張清莉 ,劉再?gòu)?qiáng) ,鐘玉德 ,王文杰,劉松 ,肖先儀 ,何寬信, 陳學(xué)平
1 中國(guó)科學(xué)技術(shù)大學(xué)煙草與健康研究中心,安徽省合肥市徽州大道1129號(hào) 230051;
2 江西省煙草公司,江西省南昌市洪城路298號(hào) 330025;
3安徽省池州市煙草公司,安徽省池州市貴池區(qū)長(zhǎng)江中路41號(hào) 247100
BABA誘導(dǎo)煙草抵御高鹽脅迫的初步研究
張清莉1,劉再?gòu)?qiáng)2,鐘玉德2,王文杰3,劉松1,肖先儀2,何寬信2, 陳學(xué)平1
1 中國(guó)科學(xué)技術(shù)大學(xué)煙草與健康研究中心,安徽省合肥市徽州大道1129號(hào) 230051;
2 江西省煙草公司,江西省南昌市洪城路298號(hào) 330025;
3安徽省池州市煙草公司,安徽省池州市貴池區(qū)長(zhǎng)江中路41號(hào) 247100
通過(guò)外源BABA處理觀察其對(duì)高鹽脅迫下煙草生長(zhǎng)的調(diào)節(jié)作用,并從抗氧化系統(tǒng)和相關(guān)基因表達(dá)探討其作用機(jī)理。結(jié)果表明:在高鹽脅迫下,外源0.2 mmol/L BABA和0.5 mmol/L BABA處理均能顯著促進(jìn)煙草的生長(zhǎng),根長(zhǎng)和鮮重均顯著增加;與鹽脅迫組相比,外源BABA處理能顯著提高高鹽脅迫下煙草幼苗體內(nèi)還原型谷胱甘肽(GSH)、脯氨酸、葉綠素和H2O2的含量,同時(shí)還能增加煙株超氧化物歧化酶(SOD)、抗壞血酸還原酶(APX)、過(guò)氧化物酶(POD)、過(guò)氧化氫酶(CAT)的活性;外源BABA還可通過(guò)降低高鹽脅迫下煙株丙二醛(MDA)含量和相對(duì)電導(dǎo)率值來(lái)減輕高鹽脅迫對(duì)細(xì)胞膜的損害。半定量PCR結(jié)果表明:BABA能夠誘導(dǎo)脫落酸(ABA)調(diào)控基因NtRAB18、NtERD10D和NtERD10B表達(dá)。由此認(rèn)為BABA提高煙草的耐鹽性是通過(guò)激發(fā)植物體內(nèi)抗氧化系統(tǒng)和通過(guò)ABA途徑誘導(dǎo)逆激基因上調(diào)的綜合結(jié)果。
β-氨基丁酸;煙草;高鹽脅迫
植物在生長(zhǎng)發(fā)育過(guò)程中會(huì)受到各種逆境脅迫,例如干旱[1]、冷凍[2]、洪澇[3]、高溫[4]和高鹽[5]等,其中高鹽脅迫使植物生長(zhǎng)發(fā)育周期縮短,生物量和經(jīng)濟(jì)產(chǎn)量下降,是制約植物生長(zhǎng)和發(fā)育的最主要因素之一[6]。據(jù)不完全統(tǒng)計(jì),目前世界鹽漬地約10億公頃,占世界土壤總面積的10 %,其中中國(guó)各類(lèi)鹽漬土就約有1億公頃[7]。
鹽脅迫主要包括滲透脅迫、離子不平衡、營(yíng)養(yǎng)缺乏和離子毒害[8]。一方面土壤中過(guò)量的NaCl導(dǎo)致土壤中水勢(shì)降低,植物難以從土壤中吸收水分,另一方面溶液中過(guò)量的鹽離子會(huì)阻礙植物對(duì)以K+為主的一些必須礦質(zhì)元素的吸收[9],造成營(yíng)養(yǎng)離子缺虧,同時(shí)植物細(xì)胞中過(guò)量的Cl-和Na+也會(huì)影響細(xì)胞內(nèi)酶的活性,細(xì)胞的代謝和生理功能受到不同程度的破壞[10]。高鹽脅迫嚴(yán)重影響了煙草的生長(zhǎng)和發(fā)育,提高煙草耐鹽性具有重要意義。
BABA是一種在植物中很少存在的非蛋白質(zhì)氨基酸。研究報(bào)道,BABA能夠誘導(dǎo)擬南芥抗高鹽和干旱[11]、低鉀脅迫[12],大豆抗重金屬鎘[13],春小麥抗干旱[14]。但有關(guān)BABA誘導(dǎo)煙草抵御高鹽脅迫的研究尚未見(jiàn)報(bào)道。本實(shí)驗(yàn)以煙草“云煙87”為試材,研究了不同濃度BABA對(duì)NaCl脅迫下煙草的調(diào)節(jié)作用,測(cè)定了煙草中抗氧化酶和抗氧化物質(zhì)的含量以及相關(guān)的基因表達(dá),探索外源BABA提高煙草抵御NaCl脅迫的機(jī)理,為BABA誘導(dǎo)煙草抵御高鹽脅迫提供理論依據(jù)。
煙草品種“云煙87”由安徽農(nóng)業(yè)科學(xué)院提供,BABA(純度為94%)市購(gòu),RNA提取試劑盒(RNA prep Pure Plant Kit)購(gòu)于北京天根生物技術(shù)有限公司,Taq聚合酶(TaKaRa Taq)和反轉(zhuǎn)錄試劑盒(Prime Script RT Master Mix Perfect Real Time)均購(gòu)于大連TaKaRa公司。
生長(zhǎng)條件分為培養(yǎng)基培養(yǎng)、水培、土培三類(lèi)。
