• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Switched visual servo control of nonholonomic mobile robots with field-of-view constraints based on homography

    2015-12-06 00:45:30BingxiJIAShanLIU
    Control Theory and Technology 2015年4期

    Bingxi JIA,Shan LIU

    College of Control Science and Engineering,Zhejiang University,Hangzhou Zhejiang 310027,China

    Received 18 May 2014;revised 14 July 2015;accepted 23 July 2015

    Switched visual servo control of nonholonomic mobile robots with field-of-view constraints based on homography

    Bingxi JIA,Shan LIU?

    College of Control Science and Engineering,Zhejiang University,Hangzhou Zhejiang 310027,China

    Received 18 May 2014;revised 14 July 2015;accepted 23 July 2015

    This paper presents a novel scheme for visual servoing of a nonholonomic mobile robot equipped with a monocular camera in consideration of field-of-view(FOV)constraints.In order to loosen the FOV constraints,the system states are expressed by the homography between the current frame and the key frame so that the target is not necessarily to be always visible in the control process.A switched visual controller is designed to deal with the nonholonomic constraints.Moreover,an iteration strategy is used to eliminate errors caused by the parameter uncertainty.The stablity and robustness of the proposed scheme are guaranteed by theoretical analysis.Compared to conventional schemes,the proposed approach has the following advantages:1)a better path in Cartesian space can be achieved owing to the loosening of FOV constraints;2)the iteration strategy ensures the robustness to parameter uncertainty;3)when used in landmark-based navigation,it needs much sparser and simpler landmarks than those localization-based approaches need.Simulation results demonstrate the effectiveness of the proposed method.

    Homography-based,key-frame strategy,field-of-view constraints,nonholonomic mobile robot

    DOI 10.1007/s11768-015-4068-8

    1 Introduction

    Mobile robotic systems are widely used in different areas during recent years,as the most important function,vision-based control has been widely studied in the past decades,a recent survey is[1].From the perspective of controller design,visual navigation methods can be divided into “position-based”and “imagebased”.Position-based approaches regulate the robot to follow a path defined in Cartesian space,with the help of multiple sensors such as GPS,compass and visionbased positioning systems based on landmarks.In such systems,vision systems are used as position measuring instruments,and conventional path following control strategies can be employed[2,3].They are good at longrange navigation with low precision,while they couldbe quite complex especially when robot and landmark positions have to be estimated simultaneously during the exploration of an unknown environment(SLAM:simultaneous localization and mapping[4]).Image-based approaches,whose trajectories are given by a set of images captured along the desired path,are anotherkind of popular approaches.Traditional image-based methods are based on the coordinates of feature points extracted from the images,which may suffer from image noise and partial occlusion[1].To achieve better robustness to image noise and partial occlusion,a good choice is to design the visual servo system based on two-view geometry[5],such as epipolar geometry and homography.Epipolar-based methods[6,7]exploit the epipolar geometry defined by the current and desired views,but this modelis ill conditioned forplanarviews and is problematic with short baseline.Another effective approach is homography-based[8],which exploit the homography between the current and desired views.Early researches usually use the 3D reconstruction information from the homography decomposition[5].Generally,in the decomposition process,foursolutions are generated and an initial guess of the normal vector of the plane is needed to determine the unique one.[9]proposed a control strategy that directly uses the specific characteristics of the homography matrix elements,without the need of 3D reconstruction.

    In image-based visual servoing,a typical problem is to deal with the field-of-view constraints of the camera[10],i.e.,the target must be visible in the camera.One way to solve this problem is to combine trajectory planning and tracking[11,12],when successful,it ensures an optimal trajectory in Cartesian space and the visibility of the target.Researchers studied the optimal path for a mobile robot with nonholonomic and field-ofview constraints[13,14],and switch-based methods are proposed to follow the planned path[9].Besides,there are some methods that use advanced control laws taking into account constraints explicitly,such as LMI[15]and predictive control[16].For a deeper discussion on the field-of-view constraints,readers can refer to[1].

    In this paper,we proposed a novel framework of image-based visual servoing for nonholonomic mobile robots with field-of-view and nonholonomic constraints.In the proposed approach,the field-of-view constraints are loosened by the key frame strategy.System states are expressed with respect to the key frames instead of the target frame,and they are estimated incrementally from the key frames,without the need of feature point matching with the target frame.As a result,the target object only needs to be visible when the robot reaches key frames,and is not necessarily to be always visible in the control process.Considering the nonholonomic constraints,a switched controller is used to achieve a shortest path control,as show in Fig.1.Compared to conventional methods using a T-curve path[17],a better path in Cartesian space can be achieved.Besides,if the parameter error exists,an iteration strategy is used to eliminate the system error to zero.

