• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SiO2/炭泡沫和SiC/炭泡沫復(fù)合材料的制備及表征

    2015-12-05 07:28:18吳曉棟邵高峰沈曉冬南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室南京0009宿遷市南京工業(yè)大學(xué)新材料研究院宿遷800中航復(fù)合材料有限公司先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室北京000
    關(guān)鍵詞:熱導(dǎo)率泡沫南京

    吳曉棟 邵高峰 崔 升 王 嶺 沈曉冬*,(南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 0009) (宿遷市南京工業(yè)大學(xué)新材料研究院,宿遷 800) (中航復(fù)合材料有限公司,先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室,北京 000)

    SiO2/炭泡沫和SiC/炭泡沫復(fù)合材料的制備及表征

    吳曉棟1,2邵高峰1,2崔升1,2王嶺3沈曉冬*,1,2
    (1南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210009) (2宿遷市南京工業(yè)大學(xué)新材料研究院,宿遷223800) (3中航復(fù)合材料有限公司,先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室,北京101300)

    對(duì)炭泡沫為支撐骨架的氧化硅氣凝膠(SiO2/炭泡沫)和碳化硅(SiC/炭泡沫)復(fù)合材料分別采用XRD、SEM、激光導(dǎo)熱儀、萬能力學(xué)試驗(yàn)機(jī)進(jìn)行物相、微觀結(jié)構(gòu)、熱學(xué)及力學(xué)性能方面的表征。結(jié)果表明:所制備的SiO2/炭泡沫與原炭泡沫相比,具備更高的抗壓強(qiáng)度(14.95 MPa)和更低的室溫?zé)釋?dǎo)率(0.44 W·m-1·K-1)。SiC/炭泡沫材料則保持了較高的抗壓強(qiáng)度值(14.66 MPa),其在1 200℃下具備極低的高溫?zé)釋?dǎo)率(2.18W·m-1·K-1)。熱重分析表明,SiC/炭泡沫在氧化氛圍中到610℃才發(fā)生質(zhì)量的損失,而內(nèi)部炭發(fā)生完全燒蝕的溫度高達(dá)844℃,這表明該材料的抗氧化性能遠(yuǎn)好于純的炭泡沫材料。

    炭泡沫;二氧化硅;碳化硅;熱穩(wěn)定性;熱導(dǎo)率;抗壓強(qiáng)度

    0 Introduction

    Glassy carbon foams are porous carbon materials with many advantages such as low density,high specificmodulusandstrength,highapplicable temperature,large surface area,coupled with either controllable electrical conductivity or low thermal conductivity[1-3].The performances of the carbon foams such as low density and excellent insulation make them attractive candidates for application in advanced aircraft,spacecraft and related industries[4-6].Unfortunately,carbon foam has some key drawbacks that limit its performance in certain cases.Firstly,carbon foam has a fairly low thermal stability in oxidizing atmosphere at elevated temperatures,thus limiting the operatingtemperatureofcarbonfoam-supported materials in an oxidative environment.Secondly,the pristine carbon foam has a relatively higher thermal conductivity,compared with aerogel composite and fiber mat[7-12],which is not favorable to thermal insulations and other applications.Luo et al.[2]proposed a resin-derived carbon foam reinforced by K2Ti6O13whiskers,and showed that the addition of K2Ti6O13whiskerswithcontentof2wt% ~4wt%enhanced thermal insulating properties of the neat carbon foams, whereas the compressive strength was below 8 MPa. Furthermore,the compressive strength of most pristine carbon foam is unsatisfying,which has sometime limited its applications in aviation and aerospace fields.Zhang et al.[6]employed arylacetylene as the precursor to produce carbon foam with a compressive strength of 25.8 MPa and low bulk density of 0.6 g· cm-3,however,thethermalpropertieswerenot evaluated in the article.

    Covering the inner surface of carbon foam with a more thermally stable material to serve as a barrier to oxygen diffusion is a common way to improve the thermalstability.However,thermalstabilityis typically improved but the porous carbons are blocked by the depositing species,thus increasing the thermal conductivity of neat carbon foam.SiO2aerogels are unique porous materials with distinctive properties, such as large specific surface area,low thermal conductivity[7-8,13-14].It has been demonstrated that both SiO2and SiC are well known for their good thermal stability at high temperatures[15-18].Therefore,incorporating SiO2aerogel into carbon foam can not only improve its resistance to oxidation at elevated temperatures, but also decrease its thermal conductivity at room temperature.In the past few years,much attention has been paid to the study of aerogel/carbon foam composites to further decrease the thermal conductivity and increase the compressive strength of carbon foam[19-21]. The SiC derived from the reaction of carbon foam and SiO2aerogel at high temperatures can further improve its thermal stability and decrease high temperature thermal conductivity due to the enhanced radiation extinction of SiC particles.On the other hand,the drawback of low compressive strength can be solved by properly increasing the density of carbon foam sincethecompressivestrengthandthermal conductivity are positively correlated with carbon foam density[2].Thus,the preparation and characterization of resulting carbon foam supported SiO2/Carbon foam and SiC/Carbon foam compositeare worthwhile.

    In this study,we use carbon foam as scaffolds for the synthesis of high strength SiO2/Carbon foam and SiC/Carbon foam composites with enhanced thermal stability and low thermal conductivity.A new method of producing SiC particles using carbon foam as carbon source and silica aerogel as silicon source is developedinthisarticle.Theinfluenceof incorporating SiO2aerogel and produced SiC particles onthemicrostructure,thermalandmechanical properties of the pristine carbon foam are investigated via scanning electron microscopy(SEM),the laser flash technique,and mechanical testing.

