• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Minimizing Thermal Residual Stress in Ni/Al2O3 Functionally Graded Material Plate by Volume Fraction Optimization

    2015-12-11 04:47:08XingWeiWenChenBinChen
    Computers Materials&Continua 2015年10期

    Xing Wei,Wen Chen,Bin Chen

    Minimizing Thermal Residual Stress in Ni/Al2O3Functionally Graded Material Plate by Volume Fraction Optimization

    Xing Wei1,2,Wen Chen1,3,Bin Chen1

    The thermal residual stress in the fabrication of functionally graded material(FGM)systems can give rise to various mechanical failures.For a FGM system under a given fabrication environment,the thermal residual stresses are determined by the spatial distribution of its constituent components.In this study,we optimize a Ni/Al2O3FGM plate aiming at minimizing the thermal residual stresses through controlling its compositional distribution.Material properties are graded in the thickness direction following a power law distribution in terms of the volume fractions of constituents(P-FGM).An analytical model and a hybrid genetic algorithm with the pattern search are employed to predict and to minimize the thermal residual str esses,respectively.Simulation results show that an optimal design of the FGM plate could help fulfill its potential in reducing the thermal residual stresses.

    Functionally graded material;Ni/Al2O3;Composition optimization;Thermal residual stresses;Hybrid genetic algorithm.

    1 Introduction

    Nowadays,ceramic/metal composite materials are widely used in various engineering fields.Due to the poor mechanical property compatibility of different materials,the thermal residual stress is induced in the manufacturing process and is a potential risk leading to the mechanical failures in the long-term service of the composites.A heat-resistant material,dated back to 1984 during a space plane project in Japan[Lee,Stinton,Berndt,Erdogan,Lee,and Mutasim(1996)],offers a solution to reduce the thermal stresses[Nemat-Alla(2003)],which is nowadays well-known as functionally graded/gradient material(FGM).

    The FGM is characterized by gradually spatial variation in volumetric fractions of two or more constituent phases, which integrates desirable physical properties of different components. Owing to its superior mechanical performances, the FGMs have been applied in many fields [Koizumi (1997); Attia, Meguid, and Nouraei (2012)]. It is worthy of noting that the FGM permits tailoring of its microstructure,which determines its mechanical performances under given loads and environments.An optimal design may derive maximal benefits from a FGM system in terms of particular application requirements. Elishakoff (2012) determined the variation of the elastic modulus along the axial coordinate to achieve a predesigned buckling mode under given loading and boundary conditions. Goupee and Vel [Goupee and Vel (2006)] optimized the natural frequencies of functionally graded structures by tailoring their material distribution. Optimal designs of the FGM dental implant have also been developed to advance osseointegration and bone remodeling[Lin, Li, Li, Zhou, and Swain (2009); Hedia and Mahmoud (2004)].

    Since thermal analysis is a crucial issue in a wide variety of the FGM applications,the optimal FGM design for thermal stress reduction has attracted great attention.Mark worth and Saunders(1995)developed a simplified model to optimize the FGM,in which the volume fraction of metal was assumed to be described by a specific functional form.Tanaka,Watanabe,Sugano,and Poterasu(1996)tailored a hollow cylinder and globally reduced the thermal stresses in the FGM by means of the incremental finite element method.Cho and Ha(2002)minimized steady-state thermal stresses in Ni/Al2O3heat-resisting FGM composites with interior penalty-function method and golden section method.Yoshihiro Ootao(2000)took the functionally graded plate as a laminated composite plate,and optimized its material composition in each layer for thermal stress reduction with a genetic algorithm.

    But nevertheless few of the above-mentioned studies are concerned with the thermal residual stresses,which are associated with many mechanical failures of composite materials[Qian,Nakamura,and Berndt(1998)].Because of its vital importance,this study aims at minimizing the thermal residual stresses by designing an optimum Ni/Al2O3FGM plate with a power law distribution of the volume of constituents.The thermal residual stresses are calculated by Ravichandran’s mod-el[Ravichandran(1995)],which was reported in good agreement with the FEM[Sahay and Ravichandran(1996)]for a Ni/Al2O3FGM system.The material composition distribution is optimized by a hybrid genetic algorithm with the pattern search(GA-PS).We identify promising areas of the search space with the genet-ic algorithm(GA),and improve approximations to the minimum with the pattern search(PS).Numerical results show that an optimal composition distribution of a FGM system can dramatically reduce the thermal residual stresses.

    The rest of the paper is organized as follows.In Section 2,an analytical model of the thermal residual stress in the FGM system is introduced.The formulation of the optimization is presented and addressed with the GA-PS in Section 3.Section 4 tests the numerical feasibility and efficiency of the proposed method to four benchmark cases,including the single-and multi-objective optimizations.Finally,some concluding remarks are summarized in Section 5.

    2 Analytical model of the thermal residual stress

    An accurate and effective prediction model of thermal residual stress is essential for the optimization of the FGM microstructure.In this section,the material distribution model,effective property estimation and the analytical model are set up for the optimization.

    2.1 Material model

    Fig.1 gives a schematic description of a FGM plate of thicknessh.The plate is fully ceramic at the bottom layer and fully metal at the top layer.The ceramic-metal joint region continuously varies from ceramic to metal though the thickness(z-axis).The distribution of the material in functionally graded structures may be designed to various spatial specifications,including polynomial distribution[Mark-worth and Saunders(1995)],power law distribution[Reddy(2000)],piecewise spline interpolation[Goupee and Vel(2007);Taheri,Hassani,and Moghaddam(2014)],etc.This paper investigates the power-law distribution(P-FGM),and the volume fractions of metal and ceramic,VmandVc,are assumed as

    Figure 1:Schematic description of a FGM system.

    wherezcandzmare coordinates of interface between the ceramic layer and FGM layer,and the FGM layer and metal layer,Nis the exponent of the power law function in the graded region.Accordingly,the effective physical properties of the FGM layer can be estimated with regard to the volume variation.The total thickness of the plate,h,is 0.01 m,and the material properties of the constituents are given in Tab.1.

