• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear quadratic regulation for discrete-time systems with state delays and multiplicative noise

    2015-12-06 00:45:44LinLIHuanshuiZHANG
    Control Theory and Technology 2015年4期

    Lin LI,Huanshui ZHANG

    School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China Received 21 March 2015;revised 25 September 2015;accepted 25 September 2015

    Linear quadratic regulation for discrete-time systems with state delays and multiplicative noise

    Lin LI,Huanshui ZHANG?

    School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China Received 21 March 2015;revised 25 September 2015;accepted 25 September 2015

    In this paper,the linear quadratic regulation problem for discrete-time systems with state delays and multiplicative noise is considered.The necessary and sufficient condition for the problem admitting a unique solution is given.Under this condition,the optimal feedback control and the optimal cost are presented via a set of coupled difference equations.Our approach is based on the maximum principle.The key technique is to establish relations between the costate and the state.

    Optimal control,time-delay system,multiplicative noise

    DOI 10.1007/s11768-015-5036-z

    1 Introduction

    Delay exists widely in areas of economics,physics,biology,chemistry and mechanics[1].This makes the study oftime-delay systems,which can modelprocesses with delay,greatly significantin both theory and application.The research in this field includes stability and stabilization[2-4],optimal control[5,6],H∞control[7,8],etc.As an important part of the optimal control theory,the linear quadratic regulation(LQR)problem for timedelay systems has been extensively studied.For example,[9]focuses on continuous-time linear systems with state delay.A sufficient condition for a feedback control to be optimal is established via a set of differential equations.For other literature on this subject,see[10-12]and references therein.

    Stochastic uncertainty is another important subject in the control theory.In practical situation,there exist various kinds of noises and disturbances.As a result,stochastic systems can characterize the real process more accurately.Stochastic systems can be naturally classified as continuous-time ones and discretetime ones.Continuous-time stochastic systems are usu-ally described by It?o-type differential equations governed by Brownian motion.Systems which correspond to the discretization of It?o-type differential equations are those with multiplicative noises.For works concerning stochastic control,readers are referred to[13,14]in continuous time and[15,16]in discrete time.

    Many control problems have been studied for systems with both time delay and stochastic uncertainty in the literature.These problems include stability and stabilization[17,18],estimation[19],and optimal control[20-22].Reference[20]considers discrete-time stochastic systems with a single inputdelay.By using the stochastic maximum principle,it presents a complete solution to the finite-horizon LQR problem.It establishes a necessary and sufficient condition for the existence of a unique optimal controller and gives an explicit optimal controller via a Riccati-ZXL difference equation.Reference[21]is concerned with the finite-horizon LQR problem for continuous-time stochastic systems with state and inputdelays.The optimalfeedback controlleris given by a new type of Riccati equations whose solvability is not easy to obtain.To the best of our knowledge,previous works on the LQR problem for state-delay systems in both deterministic setting and stochastic setting usually assume that the weighting matrix of the control in the quadratic cost function is strictly positive definite and only give sufficient conditions for the existence of an optimal control;see[9],[12]and[21].Motivated by this,we are devoted to using the method in[20]to solve the LQR problem for stochastic systems with multiple state delays and aim to derive a necessary and sufficient condition for the existence of an explicit optimal control under the condition that the weighting matrix of the control is positive semi-definite.Readers may think that a possible way to settle this problem is to change it into a delay-free one by incorporating the history state into an augmented state.However,the resultant solution is a high-dimensional Riccati equation,which causes computational burden as pointed out by[7].

    The contributions of the paper lie in that a necessary and sufficient condition for the LQR problem admitting a unique solution is given and under this condition,the optimal feedback control and the optimal cost are presented in terms of coupled difference equations.The main technique is to solve the maximum principle,which can be viewed as delayed forward(the state equation)and delayed backward(the costate equation)stochastic difference equations.The optimal costate is expressed as a linear function of a finite length of state and the corresponding coefficient matrices satisfy the above-mentioned coupled difference equations.

    The rest of the paper is organized as follows.In Section 2,the stochastic LQR problem for state-delay systems is formulated.Section 3 presents the solution to the problem.Section 4 provides the proof of the main results.Section 5 uses numerical examples to illustrate the results.Section 6 makes a conclusion.Some details of proof are given in Appendix.

    NotationRnstands for the usual n-dimensional Euclidean space;Rn×mis the space of real matrices with order n×m;The superscript′means the matrix transpose;I denotes the unit matrix;A symmetric matrix M>0(reps.≥0)means that it is strictly positive definite(reps.positive semi-definite);For a random variable ξ and a σ-algebra F,E(ξ)and E(ξ|F)represents the mathematical expectation of ξ and the conditional expectation of ξ with regards to F,respectively; δi,jis the usual Kronecker function,i.e.,δi,i=1 and δi,j=0 if i≠j.