培養(yǎng)基:煙草種子經(jīng)75 % (V/V)C2H5OH消毒3 min,20%(V/V)NaClO振蕩22 min,滅菌雙蒸水清洗5~6次。將清洗過(guò)的種子均勻點(diǎn)播在MS(Murashige和Skoog)培養(yǎng)基上,對(duì)照組和鹽脅迫組均為正常的MS培養(yǎng)基,BABA組添加BABA至終濃度分別為0.2 mmol/L和0.5 mmol/L。預(yù)處理15d后將鹽脅迫組和BABA組的煙草幼苗移入已加入150 mmol/L NaCl的MS培養(yǎng)基上,進(jìn)入NaCl脅迫期,對(duì)照組移入正常的MS培養(yǎng)基,具體操作如表1。恒溫箱中培養(yǎng),溫度(28 ± 2)℃,16h光照/d。進(jìn)入NaCl脅迫期20d后,觀察表型、拍照,測(cè)量其根長(zhǎng)和鮮重。實(shí)驗(yàn)設(shè)置3次重復(fù)。
表1 培養(yǎng)基條件Tab.1 Medium condition
水培條件:將煙草種子均勻撒在由霍格蘭營(yíng)養(yǎng)液潤(rùn)濕的滅菌營(yíng)養(yǎng)土里,選取生長(zhǎng)一致幼苗分別移入加入同體積霍格蘭營(yíng)養(yǎng)液的錐形瓶中。溫度(28± 2)℃,16h光照/d預(yù)處理3d后,將鹽脅迫組和BABA組煙草幼苗移入含有150 mmol/L NaCl的霍格蘭營(yíng)養(yǎng)液中,對(duì)照組更換營(yíng)養(yǎng)液,具體操作如表2所示。進(jìn)入NaCl脅迫期48h后同時(shí)取樣測(cè)生理指標(biāo)和提取RNA。實(shí)驗(yàn)設(shè)置3次重復(fù)。
表2 水培條件Tab.2 Hydroponics culture
土培條件:將煙草種子均勻撒在霍格蘭營(yíng)養(yǎng)液潤(rùn)濕的滅菌營(yíng)養(yǎng)土里,溫度(28 ± 2)℃,16h光照/d培養(yǎng)至幼苗生長(zhǎng)至3、4葉真葉期時(shí)分苗。選取生長(zhǎng)一致煙苗移栽到花盆里。每個(gè)花盆種植一株,4個(gè)花盆為一組,設(shè)置3組重復(fù)。具體操作見(jiàn)表3。預(yù)處理72h后進(jìn)入NaCl脅迫期,70d后觀察其表型,拍照。
表3 土培條件Tab.3 Soil culture condition
參照Michael等的方法[15],略有改動(dòng)。取待測(cè)新鮮葉片約0.10 g去中脈剪碎置于試管中,加入5 mL 3%水楊酸,于沸水浴中提取10 min后冷卻,吸取2 mL上清液 (空白管吸取2 mL 3%水楊酸),加入2 mL茚三酮顯色液,3 mL冰乙酸,沸水浴中反應(yīng)40 min后冷卻,加入5 mL甲苯萃取,測(cè)定其在520 nm波長(zhǎng)下的吸光度值。
參照Stewart 和 Bewley的方法[16],略有改動(dòng)。取待測(cè)新鮮葉片約0.20 g,加入10%的三氯乙酸溶液2.0 mL研磨,離心10 min后吸取上清溶液1.8 mL(空白管吸取1.8 mL三氯乙酸),加入1.8 mL 0.6%硫代巴比妥酸溶液,于沸水浴中反應(yīng)15 min,冷卻后離心,測(cè)定其在450 nm、532 nm、600 nm波長(zhǎng)下的吸光度值。
測(cè)試步驟參照蘇州科銘生物技術(shù)有限公司GSH測(cè)試試劑盒說(shuō)明書(shū)。
參照朱廣廉等的方法[17],略有改動(dòng)。取待測(cè)新鮮葉片約0.2 g去中脈剪碎置于試管中,加入10 mL 80%的丙酮混勻用黑布包裹過(guò)夜。待葉片組織全部變白以后測(cè)其在645 nm、652 nm、663nm波長(zhǎng)下的吸光度值。
參照陳建勛等的方法[18],略有改動(dòng)。將待測(cè)葉片用自來(lái)水沖洗3次去污、蒸餾水沖洗3次去離子,選取等大小的待測(cè)葉片約1.0 g,加入50 mL雙蒸水浸泡24 h后測(cè)其電導(dǎo)率R1。將上述葉片在沸水浴中煮沸30分鐘后,冷卻,補(bǔ)足蒸發(fā)掉的水分后測(cè)其電導(dǎo)率R2。相對(duì)電導(dǎo)率=R1/R2×100%。
取待測(cè)新鮮葉片約0.2 g,加入1 mL 50 mmol/L pH=7.0的緩沖液(含 有1% PVP,0.01 mmol/L EDTANa2),在預(yù)先冷凍的研缽中迅速研磨后再加入3 mL緩沖液,混勻后1200 rad/s離心15 min。吸取上清液置于4 ℃中冷藏備用。
APX活力的測(cè)定:參照Nakano、Asada的方法[19],略有改動(dòng)。反應(yīng)混合液2.9 mL (50 mmol/L pH=7.0的磷酸緩沖液中含有0.1 mol/L EDTANa2、0.06 mmol/L H2O2)中加入0.1 mL酶液(空白管加入0.1mL磷酸緩沖液)混勻后在氘燈下測(cè)其在290 nm波長(zhǎng)下0 s和120 s的吸光度值。
POD活力的測(cè)定:按照Kar和Mishra 的愈創(chuàng)木酚法[20],略有改動(dòng)。4.7 mL混合液(50 mmol/L pH=5.5的磷酸緩沖液2.7 mL,2% 的H2O21.0 mL,0.05 mmol/L愈創(chuàng)木酚1.0 mL)中加入0.3 mL酶液(空白管為0.3 mL pH=7.0的磷酸緩沖液)混勻后,水浴37℃反應(yīng)15 min,冷卻后測(cè)定其在470 nm波長(zhǎng)下的吸光度值。