    Table 1:Material properties for Ni and Al2O3.

    The effective modulus of elasticity in the graded region is determined as

    whereEmandEcrefer to elastic modulus of metal and ceramic,respectively.This model is proposed by Ravichandran,and it is reported that this Young’s modulus well coincides with experimental data[Ravichandran(1994)].

    For the volume-averaged thermal expansion coefficients,Cho observed Schapery’s estimation on the thermal expansion coefficients leads to the most adequate thermal stress distributions in his numerical experiments[Cho and Ha(2001)].Schapery’s estimation is therefore employed to evaluate the volume-averaged thermal expansion coefficients as

    where

    2.2 Analytical model

    Considerable works,including both numerical methods[Chen and Jie(2007);Delfosse,Cherradi,and Ilschner(1997);Fukui and Watanabe(1996);Wang and Qin(2008);Dong,El-Gizawy,Juhany,andAtluri(2014);Dong,El-Gizawy,Juhany and Atluri(2014)]and analytical methods[Ravichandran(1995);Zhang,Xu,Wang,Jiang,and Wu(2006);Shaw(1998);Becker Jr,Cannon,and Ritchie(2000)],have been devoted to investigating the thermal residual stresses in the FGM system.If applicable,the analytical methods allow a quicker and easier evaluation on the thermal residual stresses.Ravichandran proposed an analytical model[Ravichandran(1995)]to calculate the thermal residual stress in the ceramic/metal joint FGM system.Furthermore,he demonstrated the analytical results are in good agreement with the FEM results[Sahay and Ravichandran(1996)]for Ni/Al2O3FGM plates.Bouchafa,Benzair,Tounsi,Draiche,Mechab,Adda Bedia(2010)used this model to evaluate the thermal residual stresses in the FGM with material properties varying exponentially through the thickness(E-FGM).Buoyed by the great success of this model,it is adopted to evoluate the thermal residual stress.

    In Ravichandran’s model[Ravichandran(1995)](Fig.2),two principal parts are involved in the thermal residual stress,one arising from stress equilibrium due to contraction or expansion,and the other from moment equilibrium due to the asymmetric stress distribution.

    Figure 2:Mechanical analysis on the FGM system.

    The first part of the thermal residual stresses is caused after the FGM plate cools down from high processing temperature.The residual stress is developed due to

    the constrains in thexdirection at two ends,and its magnitude is

    The second part of the residual stress is caused by the removal of the constraints which prevent the bending of the FGM plate would be relaxed,and the stress distribution is therefore rearranged.The additional stress arising from the bending of the plate is given as

    The total residual stress in the FGM in absence of constraints is obtaining by adding Eqs.(4)and(5)as

    where

    In this paper,the processing temperatureTfand room temperatureT0are assumed to be 1373 K and 298 K,respectively.Consequently,the temperature difference ΔTis 1075 K for the following computations.It should be noted that Eq.(6)is solid when the bending of the FGM plate is prevented by the constraints.

    3 Composition optimization for FGMs

    In this section,the optimization of the compositional distribution is formulated to minimize the thermal residual stresses and mass for the FGM systems.For the multi-objective optimization,the weighted sum method is employed to combine all objective functions into a single function.And then the optimization problems are solved by a hybrid genetic algorithm with the pattern search.

    3.1 Formulation of the optimization problem

    Since material properties are graded in the thickness direction according to a power law distribution in terms of the volume fractions of constituents as(1),the optimization of the material distribution is simplified to choose an optimal volume fraction exponent,N,and the thicknesses of the ceramic and metal substratestc,tm.As a result,the constrained optimization problem is described as

    wherefk(N,tc,tm)is thekth objective function to be minimized,gj(N,tc,tm)is the constraint function in the optimization.WhenNis close to 0or in finite,the material tends to pure ceramic or metal.Therefore,the design variable,N,is bounded by 0.01 and 100.

    If more than one objective functions are involved in the optimization,namely,multi-objective optimization problem[Marler and Arora(2004);Deb(2001)],the weighted sum method is used to transform the multi-objective optimization problem into a single composite objective function

    where{ωi}is a vector of weights set by the decision-maker,andωi=1,and ωi> 0.In general,the value of the weight is proportional to the relative importance of the objective functions.For the sake of the difference among objective functions,it is advantageous to transform the original functions into a consistent form.Therefore,we normalize the objective functions as

    3.2 Hybrid genetic algorithm with pattern search

    Genetic algorithms(GAs)[Deb(2001)]are a category of search and optimization methods that imitates the evolution of a creature and is based on the mechanism of natural genetics.A GA begins its search with a population of randomly generated individuals,and then the next generation is produced by selection,crossover,and mutation.The fitness of every individual in the population is evaluated in each generation.In the optimization,the fitness function is the objective function.Finally,the algorithm terminates when either a maximal number of generations or a satisfactory convergence has been achieved.

    Although the GAs can rapidly locate the promising region in which the global optimum exists,they converge slowly to the best solution in the explored region due to its inability to make small moves in the neighborhood of current solutions.As a consequence,a local research approach is resorted to find a better solution in promising region guided by the GA.We consider the pattern search(PS)[Audet and Dennis(2002)]to fine-tune the approximations.The pattern search chooses a certain set of search directions at each iteration and evaluates the objective function at a given step length along each of these directions.The PS updates the estimate to the best of the sampled solutions in the current iteration,and refines the mesh for the next iteration.

