• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SiO2/炭泡沫和SiC/炭泡沫復(fù)合材料的制備及表征

    2015-12-05 07:28:18吳曉棟邵高峰沈曉冬南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室南京0009宿遷市南京工業(yè)大學(xué)新材料研究院宿遷800中航復(fù)合材料有限公司先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室北京000
    關(guān)鍵詞:熱導(dǎo)率泡沫南京

    吳曉棟 邵高峰 崔 升 王 嶺 沈曉冬*,(南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 0009) (宿遷市南京工業(yè)大學(xué)新材料研究院,宿遷 800) (中航復(fù)合材料有限公司,先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室,北京 000)

    SiO2/炭泡沫和SiC/炭泡沫復(fù)合材料的制備及表征

    吳曉棟1,2邵高峰1,2崔升1,2王嶺3沈曉冬*,1,2
    (1南京工業(yè)大學(xué)材料科學(xué)與工程學(xué)院材料化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210009) (2宿遷市南京工業(yè)大學(xué)新材料研究院,宿遷223800) (3中航復(fù)合材料有限公司,先進(jìn)復(fù)合材料國防科技重點(diǎn)實(shí)驗(yàn)室,北京101300)

    對(duì)炭泡沫為支撐骨架的氧化硅氣凝膠(SiO2/炭泡沫)和碳化硅(SiC/炭泡沫)復(fù)合材料分別采用XRD、SEM、激光導(dǎo)熱儀、萬能力學(xué)試驗(yàn)機(jī)進(jìn)行物相、微觀結(jié)構(gòu)、熱學(xué)及力學(xué)性能方面的表征。結(jié)果表明:所制備的SiO2/炭泡沫與原炭泡沫相比,具備更高的抗壓強(qiáng)度(14.95 MPa)和更低的室溫?zé)釋?dǎo)率(0.44 W·m-1·K-1)。SiC/炭泡沫材料則保持了較高的抗壓強(qiáng)度值(14.66 MPa),其在1 200℃下具備極低的高溫?zé)釋?dǎo)率(2.18W·m-1·K-1)。熱重分析表明,SiC/炭泡沫在氧化氛圍中到610℃才發(fā)生質(zhì)量的損失,而內(nèi)部炭發(fā)生完全燒蝕的溫度高達(dá)844℃,這表明該材料的抗氧化性能遠(yuǎn)好于純的炭泡沫材料。

    炭泡沫;二氧化硅;碳化硅;熱穩(wěn)定性;熱導(dǎo)率;抗壓強(qiáng)度

    0 Introduction

    Glassy carbon foams are porous carbon materials with many advantages such as low density,high specificmodulusandstrength,highapplicable temperature,large surface area,coupled with either controllable electrical conductivity or low thermal conductivity[1-3].The performances of the carbon foams such as low density and excellent insulation make them attractive candidates for application in advanced aircraft,spacecraft and related industries[4-6].Unfortunately,carbon foam has some key drawbacks that limit its performance in certain cases.Firstly,carbon foam has a fairly low thermal stability in oxidizing atmosphere at elevated temperatures,thus limiting the operatingtemperatureofcarbonfoam-supported materials in an oxidative environment.Secondly,the pristine carbon foam has a relatively higher thermal conductivity,compared with aerogel composite and fiber mat[7-12],which is not favorable to thermal insulations and other applications.Luo et al.[2]proposed a resin-derived carbon foam reinforced by K2Ti6O13whiskers,and showed that the addition of K2Ti6O13whiskerswithcontentof2wt% ~4wt%enhanced thermal insulating properties of the neat carbon foams, whereas the compressive strength was below 8 MPa. Furthermore,the compressive strength of most pristine carbon foam is unsatisfying,which has sometime limited its applications in aviation and aerospace fields.Zhang et al.[6]employed arylacetylene as the precursor to produce carbon foam with a compressive strength of 25.8 MPa and low bulk density of 0.6 g· cm-3,however,thethermalpropertieswerenot evaluated in the article.

    Covering the inner surface of carbon foam with a more thermally stable material to serve as a barrier to oxygen diffusion is a common way to improve the thermalstability.However,thermalstabilityis typically improved but the porous carbons are blocked by the depositing species,thus increasing the thermal conductivity of neat carbon foam.SiO2aerogels are unique porous materials with distinctive properties, such as large specific surface area,low thermal conductivity[7-8,13-14].It has been demonstrated that both SiO2and SiC are well known for their good thermal stability at high temperatures[15-18].Therefore,incorporating SiO2aerogel into carbon foam can not only improve its resistance to oxidation at elevated temperatures, but also decrease its thermal conductivity at room temperature.In the past few years,much attention has been paid to the study of aerogel/carbon foam composites to further decrease the thermal conductivity and increase the compressive strength of carbon foam[19-21]. The SiC derived from the reaction of carbon foam and SiO2aerogel at high temperatures can further improve its thermal stability and decrease high temperature thermal conductivity due to the enhanced radiation extinction of SiC particles.On the other hand,the drawback of low compressive strength can be solved by properly increasing the density of carbon foam sincethecompressivestrengthandthermal conductivity are positively correlated with carbon foam density[2].Thus,the preparation and characterization of resulting carbon foam supported SiO2/Carbon foam and SiC/Carbon foam compositeare worthwhile.