SOD活力的測(cè)定:參照Bewley的NBT方法[21],略有改動(dòng)?;旌弦?.9 mL(50 mmol/L pH=7.8的磷酸緩沖液1.5 mL,130 mmol/L的甲硫氨酸溶液0.3 mL、750 μmol/L 的 NBT 0.3 mL、100 μmol/L 的EDTANa20.3 mL、蒸餾水0.5 mL)中加入0.3 mL 20 μmol/L核黃素、0.10 mL酶液(空白管加入0.10 mL pH=7.0的磷酸緩沖液)。1支對(duì)照管罩上黑布,一支對(duì)照管和測(cè)試管置于4000 lx的光照下反應(yīng)30 min。反應(yīng)結(jié)束后測(cè)其在560 nm波長(zhǎng)下的吸光度值。
CAT、H2O2測(cè)定依據(jù)南京建成生物試劑公司CAT、H2O2測(cè)試試劑盒說(shuō)明書(shū)。
葉片總RNA提取參照植物總RNA提取試劑盒說(shuō)明書(shū)。RNA反轉(zhuǎn)錄參照TaKaRa反轉(zhuǎn)錄試劑盒說(shuō)明書(shū)。內(nèi)參基因?yàn)?8S rRNA (AJ236016.1),目的基因?yàn)镹tRAB18、NtERD10B和NtERD10D。
表4 基因引物序列Tab.4 Gene sequences of primers
實(shí)驗(yàn)數(shù)據(jù)表示為平均值 ± 標(biāo)準(zhǔn)偏差,數(shù)據(jù)分析采用單因素方差分析,置信區(qū)間P<0.05,統(tǒng)計(jì)分析軟件使用origin 9.0和DPS 9.5。
由圖1所示,與自然生長(zhǎng)的煙草相比,NaCl脅迫抑制了煙草的生長(zhǎng),其表現(xiàn)為葉片面積減小(圖1B),根長(zhǎng)(圖1A、C)、莖長(zhǎng)(圖1C)縮短,而在NaCl脅迫下,BABA處理能夠明顯緩解以上情況。BABA組較鹽脅迫組的煙草葉片面積增大(圖1B),根、莖增長(zhǎng)(圖1A、C),根系也較鹽脅迫組發(fā)達(dá)(圖1C),鹽脅迫組和BABA組的鮮重(圖1D)和根長(zhǎng)(圖1E)均達(dá)到顯著性差異。其中,添加0.2 mmol/L BABA處理的煙苗比鹽脅迫組的鮮重(圖1D)和根長(zhǎng)(圖1E)分別增加了96.83%和146.42%,0.5 mmol/L BABA比鹽脅迫組鮮重(圖1D)和根長(zhǎng)(圖1E)分別增加了96.64%和235.71%。結(jié)果表明,BABA能夠緩解鹽脅迫對(duì)煙草生長(zhǎng)的抑制作用。
圖1 NaCl脅迫下BABA對(duì)煙草(A、B、C)長(zhǎng)勢(shì)、煙草幼苗(A)的鮮重(D)和根長(zhǎng)(E)的影響Fig.1 Effect of BABA on the growth (A.B.C) of tobacco as well as the fresh weight (D) and root length (E) of tobacco seedling s (A) under NaCl stress
植物組織遭受逆境危害后,膜脂過(guò)氧化加劇,MDA大量積累,細(xì)胞膜結(jié)構(gòu)、功能被破壞,導(dǎo)致電解質(zhì)外滲[22-24]。MDA含量和相對(duì)電導(dǎo)率通常作為植物受氧化脅迫程度的指標(biāo)。由圖2(A)所示,0.2 mmol/L 和0.5 mmol/L BABA降低了煙葉中MDA的含量,分別比鹽脅迫組降低了22.00% 和29.54%。同時(shí)0.5 mmol/L BABA組的MDA含量與自然生長(zhǎng)的煙草幼苗沒(méi)有達(dá)到顯著性差異。由圖2(B)所示,0.2 mmol/L 和0.5 mmol/L BABA 降低了煙葉的相對(duì)電導(dǎo)率,分別比鹽脅迫組降低了25.71% 和17.91%。結(jié)果表明,BABA能夠降低高鹽脅迫對(duì)煙草細(xì)胞膜結(jié)構(gòu)和功能的損傷。
圖2 對(duì)照組、鹽脅迫組和BABA組煙草幼苗MDA(A)含量與相對(duì)電導(dǎo)率(B)Fig.2 MDA (A) and the relative electrical conductivity (B) in tobacco seedlings of the control,salt stress and BABA groups
圖3 對(duì)照組、鹽脅迫組、BABA組煙草幼苗葉綠素(A)、脯氨酸(B)、GSH(C)含量Fig.3 Content of chlorophyll (A),proline (B) and GSH (C) in t obacco seedlings of control,salt stress and BABA groups
鹽脅迫抑制葉綠體中葉綠素合成,并破壞已合成的葉綠素,使植物的光能利用和CO2同化受到抑制[24]。本研究中0.2 mmol/L 和0.5 mmol/L BABA分別使煙草幼苗的葉綠素A較鹽脅迫組增加了16.42%和12.41%,葉綠素B較鹽脅迫組增加了83.96%和49.97%,總的葉綠素較鹽脅迫組分別增加了23.82%和16.52%,見(jiàn)圖3(A)。