    In this study,an optimal solution is generated by the GA,and then fed to the PS algorithm for a fine-tuning approximation.For the GA,the size of the initial population is 100,and the maximal number of generations is 10,80%of the population in each generation is subjected to uniform crossover.The adaptive feasible mutation[Srinivas and Patnaik(1994)]is employed in this study.This method adds a randomly generated number to each element in the child population.The direction of the random number is adaptive to the last successful or unsuccessful generation,the relative constraints and inequality constraints.The PS is set to be terminated when Δk< 10-6.The procedure of the hybrid method,GA-PS,is shown in flowchart in Fig.3.We implement the GA and PS using the Matlab Global Optimization Toolbox software V 3.2.

    4 Numerical results and discussions

    In this section,the optimization of the FGM is presented via the GA-PS.Firstly the impact of the parameters,vizthe exponent and thicknesses of the substrates,is analyzed.Subsequently,the ceramic volume fraction is optimized to minimize the maximal thermal residual stresses in the second case.In the third case,the optimization of the thicknesses of the substrates is also taken into account for the thermal residual stress minimization.In the fourth case,we solve a multi-objective optimization problem concerning the thermal residual stress and mass.

    Figure 3:Flowchart for hybrid GA-PS.

    Figure 4:Volume fraction distribution(a)and thermal residual stresses(b)in the FGM system without.

    4.1 Thermal residual stress analysis

    This section investigates how the volume fraction impacts the distribution of the thermal residual stresses by using graded microstructure with varying exponents and thicknesses of the substrates.

    Fig.4 displays the results of the FGM systems without substrates.The thermal residual stresses of the non-graded bimaterial are also depicted for a comparison.The maximal tensile,and compressive stresses,in the non-graded system are 933.98 MPa and 1540.0 MPa respectively.In stark contrast with the non-graded material,a reduction more than 90%of the maximal thermal residual stresses can be observed whenN=1.The results ofN=0.2 are similar to that ofN=1,but obtain larger tensile stress in the metal-rich region than that in the non-graded system.The reduction of the maximal thermal residual stresses forN=5 is not so significant,but nevertheless more than 30%can be achieved.

    In Fig.5-Fig.6,different sizes(5%,25%of plate thickness)of the metal and ceramic substrates are taken into account.Linear behavior of the thermal residual stresses can be observed in the substrates.It is manifested that although the thermal residual stresses are reduced relative to the non-graded material,their reductions are not so significant in these two systems in comparison with the system without the substrates.

    Figure 5:Volume fraction distribution(a)and thermal residual stresses(b)in the FGM system with substrates of 5%total thickness.

    It is obvious that the stresses distribution is pronouncedly influenced by the exponents and thicknesses of the substrates.The results convince that optimal exponents and thicknesses of the substrates would help reduce the maximal thermal residual stresses of a FGM system.

    Figure 6:Volume fraction distribution(a)and thermal residual stresses(b)in the FGM system with substrates of 25%total thicknessb.

    4.2 Optimization of exponent

    In light of the results in the previous case,a better microstructure of the FGM systems might help minimize thermal residual stresses and enhance its structural reliability in practical applications.In this section,we consider the optimization of the volume fraction distribution to minimize the thermal residual stress of Ni/Al2O3FGM system with different sizes of substrates(0%,5%,and 25%of the total thickness).The optimal exponent is sought by the GA-PS procedure.The optimization problem is stated as

    Tab.2 presents the optimal results yielded by the GA and GA-PS.Fig.7 displays volume fractions and thermal residual stresses varying along the thicknesses.The optimization process by the GA and PS for the FGM with different sizes of the substrates(no,5%,25%)are displayed in Fig.8-Fig.13.

    As seen in Tab.2,three optimal FGM systems with different sizes of the graded region reaches a reduction more than 50%of maximal thermal residual stresses.The optimal system without substrates produces minimal thermal residual stresses.As the thickness of the substrate increases,lager residual stresses are observed in the FGM system.

    Table 2:Optimal results for the FGM systems.

    Figure 7:Volume variation(a)and thermal residual stress distribution(b)for the optimal FGM systems.

    Figure 8:Convergence curves of GA for optimization of the FGM system without substrates.

    An assessment of the GA and GA-PS is tabulated in Tab.2.The GA-PS exhibits better results than the GA in all simulations.The GA quickly locates the promising region,and obtains the GA solution(Fig.8,Fig.10 and Fig.12).The PS refines the results in the neighborhood of the GA solutions(Fig.9,Fig.11 and Fig.13),despite the fact that the difference between the GA-PS and GA solutions is very small in this case.It is worthnoting that in the GA-PS solutions,much closer to

    Figure 9:Fine-tuning curves of PS for optimization of the FGM system without substrates.

    Figure 10:Convergence curves of GA for optimization of the FGM system with substrates of 5%total thickness.

    4.3 Optimization of exponent and thickness of substrates

    In the previous case,the thermal residual stresses are minimized with controlling the exponent.On the other hand,the thicknesses of the substrates also influence

    Figure 11:Fine-tuning curves of PS for optimization of the FGM system with substrates of 5%total thickness.

    Figure 12:Convergence curves of GA for optimization of the FGM system with substrates of 25%total thickness.

    the determination of the thermal residual stresses in the FGMs.In this case,we simultaneously optimize the exponent and thicknesses of the substrates.The optimization problem is:

    Figure 13:Fine-tuning curves of PS for optimization of the FGM system with substrates of 25%total thickness.