    In this study,we use carbon foam as scaffolds for the synthesis of high strength SiO2/Carbon foam and SiC/Carbon foam composites with enhanced thermal stability and low thermal conductivity.A new method of producing SiC particles using carbon foam as carbon source and silica aerogel as silicon source is developedinthisarticle.Theinfluenceof incorporating SiO2aerogel and produced SiC particles onthemicrostructure,thermalandmechanical properties of the pristine carbon foam are investigated via scanning electron microscopy(SEM),the laser flash technique,and mechanical testing.

    1 Experimental

    1.1Sample preparation

    Tetraethyl orthosilicate(TEOS,A.R.,Sinopharm Chemical Reagent Co.,Ltd.)was used as silicon source.Hydrochloric acid(HCl,1 mol·L-1,Shanghai Zhongshi Chemical Co.,Ltd.)and ammonia solution (NH3·H2O,1 mol·L-1,Wuxi City Yasheng Chemical Co.,Ltd.)were used as catalysts.Deionized water(homemade)was used as hydrolysis agent and absolute ethylalcohol(EtOH,AR,WuxiCityYasheng Chemical Co.,Ltd.)as solvent.All of the reactants and solvents were used as received without further purification.Carbonfoamwasobtainedfrom bituminous coal by a two-stage procedure according to reference[22].The precursor was first loaded in the reactor and was pressurized with argon until the initial pressureof approximately 3~4 MPa,and then it was heated to temperature of 450~600℃ with a heating rate of 2~4℃·min-1and kept at that temperature for 2 h.In a second stage,the precursor was carbonized underflowingargonatmosphereattemperature between 850~1 200℃ and maintained at that level for 2 h to produce the final carbon foam.In a typical synthesis,TEOS(22.4 mL,0.1 mol)was firstly dissolved in a mixture of water(7.2 mL,0.4 mol)and ethanol(93 mL,1.6 mol).Secondly,appropriate amount of HCl(0.3 mL,0.3 mmol)was added to the mixture with pH value of 2~3 after stirring for about 90 min at 50℃.Thirdly,desired amount of NH3·H2O (0.5 mL,0.5 mmol)was added to the solution to accelerate the poly-condensation rate.At last,the reaction mixture was further stirred for 10 min, transferred to a container with carbon foam(35 mm× 35 mm×20 mm)under vacuum for full infiltration. After gelation within 3 h under room temperature,the wet gel composite was aged at room temperature for 1 d and was subsequently soaked in a bath of absolute ethanol in an oven of 50℃for 3 d to exchange the water and reaction byproducts from the pores of the materials.After aging and solvent exchange,the wet gels composites were put in the critical point extractor fordrying,usingCO2supercriticalfluiddrying technique,thusformingtheSiO2/Carbonfoam composite.Afterdrying,theSiO2/Carbonfoam composite was heated at 1500℃and was maintained at that level for 5 h in a tube furnace under flowing argon(100 mL·min-1)to produce the SiC/Carbon foam composite.

    1.2Sample characterization

    X-ray diffraction(XRD)patterns were recorded using a Rigaku Smart Lab 3000 diffractometer with Cu Kα radiation(λ=0.154 18 nm).The X-ray tube was operated at 35 kV and 30 mA.The optics configuration includes a fixed divergence slit(0.5°) and a D/teX Ultra detector.The measurements were collected over a 2θ range of 10°~80°,at a rate of 10℃·min-1.Scanning electron microscopy(SEM)images were obtained with a JSM-6510 scanning electron microscope.The accelerating voltage was between 3.0~5.0 kV,and the samples were coated with platinuminvacuum.Thermalgravimetricanalysis (TGA)and differential scanning calorimetry analysis (DSC)wereperformedbyNETZSCHSTA449C Thermogravimetricanalyzer under a constant air flow of 30 mL·min-1at a heating rate of 10℃·min-1to 1 000℃.The compressive strengths of the samples weremeasuredbyanINSTRON3382testing machine.The test temperature was 25℃ and the cross-head speed applied was 1.0 mm·min-1.The thermal conductivities of samples(10 mm×10 mm×3.4 mm)were measured using Netzsch LFA427 laser-flash method under a dynamic argon atmosphere(80 mL· min-1,0.1 MPa).InSb was used as an infrared detector.The sample was coated with graphite to increase the pulse energy absorption and infrared emittance,and the pulse width was fixed at 0.5 ms and laser voltage of 450 V.