    2 Problem statement

    Consider the following discrete-time system with state delays and multiplicative noise:

    Let Fkbe the natural filtration generated by vk,i.e.,Fkis the σ-algebra generated by{v0,...,vk}.

    Consider the cost function

    whereQ≥0,R≥0 andW≥0.Define the admissible control set as

    The problem to be addressed is stated as follows.

    Problem1Finduk∈Uadto minimize the costfunction(2)subject to system(1).

    Remark 1(1)is a discrete-time system which admits two features:one is the time delay and another is the white noisevk.Its possible application can be found in networked control systems(NCSs)with transmission delay as pointed out by[17].Moreover,a special case of system(1)whenvkis an independent Bernoulli process is often used to describe packet dropout in NCSs;see[23]and[24].

    3 Main results

    3.1 A special case:scalar noise

    In this section,we will focus on a special case of system(1)withr=1:

    Problem2Finduk∈Uadto minimize the costfunction(2)subject to system(4).

    Motivated by the approach proposed in[25],the maximum principle for Problem 2 is derived as

    where the terminal value is given by

    Theorem 1Problem 2 has a unique solution if and only if

    fork=N,...,0.In this case,the unique optimal controlukand the optimal value of(2)are respectively

    In addition,the following relation between the optimal costate and the state holds:

    The proof of Theorem 1 will be provided in the next section.

    for the convenience of simplicity.

    with terminal value(12)and(13).The role of equation(19)in our problem is the same as that of the generalized difference Riccati equation in the standard stochastic LQR problem[15].

    Remark 4This remark is to make clear the differences of this paper from our previous one[20].

    ?First,problems considered in these two papers are completely different.Reference[20]studies the LQR problem for the following system with a single input delay:

    While this paper focuses on system(1)which is with multiple state delays.Obviously,(20)and(1)are essentially different.

    ?Second,the maximum principle in[20]is given by

    where the equilibrium equation is with a single inputdelay.In this paper,the adjoint equation(7)is a backward difference equation with multiple delays.Equations(4)-(8)are more difficult to solve than(20)-(22)(see Section 4).

    ?Third,the results are different.In[20],the optimal controller is shown to be a predictor form as

    where E[xk+d|Fk-1]is the conditional expectation ofxk+dwith respect to Fk-1and can be expressed as

    While in this paper,the optimal controller has the form as(16)which involves a finite length of history states.In addition,the gains are determined by the coupled difference equations(19).

    Remark 5This paper concentrates on the finitehorizon LQR problem.By showing the convergence of the solution to equations(19)whenNtends to+∞,we can derive the corresponding results in infinite-horizon case.On the other hand,combination of this paper with[22],which is concerned with the LQR problem for systems with multiple input delays,will yield results for systems with both multiple state delays and multiple input delays.

    3.2 Solution to Problem 1

    Next,we shall extend the results in the previous section to system(1).The increase of the dimension of the white noise does not cause any essential changes.A counterpart of Theorem 1 will be presented without proof.

    Theorem 2Problem 1 admits a unique optimal control iff

    fork=N,...,0,whereRkis given by the following coupled difference equations:

    with terminal value as(12)-(14).Under this condition,the unique optimal control and the optimal cost are as

    4 Derivation of the main results

    4.1 Necessity of Theorem 1

    Suppose that Problem 2 admits a unique solution.We will show that the matrixRkdefined by(9)-(14)is positive definite,the unique optimal control is as(16),and the optimal costate λk-1can be expressed like(18).

    with terminal value given by

    Suppose that Problem 2 has a unique optimal control,thenRk,which has been defined above,satisfies

    fork=N,...,0.The optimal control possesses the form of

    When the control is optimal,the following relations hold

    ProofSee Appendix.

    Lemma 2Fork=0,...,N,there holds

    ProofSee Appendix.

    Finally,it can be shown that(33)can be rewritten as(11)with the help of(42)and(43).This process is completely similar to the derivation of(a16),so details are not provided here.