    Fig.1 Visual servoing task with field-of view constraints(left:the proposed method,right:the conventional method).

    2 Problem formulation and system architecture

    The nonholonomic mobile robot considered in this paper is a differential-driven robot moving on the ground,as shown in Fig.2.A down looking monocular camera is mounted at the head of the robot,which is a general case.The visual servoing task is that,given the target image,the robot is regulated to the desired pose where the captured image matches the target image best.

    Fig.2 System configuration.

    The localcoordinate ofrobotis located atthe principle point of the camera,withzaxis parallel to the ground;the local coordinate of the camera is also located at the principle point andzaxis is parallel to the center line of the camera.The tiltangle ofthe camera isβ,the heightof the principle point with respect to the ground is d,and the distance between the center of driving wheel and principle point is L.In practice,L,d can be measured accurately,but β can only be estimated roughly.

    In the global coordinate,the coordinate of robot is expressed as(yr,zr,φ),where(yr,zr)is the position of the principle point and φ is the heading angle of the robot.

    3 System modeling

    3.1 Non-holonomic kinematic model

    As shown in Fig.3,in the coordinate of the robot,the kinematic model is defined as follows:

    where vy,vzare the lateral and longitudinal velocities,ω is the angular velocity,and vl,vrare the linear velocities of two driving wheels.For simplicity,the control input in the following control system is defined as

    Fig.3 Robot kinematic model.

    3.2 Homography-based model

    Consider a set of coplanar points,two perspective images of these points can be geometrically related by a homography[18].For our application,suppose that the two images are taken of the ground with the camera mounted on the robot at two different poses related by a rotation Rcand translation tc.The homography is given

    where K is the intrinsic matrix ofthe pinhole camera,n is the normalofthe ground in the coordinate ofthe camera at the first pose,and d is the height of the camera.

    For simplicity,the camera coordinate is placed at the principle point and skew is neglected after rectification,the intrinsic matrix is given by where ax,ayare the focal lengths in pixel dimensions.Without loss of generality,ax,ayare assumed to be equivalent,which is the case for most cameras.

    Besides,in the given configuration,the normal of the ground in the coordinate of the camera is

    Consider a planar motion from(0,0,0)to(y,z,φ),the motion of camera can be expressed by

    Substitute(4)-(6)into(3),the homography elements are given by(7),where hijis the element of the i th row and the j th column.

    Because the homography matrix has only 8 degrees of freedom,we fix the scale of the homography matrix by normalizing to h22=1.For the other 8 elements,because ax,ayare large,h13,h23,h31,h32are either too large or too small,hence they are more sensitive to noise.We choose h11,h12,h21,h33as the system states,namely s1,s2,s3,s4,which are given by

    Remark 1As will be shown in(12),the four elements can determine the pose uniquely,i.e.,the system states are isomorphic with the robot pose.

    3.3 Key-frame strategy

    Fig.4 Key-frame strategy.

    Since there are always enough corresponding feature point in two neighbouring frames,the target is not necessarily visible in the control process,but only needs to be visible when the robot reaches the key frame.Thus,the field-of-view constraints are loosened.

    3.4 Interaction model

    Developing expression(7)and(8),we have

    Take the derivative of s:

    Considering the relation between the global and the ocal coordinate,we have

    where?vy,?vz,?ω are velocities in the local coordinate of the robot.Substitute(1)and(13)into(11),the interaction model is given by

    is the image Jacobean.

    The model(14)is nonholonomic,and its linearized model is not controllable.It has been proved that no continuoustime-invariantfeedback controlexistsforthe regulation problem[19].

    4 Control strategy

    To deal with the field-of-view constraints of the camera and the nonholonomic constraints of the mobile robot,an iteration strategy is proposed,as shown in Fig.5.At the beginning of each iteration,a subtask is defined,i.e.,the first image frame is chosen as key-frame and the desired state is measured,then a switched controller is used to achieve the subtask.This process is iterated until the finally captured image of iteration k matches the target image best,i.e.,ek< ε,where ekis defined as

    Fig.5 Control strategy.