    The optimal thicknesses of the ceramic and metal substratestc,tmare respectively 0.00101 m and 0.00118 m,and the optimal exponent is 1.8260.The corresponding stresses ratios,are 0.2222 and 0.2229 respectively.That is,nearly 78%reduction of the maximal thermal residual stresses is achieved.The volume fraction and thermal residual stresses along the thickness direction are displayed in Fig.14.

    Figure 14:Volume variation(a)and thermal residual stress distribution(b)for the optimized FGM systems.

    4.4 Multi-objective optimization

    This section performs a multi-objective optimization problem of the volume fraction distribution.The purpose of the optimization is to tailor the volume fraction distribution and thicknesses of the substrates to simultaneously minimize the mass and the maximal stresses of the FGM system.The optimization is executed with the GA-PS.The multi-objective optimization problem is expressed as:

    Table 3:Results for the GA-PS optimization.

    The optimization results are tabulated in Tab.3.When ω1is smaller than 0.3,the results indicate the weights reduction is dominant in the optimization.Therefore,tcis near 2.5e-3 andtmis near 1.0e-3.This is for the reason that the thicker ceramic layer and thinner metal layer lead to a lighter FGM system.While ω1is lager than 0.4,bothtmandtcare near 1.0e-3.In this situation,the thermal residual stresses reduction is more important in the design.

    For further analysis,we fix bothtmandtcat 1.0e-3,and recast the problem(14)as:

    Table 4:Results for the GA-PS optimization.

    In Fig.15-Fig.17,the optimal results with varying weights,ω1,are displayed.Some data are selected to be tabulated in Tab.4.In Fig.15,we can see the optimized objective function is a continuous piecewise function in terms of the weights ω1.The value of the optimized objective function is divided into 4 subcurves with intervals[0,0.275],[0.275,0.278],[0.278,0.4675],[0.4675,1.0].In Fig.16,the curve of the optimal exponent,N,is a discontinuous piecewise function with the same intervals as the optimized objective function.The values of the single objective functions,

    Figure 15:The minimization values of multi-objective function with respect to different weights ω1.

    Figure 16:The optimal exponents with respect to different weights ω1.

    Figure 17:The values of single objective functions with respect to different weights ω1.

    Figure 18:Pareto-optimal front and GA-PS optimization results.

    Figure 19:(a)Tensile stress ratio;(b)Compressive stress ratio;(c)Value of the second single objective function;(d)Value of the unified objective function.

    This result is very similar with the results for problem(14)when ω1> 0.4,which confirms the conclusion that the key factor on weight reduction lies in the thickness of the ceramic layer.

    Usually,the Pareto-optimal front is employed to seek the group of the non-dominated solutions with in the entire feasibility search space.The final Pareto-optimal front of this problem obtained by the multi-objective GA is shown in Fig.18.It can be observed that the optimization results of the GA-PS almost lie on the Pareto-optimal front.

    Furthermore,we depict the figures of the objective functions in terms of weights,ω1and exponents,N,as in Fig.19.It is obvious that our optimization results are in coincidence with these data.

    5 Conclusion

    The thermal residual stress stemming from cooling down processing temperature plays a significant role in industrial applications of the FGM.In this study,an optimal design for minimizing the thermal residual stresses is presented.The thermal residual stresses are evaluated via an analytical model,in which a hybrid genetic algorithm with the pattern search(GA-PS)is used to search the optima.The promising region is identified by the GA,and the PS is significantly more efficient than the GA in determining local optima.Thus,the number of fitness evolutions is reduced.For a multi-objctive case,the objective functions are normalized and combined with the weighted sum method.The weights are proportional to the relative importance of the objective functions determined by the decision-maker.

    From the foregoing numerical experiments,we observe that under the given processing environment,there are mainly two factors affacting the distribution of the thermal residual stresses,vizthe volume fraction distribution in the graded region and thicknesses of the substrates.The former is assumed as a power law function(P-FGM)in this study and is optimized by seeking an optimal exponent.In an optimal FGM system without substrates,a reduction of almost 95%is achieved in maximal thermal residual stresses.In the optimal FGM systems with substrates of 5%and 25%of total thickness,the maximal residual stress relexation are around 85%and 51%,respectively.On the other hand,as the substrates become thicker,the maximal thermal residual stresses increase.Therefore,the thicknesses of the substrates are always close to the low bound in the constrains in the thermal reduction problems.The thicker ceramic layer would help to reduce the weight of the FGM system.

    In conclusion,the proposed methodology is effective to fulfill the capability of the FGM plates in minimizing the maximal thermal residual stresses under different situations.

    Acknowledgement:This work was supported by National Science Funds for Distinguished Young Scholars(Grant No.11125208)and program of Introducing Talents of Discipline to Universities(111 project,Grant No.B12032).

    Attia,M.;Meguid,S.;Nouraei,H.(2012):Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns.Finite Elements in Analysis and Design,vol.61,pp.50-59.

    Audet,C.;Dennis,J.(2002):Analysis of Generalized Pattern Searches.SIAM Journal on Optimization,vol.13,pp.889-903.

    Becker Jr,T.L.;Cannon,R.M.;Ritchie,R.O.(2000):An approximate method for residual stress calculation in functionally graded materials.Mechanics of Materials,vol.32,pp.85-97.

    Bouchafa,A.;Benzair,A.;Tounsi,A.;Draiche,K.;Mechab,I.;Adda Bedia,E.A.(2010):Analytical modelling of thermal residual stresses in exponential functionally graded material system.Materials&Design,vol.31,pp.560-563.

    Chen,F.;Jie,W.(2007):Finite element design of MgO/Ni system functionally graded materials.Journal of Materials Processing Technology,vol.182,pp.181-184.