    4.2 Suff i ciency of Theorem 1

    ProofSupposeRk>0 fork=N,...,0 whereRkis determined by(9)-(14),then it will be proven that the unique solution to Problem 2 is(16)and the optimal value of(2)is(17).To this end,define

    In view of the invertibility of Rk,we can complete the square in the above equation as

    By making use of(11),(45)is further rewritten as

    On both sides of(46),take sums from k=0 to k=N.It leads to

    5 Numerical examples

    Example 1Consider system(4)where both xkand ukare scalar and

    In the cost function(2),we set

    By direct computation,we can obtain the solution to the backwards recursion(9)-(14)as

    Note that R0>0.Thus from Theorem 1,it follows that the unique optimal control of Problem 2 is given by

    To show the effectiveness of our results,we will compare the values of(2)under the controller(48)and the following one

    Denote the value of(2)with(48)by J★and that with(49)by J.Five cases with different initial values are considered below.

    1)x0=2,x-1=0,x-2=0,J★=7.5000,J=16.3807,

    2)x0=2.2,x-1=-3,x-2=1,J★=25.6533,J=25.7420,

    3)x0=1,x-1=-2.8,x-2=1,J★=18.5550,J=20.0056,

    4)x0=0,x-1=-5,x-2=2,J★=63.2750,J=83.8100,

    5)x0=3,x-1=1,x-2=-4,J★=156.4333,J=311.6145.

    In all cases,controller(48)generates a smaller value for(2)than(49).This coincides with Theorem 1.

    Example 2Consider system(4)where xk∈R2,uk∈ R2,d=1,σ =1,and

    and the cost function(2)where

    The solution to(9)-(14)is derived as

    It can be easily verified that R0,R1and R3are all positive definite.Hence,according to Theorem 1,the unique optimal controller is

    When the initial value is chosen to be

    the optimal cost is

    If the controller is changed into

    the associated value of the cost function is

    which is larger than(50).

    6 Conclusions

    This paper solves the LQR problem for stochastic systems with state delays in discrete-time case.The coupled difference equations developed here play the same role in our problem as the generalized difference Riccati equation does in the standard stochastic LQR problem.The stabilization problem for this class of systems is worth considering in the future.

    [1]V.B.Kolmanovskii,A.Myshkis.Introduction to the Theory and Applications of Functional Differential Equations.Dordrecht:Kluwer Academy,1999.

    [2]A.W.Olbrot.A sufficiently large time delay in feedback loop must destroy exponential stability of any decay rate.IEEE Transactions on Automatic Control,1984,AC-29(4):367-368.

    [3]K. Gu. Discretization schemes for Lyapunov-Krasovskii functionals in time delay systems.Kybernetica,2001,37(4):479-504.

    [4]G.Meng,K.Ma.Global output feedback stabilization of uppertriangularnonlineartime-delay systems.JournalofControlTheory and Applications,2012,10(4):533-538.

    [5]M.Maleki,I.Hashim.Adaptive pseudospectral methods for solving constrained linear and nonlinear time-delay optimal control problems.Journal of the Franklin Institute,2014,351(2):811-839.

    [6]N.Haddadi,Y.Ordokhani,M.Razzaghi.Optimal control of delay systems by using a hybrid functions approximation.Journal of Optimization Theory and Applications,2012,153(2):338-356.

    [7]G.Tadmor,L.Mirkin.H∞control and estimation with preview-Part II:fixed-size ARE solutions in discrete time.IEEE Transactions on Automatic Control,2005,50(1):29-40.

    [8]H.H.Choi,M.J.Chung.Memoryless H∞controller design for linear systems with delayed state and control.Automatica,1995,31(6):917-919.

    [9]D.H.Eller,J.K.Aggarwal,H.T.Banks.Optimal control of linear time-delay systems.IEEE Transactions on Automatic Control,1969,AC-16(6):678-687.

    [10]M.C.Delfour.The linear-quadratic optimal control problem with delaysin state and controlvariables:a state space approach.SIAM Journal on Control and Optimization,1986,24(5):835-883.

    [11]R.B.Vinter,R.H.Kwong.The infinite time quadratic control problem for linear systems with state and control delays:an evolution equation approach.SIAM Journal on Control and Optimization,1981,19(1):139-153.

    [12]W.B.Arthur.Control of linear processes with distributed lags using dynamic programming from first principles.Journal of Optimization Theory and Applications,1977,23(3):429-443.

    [13]S.Peng.A general stochastic maximum principle for optimal control problems.SIAM Journal on Control and Optimization,1990,28(4):966-979.

    [14]J.Yong,X.Zhou.Stochastic Controls:Hamiltonian Systems and HJB Equations.New York:Springer,1999.

    [15]M.A.Rami,X.Chen,X.Zhou.Discrete-time indefinite LQ controlwith state and controldependentnoises.JournalofGlobal Optimization,2002,23(3/4):245-265.

    [16]E.Gershon,U.Shaked,I.Yaesh.H∞control and filtering of discrete-time stochastic systems with multiplicative noise.Automatica,2001,37(3):409-417.