脯氨酸是植物體內(nèi)重要的滲透調(diào)解物質(zhì)。在遭受脅迫時(shí)植物通過(guò)大量積累脯氨酸來(lái)提高溶質(zhì)濃度、降低體內(nèi)水勢(shì)[25]。同時(shí)脯氨酸與蛋白質(zhì)結(jié)合,能增強(qiáng)蛋 白質(zhì)的水合作用,保護(hù)這些生物大分子的結(jié)構(gòu)和功能的穩(wěn)定[26]。煙草的鹽適細(xì)胞中脯氨酸含量占游離氨基酸總量的80%[27]。本實(shí)驗(yàn)中煙草在遭受NaCl脅迫下開(kāi)始積累脯氨酸,比自然生長(zhǎng)時(shí)增加了41.56%。添加BABA處理后能顯著增加煙草體內(nèi)脯氨酸的含量,0.2 mmol/L 和0.5 mmol/L BABA使煙草幼苗脯氨酸含量較鹽脅迫組分別增加了1394%和927%,見(jiàn)圖3(B)。
GSH是葉綠體中重要的抗氧化劑,保護(hù)細(xì)胞在光合成時(shí)免受氧化傷害[28]。GSH是植物體內(nèi)含有-SH的還原物質(zhì),不僅能夠清除細(xì)胞內(nèi)的氧化物質(zhì),還能通過(guò)GSH-和R-S-S-R之間的交換作用將R-S-S-R轉(zhuǎn)化為-SH,使受損的結(jié)構(gòu)蛋白和酶還原[29]。據(jù)Chen報(bào)道添加GSH可明顯提高鹽脅迫下葉片抗氧化酶活性和抗氧化物質(zhì)含量,延緩對(duì)液泡膜的傷害[30]。本研究中0.2 mmol/L 和0.5 mmol/L BABA使煙草幼苗體內(nèi)GSH含量較鹽脅迫組分別增加了20.69%和25.13%,見(jiàn)圖3(C)。
結(jié)果表明,鹽脅迫下BABA能夠使煙草體內(nèi)脯氨酸和GSH含量上升,保護(hù)葉綠素的結(jié)構(gòu)和功能,從而提高煙草的耐鹽性。其中,脯氨酸的大量合成,可能是BABA提高煙草耐鹽性的主要途徑。
H2O2是植物細(xì)胞內(nèi)的信號(hào)傳導(dǎo)分子,在一定濃度范圍內(nèi),誘導(dǎo)啟動(dòng)與植物脅迫耐性相關(guān)的基因表達(dá)和生化反應(yīng)[31]。逆境脅迫的初期誘導(dǎo)植物體內(nèi)以H2O2為代表的活性氧積累,作為植物感受逆境脅迫的第二信使,調(diào)控下游信號(hào),誘導(dǎo)下游調(diào)控基因的表達(dá)[31-32]。McAinsh等發(fā)現(xiàn),外源H2O2可使細(xì)胞質(zhì)中Ca2+升高,誘導(dǎo)氣孔關(guān)閉[33],從而降低葉片蒸騰作用,防止細(xì)胞脫水。Hong等[34]報(bào)道,鹽脅迫誘導(dǎo)水稻產(chǎn)生積累H2O2,并且H2O2參與調(diào)控OsGR2和OsGR3的表達(dá)提高水稻抗逆性。本研究中0.2 mmol/L BABA處理后煙草幼苗H2O2含量較鹽脅迫組增加了39.77%,0.5 mmol/L BABA處理較鹽脅迫組增加了47.51%,見(jiàn)圖4。
圖4 對(duì)照組、鹽脅迫組、BABA組煙草幼苗H2O2的含量Fig.4 H2O2 content in tobacco seedlings of control,salt stress and BABA groups
NaCl通過(guò)對(duì)植物的滲透脅迫,一方面造成離子毒害,另一方面引起活性氧中間體(Reactive Oxygen Species,ROS)爆發(fā),破壞細(xì)胞正常的生理活動(dòng)[35]。ROS能夠誘導(dǎo)損傷線粒體DNA,形成脂質(zhì)或核苷酸過(guò)氧化物;使不飽和脂肪酸間發(fā)起各種抗氧化連鎖反應(yīng)[36,37]。葉綠體、線粒體和過(guò)氧化物酶體是植物產(chǎn)生ROS的主要地方[38,39],同時(shí)也形成了抵御ROS機(jī)制,植物抗氧化脅迫的能力與其抗逆性呈正相關(guān)關(guān)系[40]。SOD是植物體內(nèi)重要的抗氧化酶,其能將O2-轉(zhuǎn)化為H2O2[41],再由POD、APX、CAT、GSH等將H2O2轉(zhuǎn)化為H2O,從而降低氧化脅迫對(duì)植物造成的傷害[38,42,43]。由圖5(D)所示,0.2 mmol/L BABA處理下,煙草幼苗SOD比活力較鹽脅迫組提高了14.15%,0.5 mmol/L BABA處理較鹽脅迫組提高了12.10%,機(jī)體將過(guò)多氧化性極強(qiáng)的超氧化物離子(O2-)轉(zhuǎn)化為H2O2從而減輕氧化脅迫。APX是植物清除H2O2的關(guān)鍵酶,其以還原型抗壞血酸(ASA)為底物將H2O2還原為H2O,生成的氧化型抗壞血酸(DASA)通過(guò)GSH還原為ASA。由圖5(A)所示,0.2 mmol/L BABA處理下,煙草幼苗APX含量較鹽脅迫組升高2.30%,0.5 mmol/L BABA處理下,APX活力較鹽脅迫組升高0.80%。由圖5(B)所示,0.2 mmol/L BABA處理下,煙草幼苗CAT活力較鹽脅迫組提高了34.95%,0.5 mmol/L BABA處理較鹽脅迫組提高36.30%。