    1 Experimental

    1.1Sample preparation

    Tetraethyl orthosilicate(TEOS,A.R.,Sinopharm Chemical Reagent Co.,Ltd.)was used as silicon source.Hydrochloric acid(HCl,1 mol·L-1,Shanghai Zhongshi Chemical Co.,Ltd.)and ammonia solution (NH3·H2O,1 mol·L-1,Wuxi City Yasheng Chemical Co.,Ltd.)were used as catalysts.Deionized water(homemade)was used as hydrolysis agent and absolute ethylalcohol(EtOH,AR,WuxiCityYasheng Chemical Co.,Ltd.)as solvent.All of the reactants and solvents were used as received without further purification.Carbonfoamwasobtainedfrom bituminous coal by a two-stage procedure according to reference[22].The precursor was first loaded in the reactor and was pressurized with argon until the initial pressureof approximately 3~4 MPa,and then it was heated to temperature of 450~600℃ with a heating rate of 2~4℃·min-1and kept at that temperature for 2 h.In a second stage,the precursor was carbonized underflowingargonatmosphereattemperature between 850~1 200℃ and maintained at that level for 2 h to produce the final carbon foam.In a typical synthesis,TEOS(22.4 mL,0.1 mol)was firstly dissolved in a mixture of water(7.2 mL,0.4 mol)and ethanol(93 mL,1.6 mol).Secondly,appropriate amount of HCl(0.3 mL,0.3 mmol)was added to the mixture with pH value of 2~3 after stirring for about 90 min at 50℃.Thirdly,desired amount of NH3·H2O (0.5 mL,0.5 mmol)was added to the solution to accelerate the poly-condensation rate.At last,the reaction mixture was further stirred for 10 min, transferred to a container with carbon foam(35 mm× 35 mm×20 mm)under vacuum for full infiltration. After gelation within 3 h under room temperature,the wet gel composite was aged at room temperature for 1 d and was subsequently soaked in a bath of absolute ethanol in an oven of 50℃for 3 d to exchange the water and reaction byproducts from the pores of the materials.After aging and solvent exchange,the wet gels composites were put in the critical point extractor fordrying,usingCO2supercriticalfluiddrying technique,thusformingtheSiO2/Carbonfoam composite.Afterdrying,theSiO2/Carbonfoam composite was heated at 1500℃and was maintained at that level for 5 h in a tube furnace under flowing argon(100 mL·min-1)to produce the SiC/Carbon foam composite.

    1.2Sample characterization

    X-ray diffraction(XRD)patterns were recorded using a Rigaku Smart Lab 3000 diffractometer with Cu Kα radiation(λ=0.154 18 nm).The X-ray tube was operated at 35 kV and 30 mA.The optics configuration includes a fixed divergence slit(0.5°) and a D/teX Ultra detector.The measurements were collected over a 2θ range of 10°~80°,at a rate of 10℃·min-1.Scanning electron microscopy(SEM)images were obtained with a JSM-6510 scanning electron microscope.The accelerating voltage was between 3.0~5.0 kV,and the samples were coated with platinuminvacuum.Thermalgravimetricanalysis (TGA)and differential scanning calorimetry analysis (DSC)wereperformedbyNETZSCHSTA449C Thermogravimetricanalyzer under a constant air flow of 30 mL·min-1at a heating rate of 10℃·min-1to 1 000℃.The compressive strengths of the samples weremeasuredbyanINSTRON3382testing machine.The test temperature was 25℃ and the cross-head speed applied was 1.0 mm·min-1.The thermal conductivities of samples(10 mm×10 mm×3.4 mm)were measured using Netzsch LFA427 laser-flash method under a dynamic argon atmosphere(80 mL· min-1,0.1 MPa).InSb was used as an infrared detector.The sample was coated with graphite to increase the pulse energy absorption and infrared emittance,and the pulse width was fixed at 0.5 ms and laser voltage of 450 V.

    2 Results and discussion

    Fig.1 shows the photographs and SEM images of pristine carbon foam.The bulk density and porosity of the pristine carbon foam are 0.50 g·cm-3and 76%, respectively,usingthetraditionalArchimedes method[4].The density is much larger than other carbonfoams[23],whichisfavorabletohigh compressive strength.As can be seen from Fig.1(b), there are opening pores as well as obturator pores in the cell walls of carbon foam.The presence of obturator pores origins from the fast growing viscosity which inhibits the growth of pores inside during the process of heating mesophase pitch.Fig.1(c)shows that some small cracks appear in the cell walls,and they are caused by two reasons.The first one is attributed to the diffusivity of light gas stemming fromnonecarbon-basedelementintheprocessof carbonization.The other one can be explained by the large stress due to the shrinkage of carbon foam skeleton when it is heated at elevated temperatures[3]. It can be observed in Fig.1(d)that carbon foams have an open-cell and spherical-shape porous structure as well as dense structures,and most pores within carbon foam distribute in the range of 400~700 μm.There are also some small windows with diameters of 100~300 μm in the cell walls,owing to the incomplete growing of carbon particles[4]combined with voids formed in thermal decomposition[24].