    [17]H.Gao,J.Lam,Z.Wang.Discrete bilinear stochastic systems with time-varying delay:stability analysis and control synthesis.Chaos,Solitons&Fractals,2007,34(2):394-404.

    [18]L.Liu,Z.Han,X.Cai,et al.Robust stabilization of stochastic differential inclusion systems with time delay.Journal of Control Theory and Applications,2012,10(1):77-81.

    [19]H.Bao,J.Cao.Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay.Neural Networks,2011,24(1):19-28.

    [20]H.Zhang,L.Li,J.Xu,et al.Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise.IEEE Transactions on Automatic Control,2015,60(10):2599-2613.

    [21]L.Chen,Z.Wu,Z.Yu.Delayed stochastic linear-quadratic control problem and related applications.Journal of Applied Mathematics,2012:DOI 10.1155/2012/835319.

    [22]L.Li,H.Zhang.Stochastic linear quadratic regulation for discretetime systems with single input and multiple delays.Proceedings of the 32nd Chinese Control Conference,Xi’an:IEEE,2013:2299-2304.

    [23]O.C.Imer,S.Y¨uksel,T.Ba?sar.Optimal control of LTI systems over unreliable communication links.Automatica,2006,42(9):1429-1439.

    [24]L.Schenato,B.Sinopoli,M.Franceschetti,et al.Foundations of control and estimation over lossy networks.Procedings of the IEEE,2007,95(1):163-187.

    [25]H.Zhang,H.Wang,L.Li.Adapted and casual maximum principle and analytical solution to optimal control for stochastic multiplicative-noise systems with multiple inputdelays.Proceddings of the 51st IEEE Conference on Decision and Control,Hawaii:IEEE,2012:2122-2127.

    Appendix

    Proof of Lemma 1Suppose that Problem 2 has a unique solution.(37)-(41)will be shown inductively on k=N,...,0.For simplicity,denote the cost function starting from time k,k=0,...,N,by

    The verification of the case of k=N is simple and similar to the discussion given below.Thus it will be omitted.Inductively,suppose(37)-(41)hold for k≥n+1.We shall show that they are true for k=n.First,Rn>0 is to be verified.To this end,set n to be the initial time and let the initial value be

    Take unto be any Fn-1-measurable random variable and un+1,...,uNto be optimal.Now the optimal value of J(n+1)will be calculated.For k=n+1,...,N+1,denote

    By(7),(5)and(8),it can be derived

    Summing from k=n+1 to k=N on the two sides of the above equation yields

    (41)is assumed to be true for k=n+1,i.e.,λnis as

    By applying(a4),(a5),(a2)and(5),it leads to

    Furthermore,the weighting matrix of unin?J(n)must be positive definite.By substituting(a6)into(a7),it can be easily obtained that the weighting matrix is just Rn.Hence,Rn>0 has been shown.

    Second,the optimal unis to be solved.Substitution of(a5)and(5)into(8)produces

    Combined with Rn>0,it is readily seen that the optimal unis given by

    Third,let us verify(39)for k=n,i.e.,the following relation

    holds for t=1,...,d.The analysis will be made inductively on t.By substituting(a8)into(5),xn+1becomes

    which is the case of t=1.Inductively,suppose(a9)is true for t=1,...,s.By applying(39)with k=n+s and m=1,one gets

    which is(a9)for t=s+1.Hence,(a9)has been shown inductively.

    Next,(40)is to be proven for k=n and m=1,...,d.According to the inductive hypothesis,(41)is true for k=n+m,i.e.,

    which is indeed(40)with k=n.

    Finally,let us show(41)fork=n.In(40)and(41),settingk=n+1 produces

    Substitution of(a13)and(a14)into(7)leads to

    which is(41)fork=n.Until now,the proof of this Lemma is completed. □

    From(30),it follows

    Employ the above equation in(a15).It leads to

    Now we show(42)and(43)fork=n-1.The following relation will be verified inductively ont=d,...,1:

    First,consider the case oft=d.In(32)and(31),settingk=nandm=dproduces

    Substitution of(a18)into(a19)generates

    which means

    By applying(31)with k=n+d-1 and j=d-1-f in(a21),it results in

    In view of(30),there holds

    Therefore,Yfbecomes

    Y-jcan be obtained by replacing f with-j in the above equation.Employ Yfand Y-jin(a20).It yields

    which is indeed(a17)for t=d.So far,the case of t=d has been clarified.