由圖5(C)所示,0.2 mmol/L BABA處理下,煙草幼苗POD活力較鹽脅迫組提高了123.4%,0.5 mmol/L BABA處理較鹽脅迫組提高60.87%。最后H2O2含量增加可能是因?yàn)镾OD將轉(zhuǎn)換為的速率大于APX、CAT、POD將H2O2轉(zhuǎn)換為H2O的速率。結(jié)果表明,BABA能夠提高煙草在遭受鹽脅迫時(shí)的抗氧化酶活性,其中SOD將破壞性強(qiáng)的轉(zhuǎn)換為破壞性較弱的H2O2,并由CAT、APX、POD和GSH等將過(guò)量的H2O2轉(zhuǎn)化為H2O而維持細(xì)胞內(nèi)H2O2的平衡,而B(niǎo)ABA能使煙草體內(nèi)的H2O2含量上升,可能是H2O2其能行使信號(hào)分子的作用,從而有效地降低高鹽脅迫對(duì)煙草的傷害。
圖5 對(duì)照組、鹽脅迫組、BABA組煙草幼苗APX(A)、CAT(B)、POD(C)、SOD(D)活力變化Fig.5 Activity changes of APX (A),CAT (B),POD (C) and SOD (D ) in tobacco seedlings of control,salt stress and BABA groups
圖6 對(duì)照組、鹽脅迫組和 BABA組葉片中NtRAB18、NtERD10B、NtERD10D 基因的表達(dá)Fig.6 Genetic expressions of NtRAB18,NtERD10B and NtERD10D in tobacco leaves of control,salt stress and BABA groups
目前,通過(guò)導(dǎo)入功能基因獲得耐鹽性較好的轉(zhuǎn)基因作物取得了一定進(jìn)展[7,44-45],但轉(zhuǎn)基因植物的安全性問(wèn)題限制了其生產(chǎn)應(yīng)用。通過(guò)外源施加BABA誘導(dǎo)煙草特定基因的表達(dá)從而提高其耐鹽性具有安全性好、操作簡(jiǎn)便等優(yōu)越性。Kasuga等報(bào)道,煙草中NtERD10B和NtERD10D受轉(zhuǎn)錄因子DREB1A調(diào)控,與煙草水分脅迫密切相關(guān)[46]。NtERD10B與NtERD10D均含有DER/CRT元件,該元件是與干旱、低溫脅迫相關(guān)基因所共有的啟動(dòng)子區(qū)域元件。包含該元件的基因在逆境脅迫下大量表達(dá),可提高植物的抗逆性[47,48]。NtERD10B編碼胚胎發(fā)育晚期豐富蛋白2族(D11 LEA)并與植物脫水密切相關(guān)。這類(lèi)蛋白在煙草細(xì)胞內(nèi)具有保護(hù)蛋白結(jié)構(gòu)和分子伴侶的功能并受ABA和脫水信號(hào)的調(diào)節(jié)[49,50]。NtERD10B基因?qū)λ置{迫尤為敏感,其表達(dá)量的大小已經(jīng)成為衡量植物受水分脅迫程度的標(biāo)準(zhǔn)[46,49]。由圖6可知,通過(guò)外源施加BABA,NtERD10B、NtERD10D基因表達(dá)量較鹽脅迫組均顯著增加。植物在逆境脅迫下ABA含量會(huì)發(fā)生變化,而許多逆境脅迫下的基因也受外源ABA的調(diào)控,ABA是植物體內(nèi)重要的逆境脅迫信號(hào)分子[11,51-53]。NtRAB18的啟動(dòng)子含有DRE-和ABRE調(diào)節(jié)元件,通過(guò)ABA依賴(lài)和不依賴(lài)兩種途徑,受ABA誘導(dǎo)表達(dá)[54-56]。由圖6可知,0.2 mmol/L BABA和0.5 mmol/L BABA處理,均能顯著提高NaCl脅迫下煙草幼苗葉片NtRAB18的表達(dá)量。由此可知,BABA可以通過(guò)ABA途徑來(lái)提高煙草耐鹽性。
高鹽脅迫使煙草生長(zhǎng)受到抑制,其葉片面積減小,根長(zhǎng)變短,根系沒(méi)有正常生長(zhǎng)的煙草發(fā)達(dá),同時(shí)煙草細(xì)胞膜脂過(guò)氧化程度增加、膜透性增加,電解質(zhì)外滲,葉綠素被破壞。外源施加0.2 mmol/L和0.5 mmol/L BABA均能有效緩解以上情況,促進(jìn)煙草在鹽脅迫下生長(zhǎng)。分析認(rèn)為BABA提高煙草耐鹽性一方面通過(guò)增加煙草體內(nèi)脯氨酸、葉綠素、GSH含量,另一方面通過(guò)提高抗氧化酶SOD的活性,將毒性較強(qiáng)的O2-轉(zhuǎn)化為H2O2,并由 CAT、APX、POD等將過(guò)量的H2O2轉(zhuǎn)化為H2O維持細(xì)胞內(nèi)H2O2平衡。同時(shí),BABA能使煙草體內(nèi)的H2O2含量上升,這可能與H2O2能作為感受逆境脅迫的第二信使有關(guān)。BABA提高煙草的耐鹽性與煙草ABA途徑的相關(guān)基因表達(dá)有關(guān),一方面它提高含有DRE/CRT元件的NtERD10B、NtERD10D基因的表達(dá)量,另一方面提高含有DRE-和ABRE元件的NtRAB18基因的表達(dá)量。結(jié)果表明BABA提高煙草的耐鹽性是通過(guò)激發(fā)植物體內(nèi)抗氧化系統(tǒng)以及通過(guò)ABA途徑提高NtERD10D、NtERD10B和NtRAB18等逆激基因的表達(dá)而實(shí)現(xiàn)的。