    Cho,J.;Ha,D.(2001):Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials.Materials Science and Engineering:A,vol.302,pp.187-196.

    Cho,J.R.;Ha,D.Y.(2002):Volume fraction optimization for minimizing thermal stress in Ni-Al2O3functionally graded materials.Materials Science and Engineering:A,vol.334,pp.147-155.

    Deb,K.(2001):Multi objective optimization using evolutionary algorithms:John Wiley and Sons.

    Delfosse,D.;Cherradi,N.;Ilschner,B.(1997):Numerical and experimental determination of residual stresses in graded materials.Composites Part B:Engineering,vol.28,pp.127-141.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A simple locking-alleviated 4-node mixed-collocation finite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Computers,Materials&Continua,vol.40,pp.49-77.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014):A Simple Locking-Alleviated 3D 8-Node Mixed-Collocation C 0 Finite Element with Over-Integration,for Functionally-Graded and Laminated Thick-Section Plates and Shells,with&without Z-Pins.CMC:Computers,Materials&Continua,vol.41,pp.163-192.

    Elishak off,I.(2012):Buckling of a column made of functionally graded material.Archive of Applied Mechanics,vol.82,pp.1355-1360.

    Fukui,Y.;Watanabe,Y.(1996):Analysis of thermal residual stress in a thick-walled ring of duralcan-base Al-SiC functionally graded material.Metallurgical and Materials Transactions A,vol.27,pp.4145-4151.

    Goupee,A.J.;Vel,S.S.(2007):Multi-objective optimization of functionally graded materials with temperature-dependent material properties.Materials&Design,vol.28,pp.1861-1879.

    Goupee,A.;Vel,S.(2006):Optimization of natural frequencies of bidirectional functionally graded beams.Structural and Multidisciplinary Optimization,vol.32,pp.473-484.

    Hedia,H.S.;Mahmoud,N.-A.(2004):Design optimization of functionally graded dental implant.Bio-Medical Materials and Engineering,vol.14,pp.133-143.

    Koizumi,M.(1997):FGM activities in Japan.Composites Part B:Engineering,vol.28,pp.1-4.

    Lee,W.Y.;Stinton,D.P.;Berndt,C.C.;Erdogan,F.;Lee,Y.D.;Mutasim,Z.(1996):Concept of functionally graded materials for advanced thermal barrier coating applications.Journal of the American Ceramic Society,vol.79,pp.3003-3012.

    Lin,D.;Li,Q.;Li,W.;Zhou,S.;Swain,M.V.(2009):Design optimization of functionally graded dental implant for bone remodeling.Composites Part B:Engineering,vol.40,pp.668-675.

    Markworth,A.J.;Saunders,J.H.(1995):A model of structure optimization for a functionally graded material.Materials Letters,vol.22,pp.103-107.

    Marler,R.T.;Arora,J.S.(2004):Survey of multi-objective optimization methods for engineering.Structural and Multidisciplinary Optimization,vol.26,pp.369-395.

    Nemat-Alla,M.(2003):Reduction of thermal stresses by developing two dimensional functionally graded materials.International Journal of Solids and Structures,vol 40,pp.7339-7356.

    Qian,G.;Nakamura,T.;Berndt,C.C.(1998):Effects of thermal gradient and residual stresses on thermal barrier coating fracture.Mechanics of Materials,vol.27,pp.91-110.

    Ravichandran,K.S.(1994):Elastic Properties of Two-Phase Composites.Journal of the American Ceramic Society,vol.77,pp.1178-1184.

    Ravichandran,K.S.(1995):Thermal residual stresses in a functionally graded material system.Materials Science and Engineering:A,vol.201,pp.269-276.

    Reddy,J.N.(2000):Analysis of functionally graded plates.International journal for numerical methods in engineering,vol.47,pp.663-684.

    Sahay,S.S.;Ravichandran,K.S.(1996):Assessment of residual stresses in a functionally graded material system.Advanced Composite Newsletter,vol.5,no.4,pp.1-7.

    Shaw,L.L.(1998):Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials.Composites Part B:Engineering,vol.29,pp.199-210.

    Srinivas,M.;Patnaik,L.M.(1994):Adaptive probabilities of crossover and mutation in genetic algorithms.Systems,Man and Cybernetics,IEEE Transactions on,vol.24,pp.656-667.

    Taheri,A.H.;Hassani,B.;Moghaddam,N.Z.(2014):Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach.International Journal of Solids and Structures,vol.51,pp.416-429.

    Tanaka,K.;Watanabe,H.;Sugano,Y.;Poterasu,V.F.(1996):A multicriterial material tailoring of a hollow cylinder in functionally gradient materials:Scheme to global reduction of thermoelastic stresses.Computer Methods in Applied Mechanics and Engineering,vol.135,pp.369-680.

    Wang,H.;Qin,Q.-H.(2008):Meshless approach for thermo-mechanical analysis of functionally graded materials.Engineering Analysis with Boundary Elements,vol.32,pp.704-712.

    Yoshihiro Ootao,Y.T.O.I.(2000):Optimization of material composition of functionally graded plate for thermal stress relaxation using a genetic algorithm.Journal of Thermal Stresses,vol.23,pp.257-271.

    Zhang,X.C.;Xu,B.S.;Wang,H.D.;Jiang,Y.;Wu,Y.X.(2006):Modeling of thermal residual stresses in multilayer coatings with graded properties and compositions.Thin Solid Films,vol.497,pp.223-231.