    Fig.1 Photographs(a)and SEM images(b,c and d)of the pristine carbon foam

    Fig.2 Photographs(a,b)and SEM images(c,d)of SiO2/Carbon foam and SiC/Carbon foam composite

    Fig.2 shows the photographsand SEM images of SiO2/Carbon foam and SiC/Carbon foam composite.SiO2aerogel is sufficiently infiltrated in the pores of carbon foam skeleton,combining well with the cell wall as can be seen from Fig.2(c)and further amplificationin inset of Fig.2(c).The size of SiO2nano particles is ca. 40 nm,and they are cellular solids similar to a pearl necklace,of which the structure is beneficial to lower thermal conductivity.SiC particles(arrow directed ones)appear as disordered arrangements with grain size of approximately 5 μm and are produced mainly in the surface of the carbon foam,as indicated in Fig. 2(d)and amplification inset.In addition,the cell walls become coarser and thinner after thermal treatment at 1 500℃,in comparison with the pristine carbon foam.The total process of the reduction of SiO2to SiC may occur according to the following equation[25-29]:

    Fig.3 shows the XRD patterns for the pristine carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.As can be seen,the XRD pattern for the pristine carbon foam is similar with the SiO2/Carbon foam composite.Two wide and weak peaks around 25° and 43°are detected and they are diffractions from typical crystal faces of(002)and(100)with graphite characteristics[30].However,it is not as narrow and intense as reference[31]since the carbonization temperature is not high enough to form the total graphitephase.The intense peaks in the XRD pattern for the SiC/Carbon foam composite can be indexed to SiC (PDF No.49-1623),and no other peaks are observed. However,the synthesized SiC particles is dramatically different from references[32-34].Therefore,based on XRD data,a 5 h treatment at 1 500℃is sufficient to convert the SiO2layer in SiO2/Carbon foam to SiC particles.According to reference[9],SiC particles are derived from multi-step reactions,and the initial process should follow Eq.2 to form SiO gas:

    Then,SiC can be produced by two different ways according to Eq.3 and Eq.4 as follows:

    CO(g)from Eq.2 and Eq.3 can react with SiO2(s) to produce more SiO(g)via Eq.5 to keep the reaction running,and the CO2from Eq.4 and Eq.5 will be consumed by the surrounding carbon foam to form CO (g)as Eq.6:

    Fig.3 Powder XRD patterns for carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite

    The morphology of SiC is closely related to its reaction pathway.In general,the products of Eq.4 are SiC whiskers whereas Eq.3 produces SiC particles.In this work,the produced SiC exists as particleswith grain size of ca.5 μm as indicated by Fig.2(d).This phenomenon can be caused by two reasons.On one hand,the porosity of carbon foam is very high,which results in the low partial pressure of SiO(g)and CO(g) and inhibits the proceeding of Eq.4.On the other hand,carbon foam possesses large interconnecting pores,favoring the diffusion of SiO(g),thus accelerating the formation of SiC particles as Eq.3.

    Fig.4 shows the TGA,DSC and DTG curves of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.As expected,combustion of the pristine carbon foam begins at 572℃ and the material is completely consumed at 766℃.The remaining mass is 12%of the original material,which indicates that the mass fraction of carbon in the foam is 88%.The mass loss at around 220℃ of SiO2/Carbon foam composite is attributed to further condensation of Si-OH as well as the removal of surface water absorbed in the pores of SiO2aerogel,thus two exothermic peak at 244℃and 654℃are observed on the corresponding DSC thermogram.The onset temperature of carboncombustionfortheSiO2/carbonfoamcompositeis almost the same as that for the pristine carbon foam, suggesting that SiO2aerogel is not an effective barrier to oxygen diffusion.This material retains ca.22%of its original mass due to the presence of the SiO2overcoat.Improvement of thermal stability is observed in the SiC/Carbon foam composite.Mass loss does not begin until about 610℃,and complete oxidation of the carbon foam does not occur until 844℃ . According to the Fig.4(c),there is little weight gain at elevated temperatures in air atmosphere caused by oxidation of SiC particles,which is consistent with reference[16].The improved thermal stability suggests that SiC covers most of the carbon foam surface, providing an effective barrier to oxygen diffusion.The remaining mass is 19%,lower than mass loss of SiO2/ Carbon foam composite.It can be inferred that the SiO2content in SiO2/Carbon foam composite is 10%, and the SiC content in SiC/Carbon foam composite is 7%,thus the mass ratio of SiC to SiO2is 70%.It is consistent with Eq.1 which shows a theoretical ratio of 67%,indicating that SiO2layer in SiO2/Carbon foam compositeis totally converted to SiC particles.

    Fig.4 TGA(a),DSC(b)and DTG(c)plots of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite

    Fig.5 shows the thermal conductivities(λ)of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite as a function of testing temperature.The results are calculated by Eq.7 as follows:

    Fig.5 Thermal conductivity of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite as a function of testing temperature

    where ρ is the bulk density of the sample,C is the specific heat capacity and α is the thermal diffusivity.As can be seen from Fig.5,the thermal conductivities at room temperature for carbon foam, SiO2/Carbon foam and SiC/Carbon foam compositeare 0.67,0.44 and 0.52 W·m-1·K-1,respectively.It can be inferred that the incorporation of SiO2aerogel can decrease its thermal conductivity at room temperatureby 31%of the original value of carbon foam.When the temperature is less than 900℃,the thermal conductivity of carbon foam and SiO2/carbon foam composite both increases slowly with the increase of temperature,whereas sharply increases after 900℃. SiC/Carbon foam composite shows a much lower increase inthermal conductivity at temperature over 900℃,in comparison with carbon foam and SiO2/ Carbon foam.It can be explained by the theory of thermalphysicsdescribingthetotalthermal conductivity in carbon foam composites as follows:

    where λsis the conduction through solids,λgis the conduction through gas,λcis the convection within the cells,and λris the radiation through the cell walls and the voids.