另外,本實(shí)驗(yàn)結(jié)果許多指標(biāo)與抗旱指標(biāo)密切相關(guān)[11,49,57],我們?cè)诹硗鈱?shí)驗(yàn)中也發(fā)現(xiàn)BABA能夠降低干旱對(duì)煙草生長(zhǎng)的脅迫。我國(guó)許多煙區(qū)會(huì)遇到干旱威脅,因此BABA在提高煙草耐旱作用方面可能具有很好的潛在應(yīng)用前景。
[1]Macková H,Hronková M,Dobrá J,et al.Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression[J].Journal of experimental botany,2013,64(10): 2805-2815.
[2]Mantyla E,Lang V,Palva E T.Role of abscisic acid in droughtinduced freezing tolerance,cold acclimation,and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana [J].Plant Physiology,1995,107(1): 141-148.
[3]Nash L J,Graves W R.Drought and flood stress effects on plant development and leaf water relations of five taxa of trees native to bottomland habitats [J].Journal of the American Society for Horticultural Science,1993,118(6): 845-850.
[4]Wahid A,Gelani S,Ashraf M,et al.Heat tolerance in plants:An overview [J].Environmental and Experimental Botany,2007,61(3): 199-223.
[5]Parida A K,Das A B.Salt tolerance and salinity effects on plants: a review [J].Ecotoxicology and environmental safety,2005,60(3): 324-349.
[6]Allakhverdiev S I,Sakamoto A,Nishiyama Y,et al.Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp [J].Plant physiology,2000,123(3):1047-1056.
[7]魯燕,徐兆師,張瑞越,.W6基因的過(guò)表達(dá)提高轉(zhuǎn)基因煙草的耐鹽性[J].作物學(xué)報(bào),2008,34(6): 984-990.
[8]Fisher M,Pick U,Zamir A.A salt-induced 60-kilodaltion plasma-membrane protein plays a poteintial role in the extreme halotolerance of the alga dunaliella [J].Plant physiology,1994,106(4): 1359-1365.
[9]Gadallah M.Effects of proline and glycinebetaine on Vicia faba responses to salt stress [J].Biologia plantarum,1999,42(2): 249-257.
[10]Leopold A,Willing R.Evidence for toxicity effects of salt on membranes [J].1984.
[11]Jakab G,Ton J,Flors V,et al.Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses [J].Plant Physiol,2005,139(1): 267-274.
[12]Cao S,Jiang L,Yuan H,et al.β-Aminobutyric acid protects Arabidopsis against low potassium stress [J].Acta Physiologiae Plantarum,2007,30(3): 309-314.
[13]Hossain Z,Makino T,Komatsu S.Proteomic study of betaaminobutyric acid-mediated cadmium stress alleviation in soybean [J].Journal of proteomics,2012,75(13): 4151-4164.
