• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A survey on cross-discipline of control and game

    2015-12-06 00:45:24DaizhanCHENGTingLIU
    Control Theory and Technology 2015年4期

    Daizhan CHENG,Ting LIU

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    Received 13 August 2015;revised 14 Septembr 2015;accepted 15 Septembr 2015

    A survey on cross-discipline of control and game

    Daizhan CHENG?,Ting LIU

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    Received 13 August 2015;revised 14 Septembr 2015;accepted 15 Septembr 2015

    In recentyears,the cross discipline ofgame theory and the controltheory has been emerging.This paperwill survey this newly growing direction.First,the development from optimization of control systems to games consisting of multi-purpose controls is introduced,which demonstrates the close relationship between control theory and game theory.Secondly,the control-oriented game is considered.Three kinds of problems are discussed in details:i)Learning strategy in game theory,which is basically the same as the adaptive control;ii)state space approach for controlsystemsis applied to evolutionary games;and iii)machine-human game is treated as the optimal control problem.Finally,after introducing some new results on potential games,the game-based control is studied.Three kind of control problems using potential games are investigated:i)The consensus of multi-agent systems is considered;ii)the maximization of the distributed coverage of multi-agents on a graph is discussed;and iii)the congestion control is investigated using congestion game technology.Some other game-based control problems are also briefly introduced.A prediction for the control systems in next generation is presented in conclusion.

    Control-oriented game,game-based control,evolutionary game,potential game,logical-Newtonian control system

    DOI 10.1007/s11768-015-5086-2

    1 Introduction

    The technique of automation has a long history.In ancient China,there were numerous inventions including countless automatic machines and equipments.Among them are the seismograph(78-139 BC)for detecting earthquakes;the south-pointing chariot(850-330 AD),which is able to automatically point to a fixed direction when moving;and air pump machine powered by hydro-energy formetallurgy(25-57 BC).There were also many automatic devices world wide in old days.The most famous one could be the Watt speed regulator for steam engine,which was invented by J.Watt in 1768.However,it is commonly recognized that the Wiener’s famous book[1]is the symbol of the birth of control theory.

    Similarly,games have also been exercised and investigated for long time.In China there is a famous storyabout the Tian Ji horse racing.The property allocation law in old Judaism’s rule “Talmud”is an example of cooperative game.However,also the von Neumann and Morgenstern’s book[2]is widely considered as the beginning of game theory.

    Both control theory and game theory were born right after the World War II,partly because of the demand of war for control certain objects in certain competitions.Control and game have many characteristics in common.However,they have been developed independently on their own tracks,and have formed two independent branches of applied mathematics.Roughly speaking,the major common point for controland game is:the player or controller want to “manipulate”the object to reach their purpose.The major difference is:for control the object is something like machine,which is not intelligent,while for game the object is intelligent,which may anti-control.Hence,for control the purpose is to reach an optimization while for game only a Nash equilibrium,as a compromised optimization,may be reached.

    Recently,after many years’development,people found that these two disciplines have closed insight relationship:tools and results in one branch can be used to the other branch.Hence a cross-discipline between them is emerging.It could be either a game-based control or a control-oriented game theory.The purpose of the survey is to introduce this new growing direction for control guys.

    It was pointed out in AFOSR(Air Force Office of Scientific Research)[3]that“Next-generation systems will combine logical operations(such as symbolic reasoning and decision making)with continuous quantities(such as voltages,positions,and concentrations).”.It seems that next-generation of control systems consist of a control component and a decision making component.Recently developed cyber-physical systems could be of this type of systems[4].The game theory could be the foundation of reasoning and decision making.That is the motivation and the attempt of this paper.

    The rest of this paper is organized as follows:Section 2 introduces the development from optimal control to game.The application of results in control theory to games is discussed in Section 3.Conversely,the application ofgame approach to controlproblems is introduced in Section 4.Section 5 is a brief concluding remark.

    2 Optimal control vs.game theory

    2.1 Game theory

    Since the readers of this paper are assumed to be control guys,we give a brief introduction to game theory.We refer to[5,6]as an introduction to game theory.

    Classical game theory consists of two parts:i)noncooperative game and ii)cooperative game.

    Def i nition 1A normal non-cooperative game is a tripleG=(N,S,c),where

    i)N={1,2,...,n}is the set of players.That is,in this game there arenplayers named as 1,2,...,n.

    iii)cj(s):S→R is called the payoff function of playerj,which means how much playerjcan get from the game,j=1,...,n.Putting them together,we havec={c1,...,cn}.

    For non-cooperative games,the Nash equilibrium is the most important concept,which is considered as the“solution”to non-cooperative games.It is defined as follows.

    Def i nition 2In a normal gameG,a profiles=(x*1,...,x*n)∈S is called a Nash equilibrium if

    Example 1Consider a gameGwith two players:P1andP2:

    ?Strategies ofP1:D2={1,2};

    ?Strategies ofP2:D3={1,2,3}.

    The payoffs are shown in Table 1,which is called the payoff bi-matrix,where the first(second)number at(i,j)shows the payoff ofP1(P2)whenP1andP2take strategiesiandj,respectively.

    Table 1 Payoff bi-matrix.