    In the pristine carbon foam,the volume fraction of solid phase is as low as 24%,therefore the solid conductivityviaphonontransportislowatroom temperature.The average pore size(400~700 μm) within carbon foam would suppress the convective heattransferandradiationisalsoreducedby adsorption and the repeated reflection from the cell walls.Thus,carbon foam possesses a relatively low thermal conductivity of 0.67 W·m-1·K-1,which is lower than literature reports[35-36].When SiO2aerogel is incorporated in carbon foam,phonon transport through the amorphous carbon and cell walls partly transfers to aerogel part,which needs a much larger heat transfer path than before,thus the solid conduction is inhibitedtoalargeextent,andthethermal conductivity is reduced to 0.44 W·m-1·K-1[37].When the temperature is below 900°C,the increased thermal conductivity of the three samples is caused by the increasedsolidconductivity,whilethesharply increasedthermalconductivityiscausedbythe increase of thermal radiation,because the thermal radiation plays the greatest role for the thermal conductivity of carbon foam and SiO2/Carbon foam composite.However,fortheSiC/Carbonfoam composite,thermal conductivity increases slowly at temperatures over 900℃,in comparison with the other two materials.This can be explained by the produced SiC particles,playing a part as an opacifier at elevated temperatures.The formation of SiC can increase the specific extinction of the composite, which would decrease the thermal radiation,thus the SiC/carbonfoamcompositepossessesthelowest thermal conductivity at high temperatures[38-39].

    Fig.6 shows the compressive load-strain curves of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.The curves indicate that the samples are typical brittle materials with no plateau stresses, which is different from reference[40].The compressive strength of the three samples is 13.76,14.95 and 14.66 MPa,respectively.The incorporation of SiO2in theporesofcarbonfoamslightlyimprovesits compressive strength due to the strengthen effect of cell wall and junctions of carbon foam.In addition, the SiC/Carbon foam composite possesses a slightly lower compressive strength than SiO2/Carbon foam.It is attributed to the decreased thickness of cell walls, damagedligamentsandjunctionsafterthermal treatment at 1 500℃ since tough framework of the carbonfoamsisunfavorabletohighmechanical properties,as indicated by SEM images in Fig.2(d). However,the compressive strength of SiC/Carbon foam composite is much larger than other carbon foams with similar density[41-42].

    Fig.6 Compressive load-strain curves of carbon foam, SiO2/Carbon foam and SiC/Carbon foam composite

    3 Conclusions

    We have demonstrated a method for the synthesis of SiO2/Carbon foam and SiC/Carbon foam composite with sol-gel method,followed by thermal treatment under flowing argon.In comparison with the pristinecarbonfoam,theresultingSiO2/Carbonfoam composite has a slightly higher compressive strength (14.95 MPa)and a much smaller thermal conductivity (0.44 W·m-1·K-1).The SiC/Carbon foam composite maintains a high compressive strength of 14.66 MPa and possesses a rather low thermal conductivity(2.18 W·m-1·K-1)at temperature as high as 1 200℃.In addition,theSiC/Carbonfoamcompositegains improved oxidative thermal resistance than pristine carbon foam.This new class of high compressive strength materials with improved thermal stability in oxidizingatmosphereshouldbeespecially advantageous in potential applications where high compressive strength,low thermal conductivity,and operation at elevated temperatures are desired.

    [1]Wu X W,Fang M H,Mei L F,et al.Mater.Sci.Eng.A,2012, 558:446-450

    [2]Luo R Y,Ni Y F,Li J S,et al.Mater.Sci.Eng.A,2011,528 (4/5):2023-2027

    [3]XIAO Feng(肖鋒),ZHANG Hong-Bo(張紅波),Xiong Xiang(熊翔),et al.Chinese J.Nonferrous Met.(中國有色金屬學(xué)報(bào)),2010,20(7):1346-1352

    [4]HeX,TangZH,ZhuYF,etal.Mater.Lett.,2013,94:55-57

    [5]Sihn S,Roy A K.J.Mech.Phys.Solids,2004,52(1):167-191

    [6]LI Kai(李凱),LUAN Zhi-Qiang(欒志強(qiáng)).New Carbon Mater.(新型炭材料),2004,19(1):77-78

    [7]Neugebauer A,Chen K,Tang A,et al.Energy Build.,2014, 79:47-57

    [8]Wei G S,Liu Y S,Zhang X X,et al.J Non-Cryst.Solids, 2013,362:231-236

    [9]Sun H R,Zhang S C,Deng Z W,et al.Key Eng.Mater., 2014,602:126-129

    [10]Xie T,He Y L,Hu Z J.Int.J.Heat Mass Transfer,2013,58 (1/2):540-552

    [11]Liao Y D,Wu H J,Ding Y F,et al.J.Sol-Gel Sci.Technol., 2012,63(3):445-456

    [12]Jung I K,Gurav J L,Ha T J,et al.Ceram.Int.,2012,38(1): 105-108

    [13]Wei G S,Liu Y S,Zhang X X,et al.Int.J.Heat Mass Transfer,2011,54(11):2355-2366

    [14]ZHANG Jun-Jun(張君君),ZHONG Ya(仲亞),SHEN Xiao-Dong(沈曉冬),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014,30(4):793-799

    [15]LIN Jian-Xin(林建新),ZHENG Yong(鄭勇),ZHENG Ying (鄭瑛),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2006,22(10):1778-1782

    [16]Worsley M A,Kuntz J D,Satcher J J,et al.J Mater.Chem., 2010,20(23):4840-4844

    [17]Labat G A,Zollfrank C,Ortona A,et al.Ceram.Int., 2013,39(2):1841-1851

    [18]KONG Yong(孔勇),SHEN Xiao-Dong(沈曉冬),CUI Sheng (崔升),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2014,30(12):2825-2831

    [19]SHI Ya-Chun(史亞春),LI Tie-Hu(李鐵虎),WANG Xi-Lin (王習(xí)林),et al.Funct.Mater.(功能材料),2013,44(20):3049 -3052

    [20]DU Shan(杜姍).Thesis for the Master′s Degree of Harbin Institute of Technology(哈爾濱工業(yè)大學(xué)碩士學(xué)位論文), 2013.