    4.1 Switched controller design

    As shown in Fig.6,the motion is divided into three sequential steps,and the point P is the rotation center of the robot at the desired pose.In the first step,the robot rotates until the camera points to P.In the second step,the robot performs a straight line translation to P.In the third step,the robot rotates to the desired pose.From(10)it is clear that s2only relates to the heading angle,s1only relates to z if the angle is constant.Thus,the switched control strategy is defined as follows,where s(k)is the state at the end of Step k,and sris the desired state.

    Step 1s2is used as the control variable,the desired value is given by

    The controller is

    Step 2s1,s2are used as control variables,the desired values are given by

    The controller is

    Step 3s2is used as the control variable,the desired value is given by

    The controller is

    Hereinbefore,kw>0,kv<0 are control gains.

    Fig.6 Switched control.

    4.2 Stability analysis

    Theorem 1The switched controller proposed in Section 4.1 ensures that the system error in every step converges to zero.

    ProofThe Lyapunov function is defined in the polar coordinates(r(t),θ(t),φ(t))with the reference origin in the rotation center at the initial pose and θ positive from z-axis anticlockwise.It is given by

    where(r*,θ*,φ*)denotes the desired pose of each step.This function is positive definite,its derivative is

    The derivative of Lyapunov function is proven to be strictly negative in each step as follows:

    Step 3The robot performs a rotation as in Step 1,and the derivative of Lyapunov function˙V=˙Vφ<0 is guaranteed with the same reasoning of Step 1.□

    4.3 Robustness to parameter uncertainty

    Parameters used in system are d,L,W,β,here d,L,W are length or height values that can be measured accurately,while β is the tilt angle of the camera that can only be estimated roughly.Theorem 2 guarantees the robustness to the parameter uncertainty with certain limits.

    1)The convergence of φ.

    In Step 3 which regulates the orientation φ,becauses2is used directly in the feedback control law,the error of φ is not related to the parameters above,and always converges to zero.

    2)The convergence ofy,z.

    On condition that φ converges,i.e.,in iteration k,φ→0.Developing expression(10)we have

    Fig.7 Parameter robustness.

    5 Simulation results

    In this section,simulation results are presented to show the performance of the proposed method.A virtual framework is used to randomly generate 3D points in a planar scene,and they are projected in the image plane using the pinhole camera model.The homography is computed from the virtual image points.The visual servoing task is depicted as Fig.8,the initial pose is(0,0,0)and the target pose is(500,500,0).The target image is located at(300,700),and the camera-s visible angle is Φ=1.2 rad.The parameters used in simulation are W=40 cm,L=50 cm,d=20 cm,ax=600,ay=600,ε=0.01,kw=1 and kv=-1.

    Fig.8 Simulation setup.

    To show the effectiveness of the proposed method,simulations are made using the proposed method as well as a switched control strategy based on the T-curve path planning approach[15],which is called T-curve method below in short.Note that the T-curve method does not guarantee robustness to the parameter uncertainty,thus simulations are made with accurate parameters using the proposed method and the T-curve method.Besides,simulation with inaccurate parameters is made using the proposed method to show the robustness.

    Simulation results are shown in Figs.9-11.Figs.9 and 10 show the results with accurate parameters,i.e.,β = β0=0.5.Fig.9(c)and Fig.10(b)show that the pose error converge to zero using both methods.From Fig.9(b)we can see that the robot moves straightly towards the goal.Note that in the process there are some poses at which the target may be invisible,that is what it benefits from the key-frame strategy.In contrast,the path of T-curve method is tortuous because of the FOV constraint.Thus,the proposed method gains faster convergence than the T-curve method,and the path length in Cartesian space is apparently shorter than that of T-curve method.

    Fig.9 Simulation with accurate parameters using proposed method.(a)Trajectories of system states.(b)Robot trajectory.(c)Pose error convergence.

    To validate the robustness,Fig.11 shows the simulation results with inaccurate parameters,i.e.,β=0.5,β0=0.6,which satisfies Theorem 1.After iteration 1,robot pose is regulated to(386,426,0.01)due to the parameter error.After iteration 2,robot pose is regulated to(493,503,0),and finally robot reaches(498,501,0)after iteration 3,which satisfies the stopping rule.Fig.11(d)shows the convergence of the pose error,which is worse than that with accurate parameters,but control error caused by parameter uncertainty can be eliminated,and the performance can be further improved with online parameter identification.