    It is easy to verify that the only Nash equilibrium is(1,2).

    Next,we briefly introduce the cooperative game.

    Def i nition 3A (transferable utility)cooperative gameG=(N,v)consists of

    i)nplayersN:={1,...,n};

    ii)v:2N→R is called the characteristic function;S∈2Nis called a coalition;v(S)is the value ofS,(which means the profit(cost:c:2N→R)of coalitionS)and

    Example 2Consider a gameGwithN={1,2,...,n}:

    LetS∈2N.A singe glove is worthy$0.01,a pair of gloves is worthy$1.Then,

    The most important issue for cooperative games is:how to distribute the bonus achieved by the cooperation?It is defined as imputation.

    Def i nition 4Given a cooperative gameG=(N,v),x∈Rnis called an imputation,if

    2.2 Multi-objective control and game

    We start from a simple control system as follows:

    The problem is to find a control,which minimizesJ:

    It is well known that the optimal control is

    whereP≥0 satisfying algebraic Riccati equation:

    Next,we consider another linear system

    whereuiis to minimizeJi,i=1,2.That is,

    Then we get“optimal controls”,which satisfy the following equations:

    wherePi>0,i=1,2,satisfying coupled algebraic Riccati equations:

    In fact,the “optimal controls”form a Nash equilibrium[7].

    Consider an affine nonlinear control system

    wherex(t)∈Rn,u(t)∈Rm,and assume the performance index is

    withQ(x)>0,R>0.Then the optimal control is

    whereV*(x)satisfies the following Hamilton-Jacobi-Bellman(HJB)equation:

    We refer to[8,9]for detailed discussion.

    Similarto linearcase,when we considera multi-group input nonlinear system

    wherex(t)∈Rn,uj∈Rmj,j=1,...,s.Moreover,the purpose ofujis to minimizeJj,that is

    Then the “optimal solution”,which is again a Nash equilibrium,is[10]

    whereJi,i=1,...,ssatisfies the coupled HJB equation:

    From the above discussion one sees easily that the control problems and the game problems are so closely related.Hence,the technique developed in one field can easily be used to the other.

    This approach may be useful for practical multiobjective control problems,which have no natural corresponding relation between the set of controls and the set of objects.An artificial correspondence may need to be designed.

    3 Control-oriented games

    In this section,we consider some typical applications of tools in control theory to games.

    3.1 Learning strategies

    As demonstrated in[13],as well as in[12],learning strategy is a way to win in a competitive game.We refer to[14]for more about learning in games.In principle,updating the strategy through learning is the same as the adaptive control.We use an example to depict it.

    Example 3Consider the R-P-S game.We describe the(simplest)learning strategy as follows:Assume thatP1uses the learning strategy.He sets an initial frequency for his opponent asF(0)=(fr(0),fp(0),fs(0))>0,say,F(0)=(fr(0),fp(0),fs(0))=(1,1,1).

    Then at stepthe updates his opponent’s frequency by

    wherexi(t)is the strategy of playeriat stept.Then he uses

    as the estimated mixed strategy,x2(t+1),ofP2att+1 and finds the best response to this strategy.That is

    Itwasproved thatundercertain condition the learning strategy will converge to a Nash equilibrium[15].

    3.2 State space frame for networked evolutionary games

    State space representation is one of the most important tools in control theory.In this section,the algebraic state space representation is introduced and applied to networked evolutionary games.

    Def i nition 5[16] A networked evolutionary game,denoted by((N,E),G,Π),consists of

    i)a network(graph)(N,E);

    ii)an FNG(fundamental network game),G,such that if(i,j)∈E,theniandjplay FNG with strategiesxi(t)andxj(t),respectively;

    iii)a local information based strategy updating rule(SUR),Π.

    There are two formulas to calculate the overall payoff for each player.

    Def i nition 6[16] Letcijbe the payoff of the playeriin the FNG betweeniandj,then the overall payoff of playeriis

    Assume that playeriuses his neighbors’information at timet,that is,their strategiesxj(t)and their payoffscj(t),j∈U(i)to update his strategy.That is

    Sincecj(t)depends onx?(t),?∈U(j),then we have

    Note thatU2(i)is the set of neighborhood plus neighborhoods’neighborhood.

    For finite games,(23)is a standardk-valued logical dynamic system.Therefore,the algebraic state space representation of logical systems is applicable[17].We use an example to depict this.

    Example 4Consider a NEG,where the network isR3as Fig.1,the FNG is the R-S-P game and the payoff bi-matrix is show in Table 2.

    Fig.1 R3.

    Assume thatthe strategy updating rule isΠ-I(unconditional imitation with fixed priority),which is described as follows:

    Table 2 Payoff bi-matrix of R-S-P.

    In non-unique case:

    set priority:

    Then we have the dynamics described in Table 3.

    Table 3 Payoffs→Dynamics.

    Identifying 1~ δ13,2~ δ23,3~ δ33,we have the vector form of eachfias

    3.3 Man-machine games

    Man-machine game is basically a controlproblem.Assume that there arenmachines andmhuman players.Their strategies are denoted bymi,i=1,...,nandhj,j=1,...,m,respectively.Then the dynamic model we concerned is described as follows:

    Assume that the human purpose is to maximize their payoff:

    HereNcan be either finite or infinite.