[14]Du Y-L,Wang Z-Y,Fan J-W,et al.β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying [J].Journal of Experimental Botany,2012,63(13): 4849-4860.
[15]Michael P I,Krishnaswamy M.The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings [J].Environmental and Experimental Botany,2011,74(171-177.
[16]Stewart R R,Bewley J D.Lipid peroxidation associated with accelerated aging of soybean axes [J].Plant Physiology,1980,65(2): 245-248.
[17]朱廣廉,植物生理學(xué).植物生理學(xué)實(shí)驗(yàn)[M].北京:北京大學(xué)出版社,1990.
[18]陳建勛,王曉峰.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].廣州:華南理工大學(xué)出版社,2002.
[19]Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J].Plant and Cell Physiology,1981,22(5): 867-880.
[20]Kar M,Mishra D.Catalase,peroxidase and polyphenol oxidase activities during rice leaf senescence [J].Plant Physiol,1976,57(2): 315-319.
[21]Bewley J D.Physiological aspects of desiccation tolerance-a retrospect [J].International Journal of Plant Sciences,1995,393-403.
[22]Ashraf M A,Ashraf M,Ali Q.Response of two genetically diverse wheat cultivars to salt stress at different growth stages:leaf lipid peroxidation and phenolic contents [J].Pak J Bot,2010,42(1): 559-565.
[23]Noreen Z,Ashraf M,Akram N.Salt-Induced Regulation of Some Key Antioxidant Enzymes and Physio-Biochemical Phenomena in Five Diverse Cultivars of Turnip (Brassica rapa L.) [J].Journal of Agronomy and Crop Science,2010,196(4):273-285.
[24]Maslenkova L T,Zanev Y,Popova L P.Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids [J].Journal of plant physiology,1993,142(5): 629-634.
[25]Pardha Saradhi P,Mohanty P.Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage [J].Journal of Photochemistry and Photobiology B: Biology,1997,38(2): 253-257.
[26]Hamilton E W,Heckathorn S A.Mitochondrial adaptations to NaCl.Complex I is protected by anti-oxidants and small heat shock proteins,whereas complex II is protected by proline and betaine [J].Plant physiology,2001,126(3): 1266-1274.
[27]Binzel M L,Hasegawa P M,Rhodes D,et al.Solute accumulation in tobacco cells adapted to NaCl [J].Plant physiology,1987,84(4): 1408-1415.
[28]Ramakrishna B,Rao S S R.24-Epibrassinolide maintains elevated redox state of AsA and GSH in radish (Raphanus sativus L.) seedlings under zinc stress [J].Acta Physiologiae Plantarum,2013,35(4): 1291-1302.
[29]Zhang J H,Huang W D,Liu Y P,et al.Effects of Temperature Acclimation Pretreatment on the Ultrastructure of Mesophyll Cells in Young Grape Plants (Vitis vinifera L.cv.Jingxiu)Under Cross-Temperature Stresses [J].Journal of Integrative Plant Biology,2005,47(8): 959-970.
[30]Chen Q,Zhang W-H,Liu Y-L.Effect of NaCl,glutathione and ascorbic acid on function of tonoplast vesicles isolated from barley leaves [J].Journal of plant physiology,1999,155(6):685-690.
[31]Bowler C,Fluhr R.The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].Trends in plant science,2000,5(6): 241-246.
[32]Neill S,Desikan R,Hancock J.Hydrogen peroxide signalling[J].Current opinion in plant biology,2002,5(5): 388-395.
[33]McAinsh M R,Webb A A,Taylor J E,et al.Stimulus-induced oscillations in guard cell cytosolic free calcium [J].The Plant Cell Online,1995,7(8): 1207-1219.
[34]Hong C-Y,Chao Y-Y,Yang M-Y,et al.NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid [J].Plant and soil,2009,320(1-2): 103-115.
[35]Munns R,James R A,L?uchli A.Approaches to increasing the salt tolerance of wheat and other cereals [J].Journal of Experimental Botany,2006,57(5): 1025-1043.
[36]Hernandez J,Olmos E,Corpas F,et al.Salt-induced oxidative stress in chloroplasts of pea plants [J].Plant Science,1995,105(2): 151-167.
[37]Asada K.The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons [J].Annual review of plant biology,1999,50(1): 601-639.
[38]Nor’aini M F,Finch R P,Burdon R H.Salinity,oxidative stress and antioxidant responses in shoot cultures of rice [J].Journal of Experimental Botany,1997,48(2): 325-331.
[39]del Río L A,Sandalio L M,Palma J,et al.Metabolism of oxygen radicals in peroxisomes and cellular implications [J].Free Radical Biology and Medicine,1992,13(5): 557-580.
[40]Jiang M,Zhang J.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the act ivities of antioxidant enzymes in maize leaves [J].Journal of Experimental Botany,2002,53(379): 2401-2410.
[41]Bowler C,Van Camp W,Van Montagu M,et al.Superoxide dismutase in plants [J].Critical Reviews in Plant Sciences,1994,13(3): 199-218.
[42]Sudha G,Ravishankar G.Involvement and interaction of var ious signaling compounds on the plant metabolic events during defense response,resistance to stress factors,formation of secondary metabolites and their molecular aspects [J].Plant Cell,Tissue and Organ Culture,2002,71(3): 181-212.