    Fig.10 Simulation with accurate parameters using T-curve method.(a)Robot trajectory.(b)Pose error convergence.

    Fig.11 Simulation with inaccurate parameters.(a)Robot trajectory in iteration 1.(b)Robot trajectory in iteration 2.(c)Robot trajectory in iteration 3.(d)Pose error convergence.

    6 Conclusions

    In this paper,a switched homography-based visual servo control method for nonholonomic mobile robots is presented.Field-of-view and nonholonomic constraints are considered.Compared to conventional methods,a better path can be achieved owing to the key-frame strategy which loosens the field-of-view constraints.A switched controller is designed to deal with the nonholonomic constraints,achieving a shortest path in Cartesian space.Besides,the iteration strategy guarantees control accuracy in the presense of parameter errors.Simulation results show good performance of the method with both accurate and inaccurate parameters.

    [1]B.Jia,S.Liu,K.Zhang,et al.Survey on robot visual servo control:vision system and control strategies.Acta Automatica Sinica,2015,41(5):861-873.

    [2]T.Fukao,H.Nakagawa,N.Adachi.Adaptive tracking control of a nonholonomic mobile robot.IEEE Transactions on Robotics and Automation,2000,16(5):609-615.

    [3]K.Kanjanawanishkul,A.Zell.Path following for an omnidirectional mobile robot based on model predictive control.IEEE International Conference on Robotics and Automation,Kobe:IEEE,2009:3341-3346.

    [4]S.Thrun.Simultaneous localization and mapping.Robotics and Cognitive Approaches to Spatial Mapping.Berlin:Springer,2008:13-41.

    [5]Y.Fang,W.E.Dixon,D.M.Dawson,et al.Homography-based visual servo regulation of mobile robots.IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2005,35(5):1041-1050.

    [6]P.Rives.Visual servoing based on epipolar geometry.IEEE/RSJ International Conference on Intelligent Robots and Systems,Takamatsu:IEEE,2000:602-607.

    [7]G.L.Mariottini,G.Oriolo,D.Prattichizzo.Image-based visual servoing for nonholonomic mobile robots using epipolar geometry.IEEE Transactions on Robotics,2007,23(1):87-100.

    [8]S.Benhimane,E.Malis.Homography-based 2D visual servoing.IEEE International Conference on Robotics and Automation,Orlando:IEEE,2006:2397-2402.

    [9]G.L’opez-Nicol’as,N.Gans,S.Bhattacharya,et al.Homographybased control scheme for mobile robots with nonholonomic and field-of-view constraints.IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2010,40(4):1115-1127.

    [10]Y.Mezouar,F.Chaumette.Optimal camera trajectory with image-based control.The International Journal of Robotics Research,2003,22(10/11):781-803.

    [11]M.Kazemi,K.Gupta,M.Mehrandezh.Global path planning for robust visual servoing in complex environments.IEEE International Conference on Robotics and Automation,Kobe:IEEE,2009:326-332.

    [12]G.Chesi,A.Vicino.Visual servoing for large camera displacements.IEEE Transactions on Robotics,2004,20(4):724-735.

    [13]S.Bhattacharya,R.Murrieta-Cid,S.Hutchinson.Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints.IEEE Transactions on Robotics,2007,23(1):47-59.

    [14]P.Salaris,D.Fontanelli,L.Pallottino,et al.Shortest paths for a robot with nonholonomic and field-of-view constraints.IEEE Transactions on Robotics,2010,26(2):269-281.

    [15]S.Durola,P.Dan`es,D.Coutinho,et al.Rational systems and matrix inequalities to the multicriteria analysis of visual servos.IEEE InternationalConference on Robotics and Automation,Kobe:IEEE,2009:1504-1509.

    [16]G.Allibert,E.Courtial,F.Chaumette.Predictive control for constrained image-based visual servoing.IEEE Transactions on Robotics,2010,26(5):933-939.

    [17]S.Bhattacharya,R.Murrieta-Cid,S.Hutchinson.Path planning for a differential drive robot:Minimal length paths-a geometric approach.IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai:IEEE,2004:2793-2798.

    [18]R.Hartley,A.Zisserman.Multiple View Geometry in Computer Vision.New York:Cambridge University Press,2003.