    Case 1Assume that both human’s and machine’s strategies are of pure strategy.Then we know the optimalsolution can appears on a cycle[18].Moreover,[19]shows that the optimal controls can be expressed as a state feedback form.The problem coincides with the optimization of logical control systems[20].

    Case 2Assume that the mixed strategies are used.Then(28)becomes a probabilistic logical dynamic system and(29)is replaced by its expected values as

    It is clear that the cycle searching technique is not applicable to it.Recently,[21]proposes a method to solve this problem.The approach consists of two steps.

    Step 1Assume thatN<∞.The dynamic programming is used to find the optimal control.

    Step 2N= ∞:Choosing a proper filter length ? to get optimal control forN=?.Then use the receding horizon method to get the optimal control for infinite case.

    4 Game-based control

    Since most of the game-based controls are related to potential games,we give a brief introduction to potential game first.

    4.1 Potential games

    Def i nition 7Consider a finite gameG=(N,S,c).Gis a potential game if there exists a functionP:S→R,called the potential function,such that for everyi∈Nand for everys-i∈S-iand?x,y∈Si,

    Potential games have some nice properties,which makes them helpful in control design.We listed some as follows.

    Theorem 1[22] IfGis a potential game,then the potential functionPis unique up to a constant number.Precisely ifP1andP2are two potential functions ofG,thenP1-P2=c0∈R.

    Theorem 2[22] Every finite potential game possesses a pure Nash equilibrium.The SUR:Sequential or cascading myopic best response adjustment(MBRA)leads to a Nash equilibrium.

    Verifying whether a game is potential is a long standing problem[23,24].It was pointed in[24]that“It is not easy,however,to verify whether a given game is a potential game.”Recently,[25]presents an easy way to verify this.We briefly introduce this method.

    Consider a normal game(N,S,c),where|N|=n,|Si|=k,i=1,...,n,and the payoff function of playeriis denoted as

    Finally,we construct a linear system as

    (36)is called the potential equation and Ψ is called the potential matrix.Then we have the following result:

    Theorem 3[25] A finite gameGis potential if and only if the potential equation has solution.Moreover,the potentialPcan be calculated by

    4.2 Consensus of MAS

    Consider a multi-agent system[26].Assume that the network graph is(N,E(t)),whereN={1,2,...,n}are agents and they have a time-varying topology:E(t).The dynamic model is

    and the set of strategies are

    Define a potential function as

    Correspondingly,the payoff functions are designed as

    Then it is clear that asP(a)reaches its maximum the MAS also reaches a consensus.An algorithm called binary log-linear learning(BLLL)is introduced in[26].Two assumptions are given as

    A1)Reversibility:Fora1i,a2i∈Ai,

    Then we have the following result:

    Theorem 4[26]Consider system(39).Assume A1)and A2),then BLLL leads to a consensus.

    Consensus via strategy reinforced learning has also been discussed in[27].

    4.3 Distributed coverage of graphs

    The problem can also be formulated as a potential game.we define the potential function as

    The corresponding payoff functions are designed as

    Denote the restricted action set asRi(ai(t-1))?V.

    Give the region condition as

    ?Covering radiusdj(If ξ ∈Udj(j),then ξ is covered byj).

    For the computation ofci(a′i,a-i(t))wherea′i∈Ai(ai(t)),the following condition just satisfied:

    Then we have the following theorem.

    Theorem5[28]Assuming A1),A2),and(44)and using the BLLL algorithm(with large enough β),the number of covered nodes is asymptotically maximized(in probability).

    4.4 Congestion games

    Congestion game is also called the congestion control in control theory.We use an example to depict it.

    Example 5[22]Consider the road map as Fig.2.Assume that there are two players:Player 1 wants to go fromAtoC,player 2 wants to go fromBtoD:

    Fig.2 A road map.

    Then player 1 has the set of strategies as

    and player 2 has the set of strategies as

    Assume that the cost for roadjto be used byscars is denoted bycj(s).Then the payoff bi-matrix is obtained as in Table 3.

    Table 3 Payoff bi-matrix of roads.

    It is easy to verify that this is a potential game with

    In general,a congestion model can be described as follows:

    Def i nition 8A congestion model is defined as follows:

    where

    ?Players:N={1,2,...,n};

    ?Facilities:M={1,2,...,m};

    ?Set of strategies:Si:= Σi? 2M;

    ?Facility cost:fj:N→R(depends on number of users).

    LetAi∈ Σibe a strategy.

    For eachj∈M,set

    Then we define

    ?Payoff functions:

    ?Potential function:

    The following theorems show that the congestion game is essentially equivalent to a potential game:

    Theorem 6[22]Every congestion game is a potential game.

    Theorem 7[22] Every finite potential game is isomorphic to a congestion game.

    Congestion game technique hasbeen used to the road control[26,30].It seems also useful for some other control problems.

    4.5 Some other applications

    What we discussed above are some potential game based applications.There are many other applications of game theory to control problems.They involve various topics in game theory.Some examples are:

    ?the scheduling-allocation of power systems[31,32];and

    ?the application ofcooperative game theory to control problems[33].