    [21]HUANG Peng(黃鵬).Thesis for the Master′s Degree of Harbin Institute of Technology(哈爾濱工業(yè)大學(xué)碩士學(xué)位論文),2013.

    [22]Calvo M,Garcia R,Arenillas A,et al.Fuel,2005,84(17): 2184-2189

    [23]Feng J Z,Feng J,Jiang Y G,et al.Mater.Lett.,2011,65 (23/24):3454-3456

    [24]Lin Q L,Luo B,Qu L J,et al.J.Anal.Appl.Pyrolysis, 2013,104:714-717

    [25]Leventis N,Sadekar A,Chandrasekaran N,et al.Chem. Mater.,2010,22(9):2790-2803

    [26]Li X T,Chen X H,Song H H.Mater.Sci.Eng.B,2011,176 (1):87-91

    [27]Mishra S B,Mishra A K,Mamba B B,et al.Mater.Lett., 2011,65(14):2245-2247

    [28]Li X T,Chen X H,Song H H.J.Mater.Sci.,2009,44(17): 4661-4667

    [29]XU Wu-Jun(徐武軍),XU Yao(徐耀),SUN Xian-Yong (孫先勇),et al.New Carbon Mater.(新型炭材料),2006,21 (2):167-170

    [30]Xu S J,Qiao G J,Wang H J,et al.Mater.Lett.,2008,62 (30):4549-4551

    [31]Li S Z,Song Y Z,Song Y,et al.Carbon,2007,45(10):2092 -2097

    [32]Kong Y,Zhong Y,Shen X D,et al.Mater.Lett.,2013,99: 108-110

    [33]Saeedifar Z,Nourbakhsh A A,Kalbasi R J,et al.J.Mater. Sci.Technol.,2013,29(3):255-260

    [34]Zhang N C,Yu A X,Liang A H,et al.J.Appl.Polym.Sci., 2013,130(1):579-586

    [35]Wang X Y,Zhong J M,Wang Y M,et al.Carbon,2006,44 (8):1560-1564

    [36]Mesalhy O,Lafdi K,Elgafy A.Carbon,2006,44(10):2080-2088

    [37]Sihn S,Ganguli S,Anderson D P,et al.Compos.Sci.Technol., 2012,72(7):767-773

    [38]Wang X D,Sun D,Duan Y Y,et al.J.Non-Cryst.Solids, 2013,375:31-39

    [39]Xu L,Jiang Y G,Feng J Z,et al.Ceram.Int.,2015,41(1): 437-442

    [40]Li X,Basso M C,Braghiroli F L,et al.Carbon,2012,50(5): 2026-2036

    [41]Gallego N C,Klett J W.Carbon,2003,41(7):1461-1466

    [42]SHEN Zeng-Min(沈曾民),GE Min(戈敏),CHI Wei-Dong (遲偉東),et al.New Carbon Mater.(新型炭材料),2006,21 (3):193-201

    Preparation and Characterization of SiO2/Carbon Foam and SiC/Carbon Foam Composites

    WU Xiao-Dong1,2SHAO Gao-Feng1,2CUI Sheng1,2WANG Ling3SHEN Xiao-Dong*,1,2
    (1State Key Laboratory of Materials-Oriented Chemical Engineering,College of Materials Science and Engineering,Nanjing Tech University,Nanjing,210009,China) (2Advanced Materials Institute of Nanjing Tech University in Suqian,Jiangsu 223800,China) (3AVIC Composite Corporation Ltd.,National Key Laboratory of Advanced Composite,Beijing,101300,China)

    The synthesis and characterization of carbon foam supported silica aerogel(SiO2/Carbon foam)and silicon carbide composite(SiC/Carbon foam)are presented in this study.The phase composition,microstructure, thermal and mechanical properties are investigated by XRD,SEM,LFA Laser Flashmeasurements,and Universal Material Testing.The resulting SiO2/Carbon foam composite shows a higher compressive strength(14.95 MPa)and a smaller thermal conductivity(0.44 W·m-1·K-1)at room temperature,in comparison with the pristine carbon foam.The SiC/Carbon foam composite maintains a compressive strength of 14.66 MPa,and possesses a low hightemperature thermal conductivity(2.18 W·m-1·K-1at 1 200℃).Mass loss does not begin until 610℃for the SiC/Carbon foam composite,and complete carbon combustion does not occur until 844℃,indicating a much better thermal stability than the pristine carbon foam in oxidizing atmosphere.

    carbon foam;SiO2;silicon carbide;thermal stability;thermal conductivity;compressive strength

    O613.7

    A

    1001-4861(2015)06-1252-09

    10.11862/CJIC.2015.161

    2015-03-08。收修改稿日期:2015-04-21。

    江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(PAPD);長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(No.IRT1146);江蘇博士后研究基金計(jì)劃項(xiàng)目(1402016A)資助。

    *通訊聯(lián)系人。E-mail:xdshen@njtech.edu.cn;Tel:025-83587234;會(huì)員登記號(hào):E413200441M。