    Suppose that(a17)holds for t=h+1 with 1≤h≤d-1,i.e.,

    Now we show it is true for t=h.Note that

    According to(32)and(31),Sh-1,jnand Φh,jnare respectively as

    which yields

    Combine(a22),(a23),(a26)and(a27).It results in

    Apply the above equation in(a29).ThusYfbecomes

    Furthermore,employ(31)and(30)in(a30).We get

    Replacingfwith-jin(a31)yieldsY-j.SubstituteYfandY-jinto(a28).Then(a17)fort=hcan be directly obtained.So far,it has been shown that(a17)is true fort=1,...,din an inductive way.In particular,settingt=1 in(a17)generates

    Huanshui ZHANGgraduated in Mathematics from the Qufu Normal University in 1986,and received his M.Sc.and Ph.D.degrees in Control Theory from Heilongjiang University,China,and Northeastern University,China,in 1991 and 1997,respectively.He worked as a postdoctoral fellow at Nanyang Technological University from 1998 to 2001 and Research Fellow at Hong Kong Polytechnic University from 2001 to 2003.He is currently a Changjiang Professorship at Shandong University,China.He held Professor in Harbin Institute of Technology from 2003 to 2006.He also held visiting appointments as Research Scientist and Fellow with Nanyang Technological University,Curtin University of Technology and Hong Kong City University from 2003 to 2006.His research interests include optimal estimation and control,time-delay systems,stochastic systems,signal processing and wireless sensor networked systems.E-mail:hszhang@sdu.edu.cn.

    ?Corresponding author.

    E-mail:hszhang@sdu.edu.cn.

    This work was supported by the Taishan Scholar Construction Engineering by Shandong Government and the National Natural Science Foundation of China(Nos.61120106011,61203029).

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    the B.Sc.and M.Sc.degrees in Pure Mathematics from Shandong University,Jinan,Shandong,China,in 2008 and 2011,respectively.She is currently pursuing the Ph.D.degree in Control Theory and Engineering at Shandong University.Her research interests include optimalcontrol,stabilization,stochastic systems and time-delay systems.E-mail:linli_1987@163.com.