    There are also many new results about game-based controls in recent TAC,for instance,[34],[35]and[36],just to name few.

    5 Conclusions

    Game theory and control theory are deeply interconnected.Their cross-discipline is a very attractive new growing direction of control theory.In this survey paper we first discussed the development from optimal control to the games led from multi-purpose controls.Then we discussed the two directions of interactions.

    1)Control theory→Game theory:

    ?state space approach to evolutionary games;

    ?man-machine games;and

    ?learning(or adaptive)control in games.

    2)Game theory→Control theory(potential):

    ?control of MASs via designed potentials;

    ?distributed graph covering;

    ?congestion control;and

    ?control of power systems,etc.

    It was mentioned in[3]that“Among the challenges currently facing the field,a few examples provide insight into the difficulties ahead:Control of systems with both symbolic and continuous dynamics:Next-generation systems will combine logical operations(such as symbolic reasoning and decision making)with continuous quantities(such as voltages,positions,and concentrations).The current theory is not well tuned for dealing with such systems,especially as we scale to very large systems.”.It seems very likely that the control system of next generation should consist of two parts:Logical part and mechanical part,which may be called a logical-Newtonian control system(LNCS).In an LNCS the mechanical part is the traditional control system and the logical part is the decision-making part,and the game theory willplay a key role forthis.Briefly,we may expect that the control system of next generation is a combination of dynamic game with mechanical control system.

    [1]N.Wiener.Cybernetics:Or Control and Communication in the Animal and the Machine.Paris:Hermann&Cie,Cambridge,MA:MIT Press,1948.

    [2]J.von Neumann,O.Morgenstern.Theory ofGames and Economic Behavior.Princeton,NJ:Princeton University Press,1944.

    [3]R.M.Murray,K.M.Astrom,S.P.Boyd,et al.Future directions in control in an information rich world-A summary of the report of the panel,on future directions in control,dynamics,and systems.IEEE Control Systems Magazine,2003,23(2):20-33.

    [4]R.Baheti,H.Gill.Cyber-physical systems.The Impact of Control Technology,Washington D.C.:IEEE,2011:161-166.

    [5]R.Gibbons.A Primer in Game Theory.Harlow:Printice Hall,1992.

    [6]Z.Xie.An Introduction to Game Theory.Beijing:Science Press,2010(in Chinese).

    [7]J.C.Engwerda.Computational aspects of the open-loop Nash equilibrium in linear quadratic games.Journal of Economic Dynamics and Control,1998,22(8/9):1487-1506.

    [8]A.Friedman.Differential Games.Rhode Island:American Mathematical Society,1974.

    [9]N.Yu.Lukoyanov.A Hamilton-Jacobi type equation in control problems with hereditary information.Journal of Applied Mathematics and Mechanics,2000,64(2):243-253.

    [10]F.L.Lewis,D.L.Vrabie,V.L.Syrmos.Optimal Control.3rd ed.Hoboken,NJ:John Wiley&Sons,2012.

    [11]O.Candogan,I.Menache,A.Ozdaglar,et al.Flows and decompositions of games:harmonic and potential game.Mathematics of Operations Research,2011,36(3):474-503.

    [12]Z.Wang,B.Xu,H.Zhou.Socialcycling and conditional responses in the Rock-Paper-Scissors game.Scientific Reports,2014:DOI 10.1038/srep05830.

    [13]V.Mnih,K.Kavukcuoglu,D.Silver,et al.Human-level control through deep reinforcement learning.Nature,2015,518(7540):529-533.

    [14]D.Fudenberg,D.K.Levine.The Theory of Learning in Games.Cambridge:The MIT Press,1998.

    [15]D.Monderer,L.S.Shapley.Fictitious play property for games with identical interests.Journal of Economic Theory,1996,68:258-265.

    [16]D.Cheng,F.He,H.Qi,et al.Modeling,analysis and control of networked evolutionary games.IEEE Transactions on Automatic Control,2015,60(9):2402-2415.

    [17]D.Cheng,H.Qi,Z.Li.Analysis and Control of Boolean Networks:A Semi-tensor Product Approach.London:Springer,2011.

    [18]Y.Mu,L.Guo.Optimization and identification in nonequilibrium dynamical games.Proceedings of the 48th IEEE Conference on Decision and Control,Shanghai:IEEE,2009:5750-5755.

    [19]Y.Zhao,Z.Li,D.Cheng.Optimal control of logical control notworks.IEEE Transactions on Automatic Control,2011,56(8):1766-1776.

    [20]E.Fornasini,M.E.Valcher.Optimal control of Boolean control systems.IEEE Transactions on Automatic Control,2014,59(5):1258-1270.

    [21]D.Cheng,Y.Zhao,T.Xu.Receding horizon based feedback optimization for mix-valued logical networks.IEEE Transactions on Automatic Control,2015:DOI 10.1109/TAC.2015.2419874.

    [22]D.Monderer,L.S.Shapley.Potential games.Games and Economic Behavior,1996,14(1):124-143.

    [23]J.Hofbauer,G.Sorger.A differential game approach to evolutionary equilibrium selection.International Game Theory Review,2002,4(1):17-31.

    [24]Y.Hino.An improved algorithm for detecting potential games.International Journal of Game Theory,2011,40(1):199-205.