    1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering&Center for Numerical Simulation Software in Engineering and Sciences,College of Mechanics and Materials,Hohai University,Nanjing,Jiangsu,210098,China

    2College of Civil Engineering and Architecture East China Jiaotong University,Nanchang 330013,China

    3Corresponding author,Tel.:+86 25 83786873;fax:+86 25 83736860.E-mail address:chenwen@hhu.edu.cn

    国产av精品麻豆| 国产av国产精品国产| 老汉色av国产亚洲站长工具| 久久青草综合色| 在线看a的网站| 女人被躁到高潮嗷嗷叫费观| 亚洲av男天堂| 人妻 亚洲 视频| 国产高清国产精品国产三级| 最近最新中文字幕大全免费视频 | 亚洲av在线观看美女高潮| 中文字幕人妻熟女乱码| 一区二区日韩欧美中文字幕| av国产久精品久网站免费入址| 久久性视频一级片| 在线观看免费视频网站a站| 国产免费视频播放在线视频| 久久国产精品大桥未久av| av不卡在线播放| 免费人妻精品一区二区三区视频| 亚洲少妇的诱惑av| 日本猛色少妇xxxxx猛交久久| 亚洲成色77777| 精品福利观看| 久久久久国产一级毛片高清牌| 精品人妻1区二区| 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| 午夜两性在线视频| 欧美激情高清一区二区三区| 国产黄色视频一区二区在线观看| 午夜av观看不卡| 老熟女久久久| 青青草视频在线视频观看| 一本一本久久a久久精品综合妖精| 超碰成人久久| 久久九九热精品免费| 精品人妻1区二区| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 一本大道久久a久久精品| 人妻人人澡人人爽人人| 久久久久久久久免费视频了| 99热网站在线观看| 久久久久视频综合| 这个男人来自地球电影免费观看| 考比视频在线观看| 亚洲精品国产av成人精品| 国产精品人妻久久久影院| 亚洲欧美精品自产自拍| 精品一品国产午夜福利视频| 999精品在线视频| 国产无遮挡羞羞视频在线观看| 中文字幕色久视频| 51午夜福利影视在线观看| avwww免费| 日韩 亚洲 欧美在线| 亚洲欧美日韩高清在线视频 | 最黄视频免费看| 一二三四社区在线视频社区8| 免费黄频网站在线观看国产| 欧美 亚洲 国产 日韩一| 亚洲精品乱久久久久久| 99国产精品一区二区蜜桃av | 丝袜脚勾引网站| 啦啦啦中文免费视频观看日本| 午夜av观看不卡| 日韩,欧美,国产一区二区三区| 免费看av在线观看网站| 国产高清国产精品国产三级| 亚洲人成电影观看| 国产三级黄色录像| 少妇精品久久久久久久| 久久精品久久久久久久性| 午夜免费鲁丝| 国产精品亚洲av一区麻豆| 视频在线观看一区二区三区| 在线观看免费视频网站a站| 老司机深夜福利视频在线观看 | 国产精品久久久久久人妻精品电影 | 久久久久久久久久久久大奶| 男女无遮挡免费网站观看| 99国产精品99久久久久| 手机成人av网站| 欧美+亚洲+日韩+国产| 巨乳人妻的诱惑在线观看| av天堂在线播放| 18禁黄网站禁片午夜丰满| 看十八女毛片水多多多| 精品人妻1区二区| 秋霞在线观看毛片| 高清不卡的av网站| 中文字幕色久视频| 青草久久国产| 波野结衣二区三区在线| 纯流量卡能插随身wifi吗| 少妇猛男粗大的猛烈进出视频| 一级毛片 在线播放| 51午夜福利影视在线观看| 80岁老熟妇乱子伦牲交| 精品国产超薄肉色丝袜足j| 亚洲欧美清纯卡通| av网站在线播放免费| 国产精品久久久久久人妻精品电影 | 99热全是精品| 各种免费的搞黄视频| 美女脱内裤让男人舔精品视频| 亚洲 国产 在线| 黄色毛片三级朝国网站| 午夜激情久久久久久久| 青草久久国产| 久久人妻福利社区极品人妻图片 | 一区二区三区精品91| 黑丝袜美女国产一区| 久久中文字幕一级| 男女之事视频高清在线观看 | 久久精品熟女亚洲av麻豆精品| 校园人妻丝袜中文字幕| 在线av久久热| 欧美精品一区二区大全| 亚洲三区欧美一区| 99热网站在线观看| 久久中文字幕一级| 在线精品无人区一区二区三| 无遮挡黄片免费观看| videos熟女内射| 精品视频人人做人人爽| 男的添女的下面高潮视频| 亚洲国产欧美网| 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 久久久久久人人人人人| 成年女人毛片免费观看观看9 | 国产精品一国产av| 亚洲国产精品一区二区三区在线| 久久毛片免费看一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲专区国产一区二区| 国产一级毛片在线| 巨乳人妻的诱惑在线观看| 丝瓜视频免费看黄片| 黄网站色视频无遮挡免费观看| 亚洲精品国产av成人精品| 99久久99久久久精品蜜桃| 丰满人妻熟妇乱又伦精品不卡| 国产成人一区二区三区免费视频网站 | 美女视频免费永久观看网站| 美女国产高潮福利片在线看| 高清欧美精品videossex| 黄色毛片三级朝国网站| 久久人人爽av亚洲精品天堂| 男女国产视频网站| 婷婷丁香在线五月| 欧美日韩一级在线毛片| 欧美日韩视频精品一区| 电影成人av| 亚洲av欧美aⅴ国产| 欧美精品一区二区大全| 满18在线观看网站| 老司机影院毛片| 你懂的网址亚洲精品在线观看| 一二三四社区在线视频社区8| 国产av一区二区精品久久| 日本91视频免费播放| 国产欧美日韩一区二区三区在线| 老司机在亚洲福利影院| 黄色怎么调成土黄色| 国产男女内射视频| e午夜精品久久久久久久| 久久九九热精品免费| 亚洲,欧美精品.