    [19]R.Brockett.Asymptotic stability and feedback stabilization.Virginia:Defense Technical Information Center,1983.

    his B.E.degree in Control Science and Engineering,Zhejiang University,China,in 2012.He is currently working toward the Ph.D.degree in the College of Control Science and Engineering,Zhejiang University.His research interests include computer vision and vision based control.E-mail:bxjia@zju.edu.cn.

    ShanLIUreceived his B.S.degree in Applied Mathematics from University ofScience and Technology of China in 1992,and M.S.and Ph.D.degrees in Control Science and Engineering from Zhejiang University,China in 1995 and 2002,respectively.He is currently an associate professorin the College ofControl Science and Engineering,Zhejiang University.His research interests include adaptive control,iterative learning control,vision-based control,and robot planning and control.Email:sliu@iipc.zju.edu.cn.

    ?Corresponding author.

    E-mail:sliu@iipc.zju.edu.cn.

    This work was supported by the National Natural Science Foundation of China(No.61273133).

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    18禁观看日本| 久久精品aⅴ一区二区三区四区| 91麻豆精品激情在线观看国产 | 久久久久精品国产欧美久久久 | 欧美日本中文国产一区发布| 国产熟女午夜一区二区三区| 窝窝影院91人妻| 下体分泌物呈黄色| 91成人精品电影| 捣出白浆h1v1| 桃红色精品国产亚洲av| 欧美久久黑人一区二区| 婷婷色av中文字幕| 99re6热这里在线精品视频| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 9191精品国产免费久久| 搡老熟女国产l中国老女人| 色播在线永久视频| 亚洲精品国产一区二区精华液| 欧美日韩一级在线毛片| 9色porny在线观看| 黄色 视频免费看| 久久天堂一区二区三区四区| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 国产精品一区二区精品视频观看| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 亚洲伊人久久精品综合| 一本综合久久免费| 在线观看一区二区三区激情| 精品福利永久在线观看| 久久久精品94久久精品| 不卡一级毛片| 国产一区二区激情短视频 | 99国产极品粉嫩在线观看| 亚洲精品美女久久av网站| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 在线观看www视频免费| 热99久久久久精品小说推荐| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 丰满饥渴人妻一区二区三| 国产91精品成人一区二区三区 | 搡老乐熟女国产| 黄色视频在线播放观看不卡| 91麻豆精品激情在线观看国产 | 十八禁高潮呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一二三| a级毛片在线看网站| 多毛熟女@视频| 曰老女人黄片| 国产91精品成人一区二区三区 | 青青草视频在线视频观看| 亚洲成人免费电影在线观看| 亚洲成av片中文字幕在线观看| 超色免费av| 久久影院123| 久久人人爽人人片av| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 精品国产国语对白av| 国产日韩欧美亚洲二区| 精品免费久久久久久久清纯 | 亚洲欧美成人综合另类久久久| 丁香六月欧美| 亚洲成人免费av在线播放| 俄罗斯特黄特色一大片| 美女扒开内裤让男人捅视频| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 97在线人人人人妻| 伊人亚洲综合成人网| 亚洲欧洲日产国产| 一区二区三区激情视频| 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 久久久久久久精品精品| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 