    [25]D.Cheng.On finite potential games.Automatica,2014,50(7):1793-1801.

    [26]J.R.Marden,G.Arslan,J.S.Shamma.Cooperative control and potential games.IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2009,39(6):1393-1407.

    [27]M.I.Abouheaf,F.L.Lewis,M.S.Mahmoud,et al.Discrete-time dynamic graphical games:model-free reinforcement learning solution.Control Theory and Technology,2015,13(1):55-69.

    [28]A.Y.Yazicioglu,M.Egerstedt,J.S.Shamma.A game theoretic approach to distributed coverage of graphs by heterogeneous mobile agents.Estimation and Control of Networked Systems,2013,4:309-315.

    [29]M.Zhu,S.Martinez.Distributed coverage games for energyaware mobile sensor networks.SIAM Journal on Control and Optimization,2013,51(1):1-27.

    [30]X.Wang,N.Xiao,T.Wongpiromsarn,et al.Distributed consensus in noncooperative congestion games:an application to road pricing.IEEE International Conference on Control and Automation,Hangzhou:IEEE,2013:1668-1673.

    [31]T.Heikkinen.A potential game approach to distributed power control and scheduling.Computer Networks,2006,50(13):2295-2311.

    [32]R.Bhakar,V.S.Sriram,N.P.Padhy,et al.Probabilistic game approaches for network cost allocation.IEEE Transactions on Power Systems,2010,25(1):51-58.

    [33]A.Nedic,D.Bauso.Dynamic coalitional TU gemes:distributed bargaining among players’neighbors.IEEE Transactions on Automatic Control,2013,58(6):1363-1376.

    [34]G.Arslan,M.F.Demirkol,S.Yuksel.On games with coupled constraineds.IEEE Transactions on Automatic Control,2015,60(2):358-372.

    [35]A.Cortes,S.Martinez.Self-triggered best-response dynamics for continuous games.IEEETransactionson AutomaticControl,2015,60(4):1115-1120.

    [36]T.Mylvaganam,M.Sassano,A.Astolfi.Constructive e-Nash equilibria for nonzero-sum differatial games.IEEE Transactionson Automatic Control,2015,60(4):950-965.

    the Ph.D.degree from Washington University,St.Louis,in 1985.Since 1990,he is a professor with Institute of Systems Science,Chinese Academy of Sciences.His research interests include nonlinear system control,numerical method in system analysis and control,and game theory.E-mail:dcheng@iss.ac.cn.

    TingLIUreceived the B.S.degree from Xi’an University of Science and Technology in 2011.Currently,he was a Ph.D.candidate at Academy of Mathematics and Systems Science,Chinese Academy of Sciences.His research interests include game theory and complex system.E-mail:tliu@amss.ac.cn.———-

    ?Corresponding author.

    E-mail:dcheng@iss.ac.cn.Tel.+86-10-8254 1232;fax:+86-10-6258 7343.

    This work was supported by the National Natural Science Foundation of China(Nos.61074114,61273013).