    猜你喜歡
    熱導(dǎo)率泡沫南京
    南京比鄰
    毒泡沫
    “南京不會(huì)忘記”
    空位缺陷對(duì)單層石墨烯導(dǎo)熱特性影響的分子動(dòng)力學(xué)
    廢棄的泡沫盒
    “搞死”國家的泡沫
    連續(xù)碳纖維鋁基復(fù)合材料橫向等效熱導(dǎo)率的模擬分析
    Si3N4/BN復(fù)合陶瓷熱導(dǎo)率及其有限元分析
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    av国产精品久久久久影院| 黄频高清免费视频| 99热只有精品国产| 国产欧美日韩精品亚洲av| av有码第一页| 免费看十八禁软件| 桃红色精品国产亚洲av| 午夜福利在线免费观看网站| 精品久久久久久久毛片微露脸| 午夜福利一区二区在线看| 老熟妇仑乱视频hdxx| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频| 国产日韩一区二区三区精品不卡| 成人三级做爰电影| 亚洲成a人片在线一区二区| 91国产中文字幕| 母亲3免费完整高清在线观看| 九色亚洲精品在线播放| 看片在线看免费视频| 高清在线国产一区| 人人澡人人妻人| 在线国产一区二区在线| av天堂在线播放| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 久久草成人影院| 99热网站在线观看| 午夜福利视频在线观看免费| 身体一侧抽搐| 国产激情久久老熟女| svipshipincom国产片| 十分钟在线观看高清视频www| 性少妇av在线| 国产成人一区二区三区免费视频网站| 一级片'在线观看视频| 久久久久精品国产欧美久久久| 丝袜美腿诱惑在线| 大陆偷拍与自拍| 五月开心婷婷网| 亚洲七黄色美女视频| 在线观看午夜福利视频| 久久亚洲真实| 成年女人毛片免费观看观看9 | 亚洲性夜色夜夜综合| 欧美亚洲 丝袜 人妻 在线| av网站在线播放免费| 人人澡人人妻人| 黄色怎么调成土黄色| 美女福利国产在线| 美女视频免费永久观看网站| 人妻一区二区av| 又大又爽又粗| 高清av免费在线| 99久久99久久久精品蜜桃| 丝袜在线中文字幕| 午夜免费观看网址| 他把我摸到了高潮在线观看| 男女之事视频高清在线观看| 日本a在线网址| 99精品久久久久人妻精品| 国产片内射在线| 热99国产精品久久久久久7| 午夜视频精品福利| 999久久久国产精品视频| 久久久国产欧美日韩av| 日韩视频一区二区在线观看| 一区在线观看完整版| 欧美一级毛片孕妇| 国产成人av激情在线播放| 香蕉久久夜色| 精品福利观看| 午夜免费成人在线视频| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 欧美亚洲 丝袜 人妻 在线| 久久久国产一区二区| 黄色毛片三级朝国网站| 不卡一级毛片| 无遮挡黄片免费观看| 日韩 欧美 亚洲 中文字幕| 深夜精品福利| 五月开心婷婷网| 国产精品自产拍在线观看55亚洲 | 亚洲欧美精品综合一区二区三区| 国产xxxxx性猛交| 国产亚洲精品久久久久5区| 欧美精品一区二区免费开放| 精品午夜福利视频在线观看一区| 午夜老司机福利片| 成人18禁在线播放| 黄色毛片三级朝国网站| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 国产一区有黄有色的免费视频| 免费少妇av软件| 岛国毛片在线播放| 亚洲一码二码三码区别大吗| 国产成人精品无人区| 免费观看人在逋| 三级毛片av免费| 男女高潮啪啪啪动态图| 黄色丝袜av网址大全| 色综合婷婷激情| 老熟妇乱子伦视频在线观看| 天天躁日日躁夜夜躁夜夜| 在线国产一区二区在线| 国产亚洲精品一区二区www | 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 成年人午夜在线观看视频| 在线永久观看黄色视频| 免费看十八禁软件| 国精品久久久久久国模美| 一进一出抽搐gif免费好疼 | 精品国产一区二区三区久久久樱花| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女 | av视频免费观看在线观看| 日韩人妻精品一区2区三区| 久久久久视频综合| 成人特级黄色片久久久久久久| 日韩三级视频一区二区三区| 极品人妻少妇av视频| 啦啦啦视频在线资源免费观看| 老熟女久久久| av超薄肉色丝袜交足视频| 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 国产精品欧美亚洲77777| 在线观看免费视频日本深夜| 大陆偷拍与自拍| 大片电影免费在线观看免费| 少妇 在线观看| 一a级毛片在线观看| av超薄肉色丝袜交足视频| 人人澡人人妻人| av线在线观看网站| 日韩大码丰满熟妇| 中文字幕高清在线视频| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 欧美性长视频在线观看| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院 | 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 99国产精品一区二区蜜桃av | 精品久久久久久久毛片微露脸| 中出人妻视频一区二区| 精品国产亚洲在线| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 国产欧美日韩一区二区三区在线| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| av线在线观看网站| 国产精华一区二区三区| 国产成人精品久久二区二区免费| 宅男免费午夜| 欧美黄色淫秽网站| 999久久久精品免费观看国产| videosex国产| 制服人妻中文乱码| 亚洲伊人色综图| 满18在线观看网站| 一级毛片精品| 国产主播在线观看一区二区| 美女 人体艺术 gogo| 9热在线视频观看99| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区 | 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9 | 国产精品 国内视频| 黑人欧美特级aaaaaa片| 在线观看一区二区三区激情| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 少妇被粗大的猛进出69影院| 亚洲成a人片在线一区二区| 久热爱精品视频在线9| 一二三四社区在线视频社区8| 很黄的视频免费| 中文字幕精品免费在线观看视频| 精品人妻熟女毛片av久久网站| 国产成人欧美在线观看 | x7x7x7水蜜桃| 