    日韩欧美一区二区三区在线观看| 波多野结衣高清无吗| 成人特级黄色片久久久久久久| 日本欧美视频一区| 国产亚洲精品久久久久5区| 国产麻豆69| av天堂久久9| 少妇熟女aⅴ在线视频| 国产精品影院久久| 国产一区二区激情短视频| 麻豆av在线久日| 91麻豆av在线| 欧美性长视频在线观看| 精品国产亚洲在线| 成人av一区二区三区在线看| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| 多毛熟女@视频| 超碰成人久久| 亚洲第一av免费看| 制服丝袜大香蕉在线| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址 | 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 女性被躁到高潮视频| 婷婷精品国产亚洲av在线| 国产午夜精品久久久久久| 一本久久中文字幕| 色尼玛亚洲综合影院| 岛国在线观看网站| 精品国产一区二区三区四区第35| 欧美成人性av电影在线观看| 久久久久国产一级毛片高清牌| 91精品国产国语对白视频| 久久婷婷成人综合色麻豆| 1024香蕉在线观看| 亚洲成av人片免费观看| 国产精品一区二区免费欧美| 不卡一级毛片| 亚洲精品美女久久av网站| 黄片大片在线免费观看| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 日韩av在线大香蕉| √禁漫天堂资源中文www| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 老司机靠b影院| 亚洲成av片中文字幕在线观看| 亚洲成av人片免费观看| 麻豆一二三区av精品| 一进一出抽搐gif免费好疼| 欧美黑人欧美精品刺激| 久久久国产成人免费| 精品国内亚洲2022精品成人| 亚洲 国产 在线| 国产黄a三级三级三级人| tocl精华| 真人做人爱边吃奶动态| av中文乱码字幕在线| av在线天堂中文字幕| 国产精品秋霞免费鲁丝片| 一级毛片高清免费大全| 人人妻人人澡欧美一区二区 | 日韩精品中文字幕看吧| 久热这里只有精品99| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 亚洲一区二区三区色噜噜| 人人妻人人爽人人添夜夜欢视频| 欧美色视频一区免费| 高潮久久久久久久久久久不卡| 国产午夜福利久久久久久| 午夜福利,免费看| 午夜福利视频1000在线观看 | 日韩视频一区二区在线观看| 国产成人欧美在线观看| 久久久久国产精品人妻aⅴ院| 午夜福利18| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 制服丝袜大香蕉在线| 狂野欧美激情性xxxx| 搞女人的毛片| 国产又色又爽无遮挡免费看| a级毛片在线看网站| 精品久久久久久成人av| 一区二区三区激情视频| av有码第一页| 国产麻豆69| 成人永久免费在线观看视频| 亚洲国产毛片av蜜桃av| 一夜夜www| 午夜久久久在线观看| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 满18在线观看网站| 亚洲免费av在线视频| 一级毛片女人18水好多| 欧美 亚洲 国产 日韩一| 一进一出抽搐gif免费好疼| 亚洲男人天堂网一区| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 成人三级黄色视频| 国产精品久久视频播放| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 欧美激情极品国产一区二区三区| 操美女的视频在线观看| 欧美不卡视频在线免费观看 | 波多野结衣av一区二区av| 日本a在线网址| 可以免费在线观看a视频的电影网站| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 91成人精品电影| 69av精品久久久久久| 亚洲第一电影网av| 久久人人97超碰香蕉20202| 精品久久久久久久毛片微露脸| 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 日韩欧美一区视频在线观看| 久久九九热精品免费| 日日爽夜夜爽网站| 亚洲第一av免费看| 一区二区三区精品91| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 亚洲七黄色美女视频| 正在播放国产对白刺激| 波多野结衣高清无吗| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费 | 亚洲 欧美一区二区三区| 动漫黄色视频在线观看| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 国产精品1区2区在线观看.| 18禁国产床啪视频网站| 很黄的视频免费| 天天一区二区日本电影三级 | 真人做人爱边吃奶动态| 国产高清激情床上av| 桃红色精品国产亚洲av| 韩国av一区二区三区四区| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 精品久久久久久久人妻蜜臀av | 免费在线观看亚洲国产| www日本在线高清视频| av视频免费观看在线观看| 成人手机av| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆 | 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 成年版毛片免费区| АⅤ资源中文在线天堂| 禁无遮挡网站| www.