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    午夜视频精品福利| 亚洲精品国产色婷婷电影| 久久久久精品国产欧美久久久| 亚洲av片天天在线观看| 午夜两性在线视频| 久久精品aⅴ一区二区三区四区| 在线天堂中文资源库| 黄频高清免费视频| 国产成人av教育| 国产在线精品亚洲第一网站| 日韩中文字幕欧美一区二区| 亚洲视频免费观看视频| 亚洲五月天丁香| 成年女人毛片免费观看观看9| 亚洲欧美日韩高清在线视频| 亚洲电影在线观看av| 美女大奶头视频| or卡值多少钱| 极品人妻少妇av视频| 亚洲在线自拍视频| 9热在线视频观看99| 又黄又爽又免费观看的视频| 变态另类成人亚洲欧美熟女 | 黄色视频不卡| 在线观看日韩欧美| 丁香六月欧美| 91字幕亚洲| 国产精品二区激情视频| 久久九九热精品免费| 多毛熟女@视频| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费视频日本深夜| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 色播亚洲综合网| av超薄肉色丝袜交足视频| 久久久久久久久久久久大奶| 国产欧美日韩一区二区精品| 最新在线观看一区二区三区| 高清在线国产一区| 欧美一级a爱片免费观看看 | 99热只有精品国产| 亚洲av日韩精品久久久久久密| 亚洲中文av在线| 国产黄a三级三级三级人| 啦啦啦 在线观看视频| 亚洲熟妇熟女久久| 国产亚洲精品久久久久5区| 免费女性裸体啪啪无遮挡网站| 51午夜福利影视在线观看| 日本a在线网址| 制服丝袜大香蕉在线| 一夜夜www| 国产精华一区二区三区| 欧美久久黑人一区二区| 黄色 视频免费看| 国产成年人精品一区二区| 久久久久国内视频| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 欧美日本中文国产一区发布| 精品国产一区二区久久| 色播在线永久视频| 老司机靠b影院| 欧美黄色片欧美黄色片| 久久香蕉激情| 热re99久久国产66热| 午夜视频精品福利| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 免费一级毛片在线播放高清视频 | 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 久久亚洲精品不卡| 亚洲精品久久成人aⅴ小说| 亚洲成人久久性| 无遮挡黄片免费观看| 亚洲欧美激情在线| 免费看a级黄色片| 美女大奶头视频| www.999成人在线观看| 亚洲男人天堂网一区| 欧美日韩乱码在线| 一级作爱视频免费观看| 久99久视频精品免费| a级毛片在线看网站| 国产一卡二卡三卡精品| 99久久久亚洲精品蜜臀av| 国产免费男女视频| 欧美乱码精品一区二区三区| 一级毛片女人18水好多| 久久久久久久久中文| 一边摸一边做爽爽视频免费| 18禁观看日本| 国产激情欧美一区二区| 777久久人妻少妇嫩草av网站| 九色亚洲精品在线播放| 老熟妇乱子伦视频在线观看| 欧美日本视频| 午夜精品在线福利| av欧美777| 午夜视频精品福利| 午夜视频精品福利| 午夜免费成人在线视频| 国产99白浆流出| 真人做人爱边吃奶动态| 一区二区三区国产精品乱码| 丝袜美足系列| 精品久久蜜臀av无| 欧美黄色淫秽网站| 桃红色精品国产亚洲av| 黄片播放在线免费| av中文乱码字幕在线| 大陆偷拍与自拍| 女人精品久久久久毛片| 国产视频一区二区在线看| 亚洲成人国产一区在线观看| 国产国语露脸激情在线看| 久久久久久久久中文| 亚洲精品一区av在线观看| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀| 久久精品成人免费网站| 亚洲五月婷婷丁香| 搡老妇女老女人老熟妇| 一级片免费观看大全| 成人国语在线视频| 老司机午夜福利在线观看视频| 国产精品 欧美亚洲| 久久精品国产综合久久久| 成人国产一区最新在线观看| 亚洲成人国产一区在线观看| 中国美女看黄片| 日韩有码中文字幕| 国产极品粉嫩免费观看在线| 亚洲成a人片在线一区二区| 人成视频在线观看免费观看| 这个男人来自地球电影免费观看| 极品教师在线免费播放| 91麻豆精品激情在线观看国产| 日韩成人在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 国产高清视频在线播放一区| 精品一区二区三区视频在线观看免费| 国产亚洲精品一区二区www| 日韩欧美国产在线观看| 午夜老司机福利片| 99国产精品一区二区蜜桃av| 国产高清有码在线观看视频 | 国产亚洲精品av在线| 精品国产超薄肉色丝袜足j| 欧美黑人精品巨大| 国产精品自产拍在线观看55亚洲| 真人一进一出gif抽搐免费| 日本三级黄在线观看| 中文字幕精品免费在线观看视频| 婷婷精品国产亚洲av在线| 久久久水蜜桃国产精品网| 国产色视频综合| 中文字幕色久视频| 久久久久久久久中文| 精品不卡国产一区二区三区| 黄网站色视频无遮挡免费观看| 成人国产一区最新在线观看| 啪啪无遮挡十八禁网站| 我的亚洲天堂| 亚洲第一av免费看| 久久久国产成人免费| 久久国产亚洲av麻豆专区| 神马国产精品三级电影在线观看 | www.999成人在线观看| 国产欧美日韩综合在线一区二区| 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 午夜精品在线福利| 日韩精品中文字幕看吧| 欧美日本中文国产一区发布| 午夜久久久在线观看| 欧美成人午夜精品| www.999成人在线观看| 亚洲av美国av| 色播在线永久视频| 精品久久久精品久久久| 在线观看免费视频日本深夜| 亚洲中文字幕日韩| 亚洲精品在线观看二区| 亚洲电影在线观看av| ponron亚洲| avwww免费| 岛国视频午夜一区免费看| 两个人免费观看高清视频| 久久久国产精品麻豆| 男女床上黄色一级片免费看| 90打野战视频偷拍视频| av在线天堂中文字幕| 中文字幕人妻熟女乱码| svipshipincom国产片| 久久国产亚洲av麻豆专区| 免费无遮挡裸体视频| 精品人妻1区二区| 久久中文看片网| 成在线人永久免费视频| 日日干狠狠操夜夜爽| 在线观看日韩欧美| 高清在线国产一区| 中文字幕高清在线视频| 亚洲色图av天堂| 久久香蕉精品热| av电影中文网址| 国产又爽黄色视频| 国产精品爽爽va在线观看网站 | 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 激情在线观看视频在线高清| 女性生殖器流出的白浆| 亚洲第一电影网av| 国产三级在线视频| 精品欧美国产一区二区三| 亚洲专区字幕在线| 久久久久久大精品| 亚洲国产精品久久男人天堂| 国产av在哪里看| 亚洲精华国产精华精| 一级毛片高清免费大全| 免费在线观看完整版高清| 国产区一区二久久| 999精品在线视频| 久久人妻熟女aⅴ| 看免费av毛片| 在线免费观看的www视频| 三级毛片av免费| 国产视频一区二区在线看| 香蕉丝袜av| 欧美一级a爱片免费观看看 | 亚洲少妇的诱惑av| 国产精品自产拍在线观看55亚洲| 天天添夜夜摸| 老熟妇仑乱视频hdxx| 91成人精品电影| 久久精品国产亚洲av高清一级| 人人澡人人妻人| 成人三级黄色视频| 美女 人体艺术 gogo| 精品福利观看| 极品教师在线免费播放| 国产99久久九九免费精品| 欧美一区二区精品小视频在线| 日本 av在线| 淫秽高清视频在线观看| 色精品久久人妻99蜜桃| 日韩三级视频一区二区三区| 免费人成视频x8x8入口观看| 最新在线观看一区二区三区| 精品久久久精品久久久| 久久久久亚洲av毛片大全| 变态另类丝袜制服| 国产av又大| 天堂影院成人在线观看| 欧美日韩瑟瑟在线播放| 在线视频色国产色| 国产欧美日韩精品亚洲av| 国产精品久久视频播放| 99久久国产精品久久久| 可以在线观看毛片的网站| 波多野结衣av一区二区av| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 亚洲午夜精品一区,二区,三区| 女人高潮潮喷娇喘18禁视频| 国产精品爽爽va在线观看网站 | 久久久国产欧美日韩av| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 他把我摸到了高潮在线观看| 97超级碰碰碰精品色视频在线观看| 欧美日韩瑟瑟在线播放| 国产又爽黄色视频| 久久久久国内视频| 最新美女视频免费是黄的| 岛国在线观看网站| 国产高清激情床上av| 禁无遮挡网站| 99国产精品99久久久久| 美女免费视频网站| 男女下面插进去视频免费观看| 黄色a级毛片大全视频| 国产亚洲精品第一综合不卡| АⅤ资源中文在线天堂| 婷婷丁香在线五月| 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 一本久久中文字幕| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av在线| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 色av中文字幕| 久久婷婷成人综合色麻豆| 欧美激情高清一区二区三区| 午夜久久久在线观看| 国产精品1区2区在线观看.| 国产一区二区三区综合在线观看| 国产麻豆69| 黑人操中国人逼视频| 午夜a级毛片| 日韩有码中文字幕| 91大片在线观看| 亚洲 欧美 日韩 在线 免费| 国产一卡二卡三卡精品| 亚洲人成77777在线视频| 成熟少妇高潮喷水视频| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 丝袜人妻中文字幕| 色综合婷婷激情| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av电影在线播放| 国产精品乱码一区二三区的特点 | 少妇裸体淫交视频免费看高清 | 国产午夜福利久久久久久| 欧美午夜高清在线| 中国美女看黄片| 久久久久精品国产欧美久久久| 亚洲成人久久性| 亚洲欧美一区二区三区黑人| 欧美人与性动交α欧美精品济南到| 日韩欧美在线二视频| 久久国产亚洲av麻豆专区| 午夜福利欧美成人| 国产精华一区二区三区| 久久热在线av| 亚洲人成网站在线播放欧美日韩| 国产不卡一卡二| 国产av又大| 精品久久久久久久久久免费视频| 国产av在哪里看| 日韩av在线大香蕉| 桃色一区二区三区在线观看| 精品久久久精品久久久| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 国产熟女xx| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 男人舔女人下体高潮全视频| 欧美日韩乱码在线| 一进一出抽搐动态| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 亚洲黑人精品在线| 日本三级黄在线观看| 国产亚洲精品av在线| 亚洲精品国产区一区二| 男人舔女人下体高潮全视频| 成年人黄色毛片网站| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 在线观看免费午夜福利视频| 国产免费男女视频| 久久婷婷人人爽人人干人人爱 | 国产亚洲精品久久久久久毛片| 88av欧美| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 给我免费播放毛片高清在线观看| 亚洲精品av麻豆狂野| avwww免费| 国内毛片毛片毛片毛片毛片| www.精华液| 999精品在线视频| 91成年电影在线观看| 老司机午夜福利在线观看视频| 亚洲精品中文字幕在线视频| 欧美色欧美亚洲另类二区 | 亚洲欧美精品综合久久99| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 丁香欧美五月| 欧美国产日韩亚洲一区| 亚洲av美国av| 免费观看精品视频网站| 国产三级黄色录像| 亚洲av片天天在线观看| 亚洲九九香蕉| 曰老女人黄片| 男人的好看免费观看在线视频 | 亚洲欧美精品综合一区二区三区| 亚洲精品久久国产高清桃花| 一区二区三区激情视频| 成人手机av| 妹子高潮喷水视频| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 国产男靠女视频免费网站| 亚洲成国产人片在线观看| 国产一区在线观看成人免费| svipshipincom国产片| 91麻豆精品激情在线观看国产| 中文字幕最新亚洲高清| 天堂动漫精品| 亚洲国产欧美网| 91av网站免费观看| 国语自产精品视频在线第100页| 久久久久久久久久久久大奶| 亚洲五月色婷婷综合| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 