日韩欧美一区视频在线观看| 中文欧美无线码| 50天的宝宝边吃奶边哭怎么回事| 亚洲 国产 在线| 最近中文字幕2019免费版| 亚洲av男天堂| 大香蕉久久成人网| 午夜成年电影在线免费观看| 一区二区三区激情视频| 国产成人精品在线电影| 老司机福利观看| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 国产99久久九九免费精品| 中文字幕制服av| 国产成人精品在线电影| 夫妻午夜视频| 成人av一区二区三区在线看 | 老司机亚洲免费影院| 精品一区二区三卡| 十八禁人妻一区二区| 人人澡人人妻人| 老熟妇仑乱视频hdxx| 人人妻人人澡人人爽人人夜夜| 性少妇av在线| 日韩 亚洲 欧美在线| 他把我摸到了高潮在线观看 | 国产精品一区二区免费欧美 | 黄色视频,在线免费观看| 久久久久久久久免费视频了| 两人在一起打扑克的视频| 日本wwww免费看| 精品国产一区二区久久| 法律面前人人平等表现在哪些方面 | 两性夫妻黄色片| av超薄肉色丝袜交足视频| 首页视频小说图片口味搜索| 色播在线永久视频| 亚洲全国av大片| 久久中文看片网| 亚洲精品日韩在线中文字幕| 大码成人一级视频| 黑人操中国人逼视频| a 毛片基地| 丝袜喷水一区| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 国产极品粉嫩免费观看在线| 中文字幕色久视频| 真人做人爱边吃奶动态| 欧美日韩黄片免| 免费少妇av软件| 成人亚洲精品一区在线观看| 超色免费av| 看免费av毛片| 欧美日韩黄片免| 亚洲精品美女久久久久99蜜臀| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 亚洲国产精品成人久久小说| 国产精品久久久av美女十八| 黄色视频,在线免费观看| 女警被强在线播放| 一区二区三区四区激情视频| 国产无遮挡羞羞视频在线观看| 一区二区日韩欧美中文字幕| 51午夜福利影视在线观看| 日韩制服骚丝袜av| 久久 成人 亚洲| 老司机靠b影院| 人妻一区二区av| cao死你这个sao货| 在线av久久热| 99久久99久久久精品蜜桃| 999精品在线视频| 成年动漫av网址| 叶爱在线成人免费视频播放| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 精品久久久精品久久久| 老司机在亚洲福利影院| 久久久久久久大尺度免费视频| 久久人人97超碰香蕉20202| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 国产色视频综合| 搡老乐熟女国产| 不卡av一区二区三区| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 一级,二级,三级黄色视频| 汤姆久久久久久久影院中文字幕| 午夜成年电影在线免费观看| 无限看片的www在线观看| 91字幕亚洲| 国产在线免费精品| 纵有疾风起免费观看全集完整版| 后天国语完整版免费观看| 国产高清videossex| 欧美人与性动交α欧美软件| 午夜两性在线视频| 国产精品香港三级国产av潘金莲| 黑丝袜美女国产一区| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| xxxhd国产人妻xxx| 国产精品免费视频内射| 亚洲精品国产av蜜桃| 国产精品影院久久| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 男人操女人黄网站| 淫妇啪啪啪对白视频 | 欧美在线黄色| 国产一区二区三区在线臀色熟女 | 欧美另类亚洲清纯唯美| 两人在一起打扑克的视频| 美女扒开内裤让男人捅视频| 天天躁日日躁夜夜躁夜夜| av线在线观看网站| www.999成人在线观看| 国产成人av教育| 美女扒开内裤让男人捅视频| netflix在线观看网站| 999久久久国产精品视频| 国产91精品成人一区二区三区 | 欧美激情 高清一区二区三区| 俄罗斯特黄特色一大片| 亚洲精品久久久久久婷婷小说| 多毛熟女@视频| 亚洲欧美激情在线| 日韩精品免费视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产麻豆69| 亚洲精品久久午夜乱码| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 亚洲精品中文字幕一二三四区 | 亚洲天堂av无毛| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 亚洲第一青青草原| 视频在线观看一区二区三区| 亚洲av电影在线观看一区二区三区| 99热全是精品| 国产精品二区激情视频| 亚洲av国产av综合av卡| 免费av中文字幕在线| 国产av国产精品国产| 欧美人与性动交α欧美软件| 国产真人三级小视频在线观看| 久久99一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 动漫黄色视频在线观看| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 日本vs欧美在线观看视频| 午夜免费鲁丝| 亚洲欧美激情在线| 亚洲第一青青草原| 99香蕉大伊视频| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产免费现黄频在线看| 十八禁人妻一区二区| 婷婷丁香在线五月| 老司机深夜福利视频在线观看 | cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 老司机影院成人| 国产精品久久久av美女十八| 久久人妻熟女aⅴ| 国产精品秋霞免费鲁丝片| 成人影院久久| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 亚洲欧洲日产国产| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 午夜福利乱码中文字幕| 亚洲精品自拍成人| 国产男人的电影天堂91| 午夜福利影视在线免费观看| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 美女大奶头黄色视频| 中国国产av一级| 悠悠久久av| 成年人免费黄色播放视频| 国产区一区二久久| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 亚洲人成电影免费在线| 9191精品国产免费久久| 飞空精品影院首页| 欧美黄色片欧美黄色片| 免费观看a级毛片全部| 久久久久久久精品精品| 国产亚洲av片在线观看秒播厂| 伊人亚洲综合成人网| 国产成人av激情在线播放| 午夜两性在线视频| 精品视频人人做人人爽| 性高湖久久久久久久久免费观看| 两性夫妻黄色片| 我的亚洲天堂| 美女视频免费永久观看网站| 亚洲av美国av| 亚洲熟女精品中文字幕| 国产99久久九九免费精品| 国产亚洲av片在线观看秒播厂| 91av网站免费观看| 欧美黄色淫秽网站| 亚洲自偷自拍图片 自拍| 久久久欧美国产精品| 狠狠狠狠99中文字幕| 国产一区二区在线观看av| 美国免费a级毛片| 国产又爽黄色视频| 黄色视频,在线免费观看| 日韩大片免费观看网站| 在线十欧美十亚洲十日本专区| 久久狼人影院| 男女边摸边吃奶| 国产高清国产精品国产三级| 一二三四在线观看免费中文在| 国产免费现黄频在线看| 亚洲免费av在线视频| av不卡在线播放| 亚洲久久久国产精品| 亚洲第一欧美日韩一区二区三区 | 国产成人av教育| av电影中文网址| 久久精品熟女亚洲av麻豆精品| 亚洲精华国产精华精| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 啦啦啦免费观看视频1| 香蕉国产在线看| 免费一级毛片在线播放高清视频 | 久久99热这里只频精品6学生| 午夜免费鲁丝| 丁香六月天网| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 夫妻午夜视频| 精品人妻1区二区| 国产精品 国内视频| av一本久久久久| 老熟女久久久| 成人手机av| a级毛片黄视频| 亚洲国产日韩一区二区| 女人精品久久久久毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲av欧美aⅴ国产| 91老司机精品| 精品亚洲成a人片在线观看| 日本a在线网址| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 丰满少妇做爰视频| avwww免费| 国产精品成人在线| av电影中文网址| 热99久久久久精品小说推荐| 两人在一起打扑克的视频| 97人妻天天添夜夜摸| 深夜精品福利| 一进一出抽搐动态| 在线 av 中文字幕| 日韩三级视频一区二区三区| 国产亚洲欧美精品永久| 91字幕亚洲| 满18在线观看网站| 国产免费视频播放在线视频| 一区二区日韩欧美中文字幕| 老司机午夜十八禁免费视频| 欧美激情久久久久久爽电影 | 美女视频免费永久观看网站| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久| 亚洲国产成人一精品久久久| 国产亚洲精品久久久久5区| 一区二区三区四区激情视频| 美女中出高潮动态图| 欧美日韩一级在线毛片| 不卡av一区二区三区| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 在线亚洲精品国产二区图片欧美| 精品免费久久久久久久清纯 | 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 不卡一级毛片| 国产精品久久久久久人妻精品电影 | 亚洲人成电影观看| 亚洲精品国产av成人精品| 精品一区二区三卡| 69精品国产乱码久久久| 一二三四在线观看免费中文在| 老司机影院毛片| 欧美精品av麻豆av| 男女午夜视频在线观看| 国产一区二区三区av在线| 国产精品一区二区精品视频观看| 国产精品自产拍在线观看55亚洲 | 欧美老熟妇乱子伦牲交| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 午夜福利乱码中文字幕| 精品一区二区三区四区五区乱码| 亚洲三区欧美一区| 亚洲七黄色美女视频| 亚洲av成人一区二区三| 女人久久www免费人成看片| 我的亚洲天堂| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 1024视频免费在线观看| 欧美精品啪啪一区二区三区 | 成人手机av| 欧美激情久久久久久爽电影 | 欧美在线黄色| 热99re8久久精品国产| 亚洲精品国产区一区二| 又大又爽又粗| 一本综合久久免费| 美女高潮到喷水免费观看| svipshipincom国产片| 日本五十路高清| 国产欧美日韩一区二区精品| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 精品高清国产在线一区| 久久亚洲国产成人精品v| 