| 老司机在亚洲福利影院| 精品一区二区三区四区五区乱码 | 国产亚洲精品久久久久5区| 午夜免费男女啪啪视频观看| 亚洲av在线观看美女高潮| av在线播放精品| 最黄视频免费看| 亚洲久久久国产精品| 欧美黄色片欧美黄色片| 黄色一级大片看看| 大陆偷拍与自拍| 欧美xxⅹ黑人| 亚洲精品久久久久久婷婷小说| 麻豆国产av国片精品| 亚洲国产av影院在线观看| 成人三级做爰电影| 精品第一国产精品| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 夫妻性生交免费视频一级片| 黑人猛操日本美女一级片| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 免费少妇av软件| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 男女免费视频国产| 久久久久久久精品精品| 无遮挡黄片免费观看| cao死你这个sao货| 啦啦啦视频在线资源免费观看| 亚洲国产精品国产精品| 男女边摸边吃奶| 亚洲色图综合在线观看| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看 | 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 少妇精品久久久久久久| 制服诱惑二区| 中文字幕精品免费在线观看视频| 一二三四社区在线视频社区8| 精品久久久久久电影网| 国产亚洲av高清不卡| 看免费成人av毛片| 美女扒开内裤让男人捅视频| 中文字幕制服av| 少妇裸体淫交视频免费看高清 | 久久久久精品国产欧美久久久 | 精品亚洲成a人片在线观看| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 国产一区有黄有色的免费视频| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 国产成人系列免费观看| 69精品国产乱码久久久| 下体分泌物呈黄色| 90打野战视频偷拍视频| 久久综合国产亚洲精品| 日韩精品免费视频一区二区三区| 日本wwww免费看| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 别揉我奶头~嗯~啊~动态视频 | 无遮挡黄片免费观看| 欧美亚洲 丝袜 人妻 在线| 好男人视频免费观看在线| 久久精品久久精品一区二区三区| 日本五十路高清| 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| 国产欧美日韩一区二区三 | 中文欧美无线码| 高清欧美精品videossex| 久久亚洲国产成人精品v| 午夜老司机福利片| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| 人人澡人人妻人| 91成人精品电影| 免费看十八禁软件| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 在线av久久热| 在线亚洲精品国产二区图片欧美| 久久久亚洲精品成人影院| 色94色欧美一区二区| 人妻一区二区av| 一边摸一边做爽爽视频免费| 久久精品久久精品一区二区三区| 国产成人a∨麻豆精品| 国产精品久久久久久精品电影小说| 在线亚洲精品国产二区图片欧美| 久热这里只有精品99| 人体艺术视频欧美日本| 又大又爽又粗| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 汤姆久久久久久久影院中文字幕| 国产精品三级大全| 老司机在亚洲福利影院| 一区福利在线观看| 51午夜福利影视在线观看| 国产成人欧美在线观看 | 国产成人av激情在线播放| 极品少妇高潮喷水抽搐| 99精品久久久久人妻精品| a 毛片基地| 最近中文字幕2019免费版| 久久国产精品人妻蜜桃| 考比视频在线观看| xxx大片免费视频| 在线亚洲精品国产二区图片欧美| 香蕉国产在线看| 欧美日韩精品网址| 你懂的网址亚洲精品在线观看| 精品一区二区三区av网在线观看 | 丁香六月欧美| 男女床上黄色一级片免费看| 激情五月婷婷亚洲| 一区福利在线观看| 91麻豆av在线| 免费黄频网站在线观看国产| 国产成人av教育| 日韩一区二区三区影片| 国产福利在线免费观看视频| 国产在视频线精品| 精品久久久久久久毛片微露脸 | 国产99久久九九免费精品| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 免费观看人在逋| 黄色a级毛片大全视频| av欧美777| 国产97色在线日韩免费| 亚洲av成人不卡在线观看播放网 | 国产精品欧美亚洲77777| 亚洲av在线观看美女高潮| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 蜜桃在线观看..| 熟女少妇亚洲综合色aaa.| videos熟女内射| 操出白浆在线播放| 亚洲专区中文字幕在线| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 国内视频| 最近手机中文字幕大全| 国产日韩欧美在线精品| 亚洲久久久国产精品| 99热国产这里只有精品6| av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 亚洲七黄色美女视频| 天堂8中文在线网| 久久精品国产a三级三级三级| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 国产精品久久久久久精品古装| 久久鲁丝午夜福利片| 99热网站在线观看| 一级毛片我不卡| 精品人妻一区二区三区麻豆| 亚洲成人国产一区在线观看 | 国产成人免费无遮挡视频| 好男人电影高清在线观看| 国产成人精品在线电影| 国产97色在线日韩免费| 老司机亚洲免费影院| 国产主播在线观看一区二区 | 国产亚洲av高清不卡| 亚洲久久久国产精品| 国产成人av教育| 热99国产精品久久久久久7| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 天天添夜夜摸| 精品国产国语对白av| www.av在线官网国产| 黄色怎么调成土黄色| 亚洲男人天堂网一区| 男女高潮啪啪啪动态图| 考比视频在线观看| 久久午夜综合久久蜜桃| 考比视频在线观看| 青春草亚洲视频在线观看| 精品人妻在线不人妻| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 十分钟在线观看高清视频www| 三上悠亚av全集在线观看| 日本av免费视频播放| 免费看av在线观看网站| 美女主播在线视频| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 国产不卡av网站在线观看| 最黄视频免费看| 免费日韩欧美在线观看| www.