69av精品久久久久久| 国产精品亚洲美女久久久| 美女免费视频网站| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 国产熟女xx| 视频区欧美日本亚洲| 91大片在线观看| 男女下面进入的视频免费午夜 | 91麻豆精品激情在线观看国产| svipshipincom国产片| 免费少妇av软件| 国产成人精品久久二区二区91| 波多野结衣巨乳人妻| 亚洲中文av在线| 可以在线观看毛片的网站| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影 | 看片在线看免费视频| 1024香蕉在线观看| 婷婷丁香在线五月| 精品电影一区二区在线| 亚洲成av人片免费观看| 又紧又爽又黄一区二区| 亚洲av第一区精品v没综合| 咕卡用的链子| 亚洲无线在线观看| 99精品在免费线老司机午夜| 久久久水蜜桃国产精品网| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 一进一出抽搐动态| 啦啦啦免费观看视频1| 亚洲精品国产色婷婷电影| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 中文字幕另类日韩欧美亚洲嫩草| 天天一区二区日本电影三级 | 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看| 1024香蕉在线观看| 看黄色毛片网站| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 国产欧美日韩综合在线一区二区| 美女免费视频网站| 9色porny在线观看| 成在线人永久免费视频| 国产精品99久久99久久久不卡| 如日韩欧美国产精品一区二区三区| 精品电影一区二区在线| 亚洲欧美精品综合久久99| 亚洲成人国产一区在线观看| 丝袜美足系列| 电影成人av| 精品一区二区三区视频在线观看免费| 操出白浆在线播放| 久久国产精品男人的天堂亚洲| 国产av一区在线观看免费| 天堂动漫精品| 无限看片的www在线观看| 麻豆av在线久日| 久久婷婷成人综合色麻豆| 两人在一起打扑克的视频| 男女做爰动态图高潮gif福利片 | 欧美老熟妇乱子伦牲交| 午夜久久久久精精品| 啦啦啦 在线观看视频| 老司机深夜福利视频在线观看| a级毛片在线看网站| 99久久久亚洲精品蜜臀av| 久久精品国产99精品国产亚洲性色 | 在线天堂中文资源库| 韩国av一区二区三区四区| 国产精品 国内视频| 久久久久久人人人人人| 中文字幕色久视频| 国产成年人精品一区二区| 欧美乱码精品一区二区三区| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| 日韩国内少妇激情av| 又大又爽又粗| 精品不卡国产一区二区三区| 亚洲人成伊人成综合网2020| 少妇被粗大的猛进出69影院| 国产精品电影一区二区三区| 国产成人精品久久二区二区91| 亚洲一区二区三区色噜噜| 99久久精品国产亚洲精品| 在线观看免费视频网站a站| 我的亚洲天堂| 日本a在线网址| 成人特级黄色片久久久久久久| 97超级碰碰碰精品色视频在线观看| 日韩 欧美 亚洲 中文字幕| 日韩大尺度精品在线看网址 | 亚洲中文字幕日韩| 国产区一区二久久| 88av欧美| 超碰成人久久| 久9热在线精品视频| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 十八禁网站免费在线| 日日爽夜夜爽网站| 一个人观看的视频www高清免费观看 | 亚洲成av片中文字幕在线观看| netflix在线观看网站| 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| √禁漫天堂资源中文www| 久久久水蜜桃国产精品网| 又黄又爽又免费观看的视频| 后天国语完整版免费观看| 精品人妻1区二区| 女人被狂操c到高潮| 亚洲成人国产一区在线观看| 亚洲专区字幕在线| 好男人在线观看高清免费视频 | 亚洲国产精品成人综合色| ponron亚洲| 日韩欧美在线二视频| 亚洲av日韩精品久久久久久密| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 久久精品aⅴ一区二区三区四区| 精品久久久久久久人妻蜜臀av | 欧美性长视频在线观看| 69精品国产乱码久久久| 美女午夜性视频免费| 亚洲色图综合在线观看| 国产精品日韩av在线免费观看 | 91国产中文字幕| 欧美日本亚洲视频在线播放| 91老司机精品| 亚洲一码二码三码区别大吗| 国产成人欧美| 人妻久久中文字幕网| 国产亚洲欧美在线一区二区| 侵犯人妻中文字幕一二三四区| 欧美色视频一区免费| 国产精品香港三级国产av潘金莲| 窝窝影院91人妻| 最近最新免费中文字幕在线| 国产av在哪里看| 人人澡人人妻人| 搡老妇女老女人老熟妇| ponron亚洲| 亚洲精品国产色婷婷电影| 精品国产乱码久久久久久男人| 999精品在线视频| 免费久久久久久久精品成人欧美视频| av有码第一页| 国产亚洲av高清不卡| 久久久国产成人精品二区| 婷婷六月久久综合丁香| 久久人人爽av亚洲精品天堂| 久久久水蜜桃国产精品网| 无限看片的www在线观看| 高清毛片免费观看视频网站| 国产欧美日韩一区二区三区在线| 欧美中文日本在线观看视频| 一区福利在线观看| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 在线十欧美十亚洲十日本专区| 母亲3免费完整高清在线观看| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 亚洲国产看品久久| 九色国产91popny在线| 久久精品人人爽人人爽视色| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 亚洲成人久久性| 亚洲成国产人片在线观看| 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看 | 一级黄色大片毛片| 1024视频免费在线观看| 亚洲精品国产区一区二| 99久久精品国产亚洲精品| 美女免费视频网站| 欧美久久黑人一区二区| 亚洲精品国产精品久久久不卡| 久久精品国产综合久久久| 69av精品久久久久久| 亚洲中文字幕日韩| 精品无人区乱码1区二区|