老司机在亚洲福利影院| 亚洲人成77777在线视频| 国产激情久久老熟女| 久久久久久人人人人人| 十八禁人妻一区二区| 成人精品一区二区免费| 黄网站色视频无遮挡免费观看| 99国产精品99久久久久| 两个人免费观看高清视频| 黄色视频不卡| 18禁美女被吸乳视频| 桃红色精品国产亚洲av| 亚洲精品国产一区二区精华液| 国产免费男女视频| 欧美日韩瑟瑟在线播放| 亚洲专区国产一区二区| 99re在线观看精品视频| 精品国产美女av久久久久小说| 国产一区二区三区在线臀色熟女 | 日本黄色日本黄色录像| 黄片大片在线免费观看| 亚洲第一欧美日韩一区二区三区| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 久久亚洲精品不卡| 91av网站免费观看| 成人18禁高潮啪啪吃奶动态图| 日本撒尿小便嘘嘘汇集6| 嫁个100分男人电影在线观看| 在线国产一区二区在线| 亚洲在线自拍视频| 超碰97精品在线观看| 精品视频人人做人人爽| 国产精品一区二区在线观看99| 午夜精品久久久久久毛片777| 欧洲精品卡2卡3卡4卡5卡区| 在线观看舔阴道视频| 国产亚洲一区二区精品| 精品久久久久久,| 在线观看免费视频网站a站| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看| 久久久久久亚洲精品国产蜜桃av| xxxhd国产人妻xxx| 精品一区二区三区视频在线观看免费 | 免费久久久久久久精品成人欧美视频| 新久久久久国产一级毛片| 高清毛片免费观看视频网站 | 亚洲精品在线美女| 中国美女看黄片| 一级毛片高清免费大全| 亚洲熟妇熟女久久| √禁漫天堂资源中文www| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 日本黄色日本黄色录像| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 国产单亲对白刺激| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 亚洲欧美色中文字幕在线| 国产极品粉嫩免费观看在线| 天堂俺去俺来也www色官网| 男女之事视频高清在线观看| 精品国产国语对白av| 午夜福利,免费看| 亚洲精品国产一区二区精华液| 99国产极品粉嫩在线观看| 一级片免费观看大全| 啦啦啦在线免费观看视频4| 欧美午夜高清在线| 久久久国产一区二区| 国产精品久久久久久精品古装| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 性少妇av在线| 亚洲一区二区三区不卡视频| 欧美精品高潮呻吟av久久| 在线看a的网站| 法律面前人人平等表现在哪些方面| 久久精品国产综合久久久| 免费看a级黄色片| 日韩视频一区二区在线观看| 大码成人一级视频| 精品国内亚洲2022精品成人 | 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 中文字幕制服av| 天天添夜夜摸| 国产精品欧美亚洲77777| 黄色成人免费大全| 国产精品免费一区二区三区在线 | 天堂俺去俺来也www色官网| 免费人成视频x8x8入口观看| 曰老女人黄片| 狠狠狠狠99中文字幕| 真人做人爱边吃奶动态| 国产精品.久久久| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 欧美丝袜亚洲另类 | 欧美日韩黄片免| 麻豆av在线久日| 午夜福利影视在线免费观看| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 下体分泌物呈黄色| 国产精品久久久人人做人人爽| 国产精品 国内视频| 欧美大码av| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 香蕉国产在线看| 亚洲色图综合在线观看| 91成人精品电影| 国产成人精品久久二区二区91| 久久久久久久久免费视频了| 老熟女久久久| 69av精品久久久久久| 欧美久久黑人一区二区| 久久久久久久国产电影| 欧美日韩亚洲综合一区二区三区_| 久久久国产一区二区| 热99re8久久精品国产| 欧美日韩亚洲国产一区二区在线观看 | 国产99久久九九免费精品| 精品人妻1区二区| 久久久久久久精品吃奶| av一本久久久久| 国产精品影院久久| 亚洲成人免费av在线播放| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 丝瓜视频免费看黄片| 亚洲人成电影观看| 精品第一国产精品| 亚洲全国av大片| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 手机成人av网站| 深夜精品福利| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 国产高清国产精品国产三级| 日韩免费av在线播放| 亚洲精华国产精华精| 精品卡一卡二卡四卡免费| 日韩欧美一区二区三区在线观看 | 精品一区二区三区视频在线观看免费 | av天堂久久9| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 亚洲五月天丁香| 久久久久久久久免费视频了| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 激情在线观看视频在线高清 | 欧美日韩精品网址| 母亲3免费完整高清在线观看| 97人妻天天添夜夜摸| 一级片免费观看大全| 国产精品1区2区在线观看. | 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看| 国产乱人伦免费视频| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕一二三四区| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 久久国产精品影院| 国产av又大| 丰满饥渴人妻一区二区三| 丝袜美腿诱惑在线| 两个人看的免费小视频| 国产野战对白在线观看| 一区二区三区精品91| 国产精品乱码一区二三区的特点 | 757午夜福利合集在线观看| 国产成人精品在线电影| 韩国av一区二区三区四区| 精品国产乱码久久久久久男人| 香蕉久久夜色| 欧美日韩乱码在线| 丝袜美足系列| 老司机影院毛片| 日韩免费高清中文字幕av| 免费观看人在逋| 久久久久国产精品人妻aⅴ院 | 亚洲精品在线美女| 视频区图区小说| av中文乱码字幕在线| 精品无人区乱码1区二区| 国产在线一区二区三区精| bbb黄色大片| 黑人巨大精品欧美一区二区蜜桃| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 