自偷自拍.com| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 激情视频va一区二区三区| videosex国产| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 捣出白浆h1v1| 国产精品人妻久久久影院| 黄网站色视频无遮挡免费观看| 九草在线视频观看| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 国产高清不卡午夜福利| 精品一区在线观看国产| av线在线观看网站| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 黄色一级大片看看| 亚洲国产最新在线播放| 最近最新中文字幕大全免费视频 | 久久99精品国语久久久| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久电影网| 黄色怎么调成土黄色| 一二三四社区在线视频社区8| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 亚洲av欧美aⅴ国产| 曰老女人黄片| 精品少妇黑人巨大在线播放| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 久久影院123| 亚洲国产精品999| 亚洲精品久久午夜乱码| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 香蕉丝袜av| 亚洲午夜精品一区,二区,三区| 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 欧美成狂野欧美在线观看| 中文字幕亚洲精品专区| 国产97色在线日韩免费| 国产主播在线观看一区二区 | 久久久久精品人妻al黑| 亚洲成人手机| 国产亚洲精品久久久久5区| 亚洲一区中文字幕在线| 免费人妻精品一区二区三区视频| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索 | 精品第一国产精品| 女性生殖器流出的白浆| 日本欧美国产在线视频| 又大又爽又粗| 免费在线观看影片大全网站 | 亚洲欧美激情在线| 麻豆国产av国片精品| 99久久人妻综合| 中文字幕色久视频| 国产精品久久久人人做人人爽| 久久久精品94久久精品| 亚洲久久久国产精品| 亚洲中文日韩欧美视频| 高清黄色对白视频在线免费看| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 老汉色∧v一级毛片| 人人妻人人澡人人看| 极品少妇高潮喷水抽搐| 午夜久久久在线观看| 另类亚洲欧美激情| xxxhd国产人妻xxx| 你懂的网址亚洲精品在线观看| 热99国产精品久久久久久7| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 亚洲av成人精品一二三区| 精品亚洲成国产av| √禁漫天堂资源中文www| 亚洲,欧美精品.| 少妇猛男粗大的猛烈进出视频| 亚洲成色77777| 欧美 亚洲 国产 日韩一| 欧美精品人与动牲交sv欧美| 老汉色∧v一级毛片| 免费不卡黄色视频| 成年动漫av网址| 亚洲av电影在线观看一区二区三区| www.999成人在线观看| av国产久精品久网站免费入址| 黄频高清免费视频| 亚洲欧美日韩另类电影网站| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 黑人猛操日本美女一级片| 国产在线视频一区二区| 一区二区三区乱码不卡18| 99国产精品一区二区蜜桃av | 99精品久久久久人妻精品| 在线观看人妻少妇| 久久ye,这里只有精品| 99国产精品免费福利视频| av国产久精品久网站免费入址| 精品福利永久在线观看| 欧美日韩黄片免| 女人精品久久久久毛片| 人妻 亚洲 视频| 我的亚洲天堂| 人体艺术视频欧美日本| 精品少妇一区二区三区视频日本电影| 美女主播在线视频| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 久久久久网色| 69精品国产乱码久久久| 天天影视国产精品| 亚洲欧美日韩高清在线视频 | 国产又色又爽无遮挡免| 丁香六月欧美| 欧美精品一区二区大全| 中文字幕制服av| 婷婷丁香在线五月| 亚洲,欧美,日韩| 精品久久久精品久久久| 亚洲人成电影观看| 国产日韩欧美亚洲二区| 在线观看国产h片| 久久久国产精品麻豆| 亚洲精品日本国产第一区| 免费人妻精品一区二区三区视频| 女人高潮潮喷娇喘18禁视频| 欧美国产精品一级二级三级| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 两个人看的免费小视频| 欧美日韩综合久久久久久| 亚洲五月色婷婷综合| 视频区图区小说| 久热这里只有精品99| 99国产精品99久久久久| 男女边摸边吃奶| 老熟女久久久| av天堂久久9| 国产亚洲欧美在线一区二区| 国产精品一区二区精品视频观看| 女警被强在线播放| 成人午夜精彩视频在线观看| 国产成人免费无遮挡视频| 美女大奶头黄色视频| 午夜视频精品福利| 欧美中文综合在线视频| 久久久国产精品麻豆| 97精品久久久久久久久久精品| 国产麻豆69| 亚洲视频免费观看视频| 99久久99久久久精品蜜桃| 日韩一本色道免费dvd| 99久久人妻综合| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸 | 老司机午夜十八禁免费视频| 黄色怎么调成土黄色| 亚洲成av片中文字幕在线观看| 国产高清videossex| 免费看不卡的av| 亚洲av电影在线观看一区二区三区| 亚洲男人天堂网一区| 久久久久视频综合| 丁香六月天网| 色婷婷av一区二区三区视频| av线在线观看网站| 极品人妻少妇av视频| 波多野结衣av一区二区av| 成人国产av品久久久| 成年av动漫网址| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 中文字幕亚洲精品专区| 99久久精品国产亚洲精品| 精品亚洲成国产av| 亚洲精品国产一区二区精华液| 久久精品aⅴ一区二区三区四区| 国产人伦9x9x在线观看| 蜜桃在线观看..| 国产精品一区二区免费欧美 | 亚洲成av片中文字幕在线观看| 黄色毛片三级朝国网站| 国产av精品麻豆| 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆| 国产一区二区三区综合在线观看| 国产老妇伦熟女老妇高清| 国产欧美日韩综合在线一区二区| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 最黄视频免费看| 久久中文字幕一级| 亚洲av综合色区一区| 中文精品一卡2卡3卡4更新| 久久精品人人爽人人爽视色|