中文字幕色久视频| 亚洲专区中文字幕在线| 免费高清在线观看视频在线观看| 国产精品熟女久久久久浪| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 国产精品二区激情视频| 91大片在线观看| 巨乳人妻的诱惑在线观看| 美女主播在线视频| 少妇 在线观看| 男女之事视频高清在线观看| 男男h啪啪无遮挡| 成人免费观看视频高清| 9色porny在线观看| a级片在线免费高清观看视频| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 日本91视频免费播放| 桃花免费在线播放| 成年av动漫网址| 最黄视频免费看| 丝袜在线中文字幕| 亚洲av国产av综合av卡| 久久久久网色| 亚洲欧美一区二区三区黑人| 亚洲熟女精品中文字幕| av在线app专区| 久久久国产一区二区| 黄片小视频在线播放| 美女福利国产在线| 国产福利在线免费观看视频| 亚洲中文字幕日韩| 久久这里只有精品19| 飞空精品影院首页| 母亲3免费完整高清在线观看| 精品卡一卡二卡四卡免费| 99国产精品免费福利视频| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 成年人黄色毛片网站| 午夜免费成人在线视频| av网站在线播放免费| 高清视频免费观看一区二区| 啦啦啦在线免费观看视频4| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 欧美97在线视频| 91老司机精品| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看| 少妇人妻久久综合中文| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 国产成人精品无人区| 不卡一级毛片| 狂野欧美激情性xxxx| 久久天堂一区二区三区四区| 丝袜美足系列| 色精品久久人妻99蜜桃| 韩国精品一区二区三区| 免费久久久久久久精品成人欧美视频| 捣出白浆h1v1| 五月天丁香电影| 男人操女人黄网站| 在线观看一区二区三区激情| 天堂8中文在线网| 俄罗斯特黄特色一大片| 麻豆乱淫一区二区| 精品一区二区三区四区五区乱码| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩在线播放| 蜜桃国产av成人99| 亚洲成国产人片在线观看| 免费在线观看完整版高清| 91九色精品人成在线观看| 国产黄色免费在线视频| 亚洲少妇的诱惑av| 91大片在线观看| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 亚洲伊人久久精品综合| kizo精华| 一区二区三区乱码不卡18| 十八禁人妻一区二区| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级| 国产精品自产拍在线观看55亚洲 | 精品国产国语对白av| 色精品久久人妻99蜜桃| 国产精品影院久久| 国产高清国产精品国产三级| 俄罗斯特黄特色一大片| 久久久精品区二区三区| 亚洲第一欧美日韩一区二区三区 | 国产伦人伦偷精品视频| 性色av一级| 成人国产av品久久久| 亚洲九九香蕉| 热re99久久精品国产66热6| 夜夜夜夜夜久久久久| 国产不卡av网站在线观看| 丰满少妇做爰视频| 国产精品偷伦视频观看了| tube8黄色片| 国产精品一区二区免费欧美 | 一级a爱视频在线免费观看| 国产麻豆69| 国产一卡二卡三卡精品| 亚洲欧美清纯卡通| 成人手机av| 国产日韩欧美在线精品| 日本av手机在线免费观看| 日本a在线网址| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 色94色欧美一区二区| 一级a爱视频在线免费观看| 久久精品久久久久久噜噜老黄| 男人添女人高潮全过程视频| 国产日韩一区二区三区精品不卡| 国产免费现黄频在线看| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 日本精品一区二区三区蜜桃| 老司机影院成人| 99热国产这里只有精品6| 考比视频在线观看| 国产亚洲精品一区二区www | 天堂中文最新版在线下载| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | 91精品国产国语对白视频| 视频在线观看一区二区三区| 日本91视频免费播放| 精品一区二区三区av网在线观看 | 香蕉国产在线看| 免费少妇av软件| 真人做人爱边吃奶动态| 免费高清在线观看视频在线观看| 久久久国产欧美日韩av| 亚洲 欧美一区二区三区| 一级,二级,三级黄色视频| 国产亚洲精品第一综合不卡| 青春草亚洲视频在线观看| 亚洲精品中文字幕一二三四区 | 久久精品人人爽人人爽视色| 又紧又爽又黄一区二区| 久久久久视频综合| 黄色视频不卡| 黑人巨大精品欧美一区二区mp4| 国产成人欧美在线观看 | 久久毛片免费看一区二区三区| 欧美日韩国产mv在线观看视频| 如日韩欧美国产精品一区二区三区| 一区福利在线观看| 真人做人爱边吃奶动态| 黄片大片在线免费观看| 久久狼人影院| 咕卡用的链子| 国产av又大| 国产av一区二区精品久久| 无限看片的www在线观看| 日韩有码中文字幕| 国产精品国产av在线观看| 亚洲自偷自拍图片 自拍| 国产国语露脸激情在线看| 国产一卡二卡三卡精品| 岛国在线观看网站| 亚洲伊人久久精品综合| 精品人妻熟女毛片av久久网站| 老司机在亚洲福利影院|