熟女人妻精品国产| 乱人伦中国视频| 国产高清有码在线观看视频 | 久9热在线精品视频| 亚洲av成人一区二区三| 黄片小视频在线播放| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 国产精品免费一区二区三区在线| 很黄的视频免费| 欧美精品亚洲一区二区| 久久久久久大精品| 国产片内射在线| 少妇粗大呻吟视频| 狠狠狠狠99中文字幕| 亚洲精品国产色婷婷电影| 99久久久亚洲精品蜜臀av| 亚洲人成77777在线视频| 婷婷丁香在线五月| 亚洲 国产 在线| 免费搜索国产男女视频| 日日爽夜夜爽网站| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 国产精品久久久久久精品电影 | 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 国产精品美女特级片免费视频播放器 | 啦啦啦 在线观看视频| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 欧美日韩乱码在线| 怎么达到女性高潮| 黄色女人牲交| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品久久久久久毛片| 久久久久久国产a免费观看| 美女扒开内裤让男人捅视频| 97碰自拍视频| 又大又爽又粗| 黄色毛片三级朝国网站| 他把我摸到了高潮在线观看| 日本一区二区免费在线视频| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 欧美中文综合在线视频| 神马国产精品三级电影在线观看 | 大型av网站在线播放| 国产成人av激情在线播放| 男人舔女人的私密视频| 最近最新免费中文字幕在线| 香蕉久久夜色| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 精品电影一区二区在线| 国产精品 国内视频| 一级毛片精品| 深夜精品福利| 午夜福利成人在线免费观看| 咕卡用的链子| 一进一出抽搐gif免费好疼| 一级毛片女人18水好多| 国产欧美日韩综合在线一区二区| 免费一级毛片在线播放高清视频 | 久久中文字幕一级| 男人的好看免费观看在线视频 | 中亚洲国语对白在线视频| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 午夜免费成人在线视频| 久久中文字幕一级| 色av中文字幕| 岛国在线观看网站| av视频免费观看在线观看| 91国产中文字幕| 可以在线观看毛片的网站| 纯流量卡能插随身wifi吗| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三 | 精品国产超薄肉色丝袜足j| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 久久精品人人爽人人爽视色| 国内精品久久久久精免费| 国产高清激情床上av| av片东京热男人的天堂| 成人国产一区最新在线观看| 香蕉国产在线看| 欧美激情久久久久久爽电影 | 亚洲国产精品合色在线| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 精品国产一区二区久久| 亚洲av电影不卡..在线观看| 一二三四在线观看免费中文在| 亚洲精品粉嫩美女一区| 国产精品久久电影中文字幕| 亚洲自拍偷在线| 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲精品综合一区在线观看 | 免费av毛片视频| 97超级碰碰碰精品色视频在线观看| 一边摸一边抽搐一进一出视频| 露出奶头的视频| 我的亚洲天堂| 亚洲男人天堂网一区| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 免费女性裸体啪啪无遮挡网站| 啦啦啦观看免费观看视频高清 | 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 亚洲 国产 在线| 亚洲成av人片免费观看| 激情视频va一区二区三区| 亚洲精华国产精华精| 色播在线永久视频| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 亚洲av成人av| 人人澡人人妻人| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o| 又黄又爽又免费观看的视频| 男女下面插进去视频免费观看| 一区二区三区国产精品乱码| 国产黄a三级三级三级人| 9色porny在线观看| 91麻豆精品激情在线观看国产| 亚洲男人的天堂狠狠| 国产三级在线视频| 日韩一卡2卡3卡4卡2021年| 免费在线观看影片大全网站| 69精品国产乱码久久久| 999精品在线视频| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 91国产中文字幕| 精品不卡国产一区二区三区| 中亚洲国语对白在线视频| www日本在线高清视频| 香蕉丝袜av| 韩国av一区二区三区四区| 久久精品人人爽人人爽视色| 色播在线永久视频| 国产精品精品国产色婷婷| 色综合婷婷激情| 亚洲中文av在线| 欧美最黄视频在线播放免费| 国产三级黄色录像| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 级片在线观看| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 女生性感内裤真人,穿戴方法视频| 久久午夜综合久久蜜桃| 深夜精品福利| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久久久99蜜臀| 国产在线精品亚洲第一网站| 国产成年人精品一区二区| 9色porny在线观看| 国产欧美日韩精品亚洲av| 久久国产精品人妻蜜桃| 午夜福利,免费看| 精品第一国产精品| 深夜精品福利| 亚洲色图综合在线观看| 国产三级黄色录像| 久久精品国产综合久久久| 久久久精品欧美日韩精品| 一级毛片高清免费大全| av在线天堂中文字幕| 亚洲精品av麻豆狂野| 国产精品香港三级国产av潘金莲| www.自偷自拍.com| 国产91精品成人一区二区三区| 国产亚洲av嫩草精品影院| 成人精品一区二区免费| 欧美黑人精品巨大| 后天国语完整版免费观看| 日韩精品中文字幕看吧| 在线免费观看的www视频| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 久久天堂一区二区三区四区| 亚洲免费av在线视频| 精品国产亚洲在线| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 国产一卡二卡三卡精品| 校园春色视频在线观看| 亚洲少妇的诱惑av| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 老司机福利观看| 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看 | 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 狂野欧美激情性xxxx| 嫩草影视91久久| 极品人妻少妇av视频| 亚洲av成人不卡在线观看播放网| av福利片在线| 人人妻人人澡欧美一区二区 | 久久精品国产亚洲av香蕉五月| 