[43]Tsukamoto S,Morita S,Hirano E,et al.A novel cis-element that is responsive to oxidative stress regulates thr ee antioxidant defense genes in rice [J].Plant physiology,2005,137(1): 317-327.
[44]張朝,劉美英,陳學(xué)平.轉(zhuǎn)TaW基因提高煙草的耐鹽性[J].中國(guó)煙草學(xué)報(bào),2011,17(3): 78-81.
[45]劉文奇,陳旭君.ERF 類(lèi)轉(zhuǎn)錄因子 OPBP1 基因的超表達(dá)提 高煙草的耐鹽能力[J].植物生理與分子生物學(xué)學(xué)報(bào),2002,28(6): 473-478.
[46]Kasuga M,Miura S,Shinozaki K,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer [J].Plant and Cell Physiology,2004,45(3): 346-350.
[47]Zhang H,Huang Z,Xie B,et al.The ethylene-,jasmonate-,abscisic acid-and NaCl-responsive to mato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco [J].Planta,2004,220(2): 262-270.
[48]Wang H,Huang Z,Chen Q,et al.Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance [J].Plant molecular biology,2004,55(2): 183-192.
[49]Dobra J,Vankova R,Havlova M,et al.Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drou ght stress and subsequent recovery[J].J Plant Physiol,2011,168(13): 1588-1597.
[50]Dure L.A repeating 11-mer amino acid motif and plant desiccation [J].The Plant Journal,1993,3(3): 363-369.
[51]Xing Y, Jia W,Zhang J.AtMKK1 mediates ABA-induced CAT1 expression and H2O2production via AtMPK6-coupled signaling in Arabidopsis [J].The Plant journal : for cell and molecular biology,2008,54(3): 440-451.
[52]Renault H,El Amrani A,Berger A,et al.gamma-Aminob utyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots [J].Plant,cell &environment,2013,36(5):1009-1018.
[53]Verslues P,Zhu J.Before and beyond ABA: ups tream sensing and internal signals that determine ABA accumulation and response under abiotic stress [J].Biochemical Society Transactions,2005,33(Pt 2): 375-379.
[54]L?ng V,Palva E T.The expression of a rab-related gene,rab18,is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh [J].Plant molecular biology,1992,20(5): 951-962.
[55]Li C,Chang P P,Ghebremariam K M,et al.Overe xpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance [J].Biochemical and biophysical resea rch communications,2014,443(2): 357-362.
[56]Iuchi S,Kobayashi M,Taji T,et al.Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthes is in Arabidopsis [J].The Plant Journal,2001,27(4): 325-333.
[57]Zhu J-K.Salt and drought stress signal transduction in plants [J].Annual review of plant biology,2002,53(1): 247-273.
A preliminary study on BABA-induced resistance to high salt stress in tobacco
ZHANG Qingli1,LIU Zaiqiang2,ZHONG Yude2,WANG Wenjie3,LIU Song1,XIAO Xianyi2,HE Kuanxin2,CHEN Xueping1
1 Tobacco and Health Research Center,University of Science and Technology of China,Hefei 230051,China;
2 Jiangxi Provincial Tobacco Company,Nanchang 330025,China;
3 Anhui Chizhou Municipal Tobacco Company,Chizhou 247100,China
This paper introduced the function of BABA in protecting tobacco from high salt stress and attempted to explore the mechanism through measuring antioxidative molecular content,antioxidative enzyme activities,and related gene expression.Results showed that 0.2 mmol/L BABA and 0.5 mmol/L BABA both could increase root length and fresh weight of tobacco under high salt stress significantly via increasing the contents of GSH,proline,chlorophyll, H2O2and the activities of SOD,APX,POD and CAT.BABA alleviated the damage of cell membrane integrity via decreasing the contents of MDA and relative electrical conductivity.The involved ABA-response genes NtRAB18,NtERD10B,NtERD10D were higher expressed than the salt stress group.The above evidence suggested that 0.2 mmol/L BABA and 0.5 mmol/L BABA were bene ficial in relieving high salt stress on tobacco by stimulating antioxidant system and over expression genes of ABA-response.
β-aminobutyric acid;tobacco;high salt stress
張清莉,劉再?gòu)?qiáng),鐘玉德,等.BABA 誘導(dǎo)煙草抵御高鹽脅迫的初步研究[J].中國(guó)煙草學(xué)報(bào),2015,21(3)
江西省煙草公司“提高煙草抗逆性新型調(diào)節(jié)物質(zhì)研制及應(yīng)用”(贛煙2011.01.001號(hào))和池州市煙草公司“生物綠肥在生產(chǎn)中應(yīng)用研究”(池?zé)?011.11.18)
張清莉(1989—),碩士,主要研究方向:植物抗逆性和烤煙成分分析,Email:zqingli@ mail.ustc.edu.cn
陳學(xué)平(1956—),博士,教授,主要研究方向?yàn)橹参锷锛夹g(shù)及遺傳改良,Email: chenxp08@ ustc.edu.cn
2014-06-05
: ZHANG Qingli,LIU Zaiqiang,ZHONG Yude,et al.A preliminary study on BABA-induced resistance to high salt stress in tobacco [J]Acta Tabacaria Sinica,2015,21(3)