国产精品二区激情视频| 看免费av毛片| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 手机成人av网站| 99riav亚洲国产免费| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 老司机靠b影院| 热99re8久久精品国产| 村上凉子中文字幕在线| 91麻豆av在线| 国产91精品成人一区二区三区| 午夜免费鲁丝| 国产一区二区三区在线臀色熟女 | 极品少妇高潮喷水抽搐| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 国产精品电影一区二区三区 | 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 少妇 在线观看| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 亚洲成a人片在线一区二区| 亚洲第一av免费看| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 9191精品国产免费久久| 男女免费视频国产| 久久国产精品影院| 日韩有码中文字幕| 涩涩av久久男人的天堂| 国产精品免费大片| 一二三四社区在线视频社区8| 亚洲成人手机| 少妇裸体淫交视频免费看高清 | www.自偷自拍.com| 欧美黄色淫秽网站| 亚洲久久久国产精品| 亚洲国产看品久久| 性少妇av在线| 少妇粗大呻吟视频| 99riav亚洲国产免费| 不卡av一区二区三区| www.999成人在线观看| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 国产午夜精品久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 精品国产亚洲在线| 中亚洲国语对白在线视频| 精品福利观看| 日韩人妻精品一区2区三区| 亚洲五月色婷婷综合| 国产成人影院久久av| 女同久久另类99精品国产91| 免费看十八禁软件| 在线观看66精品国产| 性色av乱码一区二区三区2| av电影中文网址| 一夜夜www| 午夜福利影视在线免费观看| 99国产综合亚洲精品| 亚洲av片天天在线观看| 大陆偷拍与自拍| 国产精品一区二区精品视频观看| 免费观看a级毛片全部| 亚洲成人免费av在线播放| 夫妻午夜视频| 国产亚洲欧美在线一区二区| 国产精品乱码一区二三区的特点 | 老鸭窝网址在线观看| 老汉色∧v一级毛片| 欧美丝袜亚洲另类 | 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 中文字幕精品免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一本一本久久a久久精品综合妖精| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 成人18禁在线播放| 欧美在线黄色| 99久久精品国产亚洲精品| 亚洲伊人色综图| e午夜精品久久久久久久| 91成人精品电影| 国产97色在线日韩免费| www.自偷自拍.com| 视频区图区小说| 好男人电影高清在线观看| 男人操女人黄网站| 国产亚洲精品第一综合不卡| 免费av中文字幕在线| 美女高潮到喷水免费观看| 亚洲一区中文字幕在线| 后天国语完整版免费观看| 国产男靠女视频免费网站| av一本久久久久| 国产一区二区激情短视频| 一边摸一边抽搐一进一出视频| 欧美人与性动交α欧美精品济南到| 亚洲美女黄片视频| 久久久久久久久免费视频了| 午夜亚洲福利在线播放| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| av电影中文网址| 丝袜人妻中文字幕| 精品亚洲成国产av| 最近最新中文字幕大全电影3 | 国产精品一区二区免费欧美| 日韩欧美免费精品| 超碰97精品在线观看| 可以免费在线观看a视频的电影网站| 99精品欧美一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| tocl精华| 亚洲第一av免费看| 国产激情欧美一区二区| 满18在线观看网站| 精品电影一区二区在线| 黑人猛操日本美女一级片| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 三级毛片av免费| av视频免费观看在线观看| 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 91成人精品电影| 精品一区二区三区av网在线观看| 亚洲国产精品一区二区三区在线| 久久久久久人人人人人| 欧美国产精品一级二级三级| 久久久国产精品麻豆| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 亚洲熟妇中文字幕五十中出 | 两个人免费观看高清视频| 亚洲av片天天在线观看| 黄片大片在线免费观看| 丁香欧美五月| 人人澡人人妻人| 国产成人精品无人区| 亚洲 国产 在线| 欧美精品av麻豆av| 国产亚洲精品久久久久5区| 999精品在线视频| 美女扒开内裤让男人捅视频| 国产成人精品在线电影| 建设人人有责人人尽责人人享有的| 中文字幕色久视频| 国产一区二区三区综合在线观看| 精品福利观看| 两人在一起打扑克的视频| 在线免费观看的www视频| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| 怎么达到女性高潮| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 人人澡人人妻人| 交换朋友夫妻互换小说| 精品人妻1区二区| 午夜免费鲁丝| 亚洲精华国产精华精| 国产野战对白在线观看| 国产99久久九九免费精品| 久久精品91无色码中文字幕| 亚洲少妇的诱惑av| 黑人欧美特级aaaaaa片| 免费人成视频x8x8入口观看| 午夜免费成人在线视频| 午夜免费鲁丝| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 精品国产乱子伦一区二区三区| 日韩人妻精品一区2区三区| 亚洲成人免费av在线播放| 窝窝影院91人妻| 国产成人影院久久av| 国产真人三级小视频在线观看| 国产成人精品久久二区二区免费| 99riav亚洲国产免费| 日韩 欧美 亚洲 中文字幕| 亚洲av成人一区二区三| 国产av又大| 国产精品久久久人人做人人爽| 又黄又粗又硬又大视频| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区三| 国产免费男女视频| 精品国产一区二区久久| 免费在线观看完整版高清| 色婷婷久久久亚洲欧美| 18禁黄网站禁片午夜丰满|