在线播放国产精品三级| 十八禁网站免费在线| 怎么达到女性高潮| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看 | 琪琪午夜伦伦电影理论片6080| 日日摸夜夜添夜夜添小说| 成人亚洲精品一区在线观看| 香蕉久久夜色| 免费人成视频x8x8入口观看| 精品少妇一区二区三区视频日本电影| 亚洲色图 男人天堂 中文字幕| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 免费看a级黄色片| 成年女人毛片免费观看观看9| av在线播放免费不卡| 午夜成年电影在线免费观看| 深夜精品福利| 午夜日韩欧美国产| 国产亚洲精品久久久久5区| 又黄又爽又免费观看的视频| 日韩欧美国产一区二区入口| 无人区码免费观看不卡| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品av一区二区| 国产免费av片在线观看野外av| 久久人妻av系列| 国产一区二区三区综合在线观看| 成人精品一区二区免费| 搡老妇女老女人老熟妇| 麻豆成人av在线观看| 999久久久国产精品视频| 国产欧美日韩综合在线一区二区| 亚洲成人精品中文字幕电影| 久久伊人香网站| 人人妻人人爽人人添夜夜欢视频| 真人做人爱边吃奶动态| 18禁美女被吸乳视频| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 大型黄色视频在线免费观看| www国产在线视频色| 久久精品国产亚洲av香蕉五月| xxx96com| 亚洲av日韩精品久久久久久密| 国产伦一二天堂av在线观看| 亚洲国产欧美一区二区综合| 精品一区二区三区视频在线观看免费| 精品一区二区三区四区五区乱码| 丁香欧美五月| 在线播放国产精品三级| 国产一区二区在线av高清观看| 韩国av一区二区三区四区| 亚洲一码二码三码区别大吗| 亚洲人成网站在线播放欧美日韩| 99精品久久久久人妻精品| 亚洲少妇的诱惑av| 日本在线视频免费播放| 中文字幕人妻丝袜一区二区| 丝袜美足系列| 日日干狠狠操夜夜爽| 女同久久另类99精品国产91| 一进一出抽搐动态| 国产xxxxx性猛交| av天堂久久9| 国产三级黄色录像| 色婷婷久久久亚洲欧美| 麻豆av在线久日| 妹子高潮喷水视频| 夜夜夜夜夜久久久久| 亚洲片人在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久中文字幕人妻熟女| 在线观看66精品国产| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 少妇的丰满在线观看| 久久婷婷人人爽人人干人人爱 | 日本免费a在线| 精品福利观看| 一区在线观看完整版| 午夜福利18| 国产高清videossex| 亚洲熟妇熟女久久| 国产精品乱码一区二三区的特点 | 97碰自拍视频| www.精华液| 天堂√8在线中文| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 黄片小视频在线播放| 色综合婷婷激情| 免费搜索国产男女视频| 欧美一区二区精品小视频在线| 老司机午夜福利在线观看视频| 亚洲第一青青草原| 国产熟女xx| 日本 欧美在线| ponron亚洲| 老司机福利观看| 91精品三级在线观看| 国产成+人综合+亚洲专区| 丝袜人妻中文字幕| 婷婷精品国产亚洲av在线| 亚洲国产精品久久男人天堂| av有码第一页| 老司机在亚洲福利影院| 69精品国产乱码久久久| 精品国产一区二区三区四区第35| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 日本 欧美在线| 亚洲全国av大片| 国产精品久久电影中文字幕| 国产精品日韩av在线免费观看 | 99精品久久久久人妻精品| 美女免费视频网站| 高潮久久久久久久久久久不卡| 日本免费a在线| 久久久久久免费高清国产稀缺| 在线av久久热| 99精品欧美一区二区三区四区| 午夜福利影视在线免费观看| 国产精华一区二区三区| 最好的美女福利视频网| 黄色丝袜av网址大全| 精品久久久久久久毛片微露脸| 久热爱精品视频在线9| 日本一区二区免费在线视频| 一区二区日韩欧美中文字幕| 一级毛片精品| 日本 欧美在线| 韩国精品一区二区三区| 亚洲国产精品久久男人天堂| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| 精品一区二区三区四区五区乱码| 久久精品国产清高在天天线| 午夜福利影视在线免费观看| 午夜精品在线福利| 99re在线观看精品视频| 国产1区2区3区精品| 日韩av在线大香蕉| 日韩精品青青久久久久久| 久久久久精品国产欧美久久久| 视频区欧美日本亚洲| 少妇 在线观看| 久久这里只有精品19| 午夜福利一区二区在线看| 国产亚洲精品综合一区在线观看 | 久久久久久久精品吃奶| 天天躁夜夜躁狠狠躁躁| 国产片内射在线| 国内毛片毛片毛片毛片毛片| 国产一区二区三区视频了| 午夜福利成人在线免费观看| 视频区欧美日本亚洲| 精品不卡国产一区二区三区| 在线av久久热| 亚洲熟妇熟女久久| 97人妻天天添夜夜摸| 无人区码免费观看不卡| 亚洲成人国产一区在线观看| 免费在线观看视频国产中文字幕亚洲| 两性夫妻黄色片| 成人三级黄色视频| 国产精品电影一区二区三区| 搡老妇女老女人老熟妇| 亚洲欧美日韩另类电影网站| tocl精华| 一级a爱片免费观看的视频| 成人欧美大片| 日本a在线网址| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 午夜a级毛片| 黑人操中国人逼视频| 欧美乱妇无乱码| 国产又爽黄色视频| 波多野结衣巨乳人妻| 嫁个100分男人电影在线观看| 一级a爱片免费观看的视频| 一级毛片精品| 18禁裸乳无遮挡免费网站照片 | 欧美黄色片欧美黄色片| 欧美激情久久久久久爽电影 | 国产高清激情床上av| 国产熟女xx| 久9热在线精品视频| 国产蜜桃级精品一区二区三区| 9191精品国产免费久久| 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 久久久久久久久中文| 两性夫妻黄色片| 一区二区日韩欧美中文字幕| 一本综合久久免费| 亚洲人成电影免费在线| 国产91精品成人一区二区三区| 国产精品乱码一区二三区的特点 | 午夜a级毛片| 好看av亚洲va欧美ⅴa在| 午夜精品久久久久久毛片777| 一进一出好大好爽视频| 亚洲va日本ⅴa欧美va伊人久久| 热99re8久久精品国产| 国产精品二区激情视频|