,欧美精品.| 久久久久免费精品人妻一区二区| 国产成人影院久久av| 99国产极品粉嫩在线观看| 亚洲第一电影网av| 亚洲狠狠婷婷综合久久图片| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 国产主播在线观看一区二区| 波多野结衣巨乳人妻| 欧美黑人巨大hd| 好男人电影高清在线观看| 人妻久久中文字幕网| 天堂动漫精品| 亚洲国产精品合色在线| 精品熟女少妇八av免费久了| 一区福利在线观看| 久久久久久久久中文| 午夜福利在线观看吧| 此物有八面人人有两片| 天堂影院成人在线观看| 国产精品av久久久久免费| 小说图片视频综合网站| 国内精品久久久久久久电影| 午夜免费观看网址| 久久精品亚洲精品国产色婷小说| 久久性视频一级片| 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 久久久久久久精品吃奶| 午夜福利高清视频| 色尼玛亚洲综合影院| 精品久久久久久久毛片微露脸| 黑人巨大精品欧美一区二区mp4| xxxwww97欧美| 欧美黑人欧美精品刺激| 欧美日韩瑟瑟在线播放| 操出白浆在线播放| 在线永久观看黄色视频| 国产亚洲精品一区二区www| 午夜福利视频1000在线观看| 97人妻精品一区二区三区麻豆| 免费在线观看日本一区| 国产精品久久久久久人妻精品电影| 男人舔女人的私密视频| 国产人伦9x9x在线观看| 香蕉丝袜av| 国产精品亚洲一级av第二区| 久久久国产成人精品二区| 国产欧美日韩精品亚洲av| 老熟妇乱子伦视频在线观看| 在线免费观看不下载黄p国产 | 亚洲国产日韩欧美精品在线观看 | 欧美最黄视频在线播放免费| 免费人成视频x8x8入口观看| 91字幕亚洲| 国内久久婷婷六月综合欲色啪| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 欧美3d第一页| 19禁男女啪啪无遮挡网站| 免费av不卡在线播放| 夜夜夜夜夜久久久久| 岛国视频午夜一区免费看| 国内精品一区二区在线观看| 日韩有码中文字幕| 国产欧美日韩一区二区三| 无限看片的www在线观看| 亚洲国产色片| 在线永久观看黄色视频| 又黄又粗又硬又大视频| av女优亚洲男人天堂 | 一级毛片高清免费大全| a在线观看视频网站| 精华霜和精华液先用哪个| 99精品在免费线老司机午夜| 精品久久久久久久末码| 色在线成人网| 国产精品野战在线观看| a在线观看视频网站| av国产免费在线观看| 日日摸夜夜添夜夜添小说| 欧美成人一区二区免费高清观看 | 国产高清三级在线| 99国产精品一区二区蜜桃av| 亚洲av成人不卡在线观看播放网| 最近最新中文字幕大全电影3| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 久久人妻av系列| cao死你这个sao货| 人人妻人人澡欧美一区二区| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看 | 亚洲人成网站高清观看| 色播亚洲综合网| 午夜影院日韩av| 国产精品野战在线观看| 午夜免费激情av| 在线观看一区二区三区| 久久久久免费精品人妻一区二区| 别揉我奶头~嗯~啊~动态视频| 国产伦精品一区二区三区视频9 | 精品一区二区三区视频在线观看免费| 欧美成人免费av一区二区三区| 亚洲狠狠婷婷综合久久图片| 我的老师免费观看完整版|