    2 Results and discussion

    Fig.1 shows the photographs and SEM images of pristine carbon foam.The bulk density and porosity of the pristine carbon foam are 0.50 g·cm-3and 76%, respectively,usingthetraditionalArchimedes method[4].The density is much larger than other carbonfoams[23],whichisfavorabletohigh compressive strength.As can be seen from Fig.1(b), there are opening pores as well as obturator pores in the cell walls of carbon foam.The presence of obturator pores origins from the fast growing viscosity which inhibits the growth of pores inside during the process of heating mesophase pitch.Fig.1(c)shows that some small cracks appear in the cell walls,and they are caused by two reasons.The first one is attributed to the diffusivity of light gas stemming fromnonecarbon-basedelementintheprocessof carbonization.The other one can be explained by the large stress due to the shrinkage of carbon foam skeleton when it is heated at elevated temperatures[3]. It can be observed in Fig.1(d)that carbon foams have an open-cell and spherical-shape porous structure as well as dense structures,and most pores within carbon foam distribute in the range of 400~700 μm.There are also some small windows with diameters of 100~300 μm in the cell walls,owing to the incomplete growing of carbon particles[4]combined with voids formed in thermal decomposition[24].

    Fig.1 Photographs(a)and SEM images(b,c and d)of the pristine carbon foam

    Fig.2 Photographs(a,b)and SEM images(c,d)of SiO2/Carbon foam and SiC/Carbon foam composite

    Fig.2 shows the photographsand SEM images of SiO2/Carbon foam and SiC/Carbon foam composite.SiO2aerogel is sufficiently infiltrated in the pores of carbon foam skeleton,combining well with the cell wall as can be seen from Fig.2(c)and further amplificationin inset of Fig.2(c).The size of SiO2nano particles is ca. 40 nm,and they are cellular solids similar to a pearl necklace,of which the structure is beneficial to lower thermal conductivity.SiC particles(arrow directed ones)appear as disordered arrangements with grain size of approximately 5 μm and are produced mainly in the surface of the carbon foam,as indicated in Fig. 2(d)and amplification inset.In addition,the cell walls become coarser and thinner after thermal treatment at 1 500℃,in comparison with the pristine carbon foam.The total process of the reduction of SiO2to SiC may occur according to the following equation[25-29]:

    Fig.3 shows the XRD patterns for the pristine carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.As can be seen,the XRD pattern for the pristine carbon foam is similar with the SiO2/Carbon foam composite.Two wide and weak peaks around 25° and 43°are detected and they are diffractions from typical crystal faces of(002)and(100)with graphite characteristics[30].However,it is not as narrow and intense as reference[31]since the carbonization temperature is not high enough to form the total graphitephase.The intense peaks in the XRD pattern for the SiC/Carbon foam composite can be indexed to SiC (PDF No.49-1623),and no other peaks are observed. However,the synthesized SiC particles is dramatically different from references[32-34].Therefore,based on XRD data,a 5 h treatment at 1 500℃is sufficient to convert the SiO2layer in SiO2/Carbon foam to SiC particles.According to reference[9],SiC particles are derived from multi-step reactions,and the initial process should follow Eq.2 to form SiO gas:

    Then,SiC can be produced by two different ways according to Eq.3 and Eq.4 as follows:

    CO(g)from Eq.2 and Eq.3 can react with SiO2(s) to produce more SiO(g)via Eq.5 to keep the reaction running,and the CO2from Eq.4 and Eq.5 will be consumed by the surrounding carbon foam to form CO (g)as Eq.6:

    Fig.3 Powder XRD patterns for carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite

    The morphology of SiC is closely related to its reaction pathway.In general,the products of Eq.4 are SiC whiskers whereas Eq.3 produces SiC particles.In this work,the produced SiC exists as particleswith grain size of ca.5 μm as indicated by Fig.2(d).This phenomenon can be caused by two reasons.On one hand,the porosity of carbon foam is very high,which results in the low partial pressure of SiO(g)and CO(g) and inhibits the proceeding of Eq.4.On the other hand,carbon foam possesses large interconnecting pores,favoring the diffusion of SiO(g),thus accelerating the formation of SiC particles as Eq.3.

    Fig.4 shows the TGA,DSC and DTG curves of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.As expected,combustion of the pristine carbon foam begins at 572℃ and the material is completely consumed at 766℃.The remaining mass is 12%of the original material,which indicates that the mass fraction of carbon in the foam is 88%.The mass loss at around 220℃ of SiO2/Carbon foam composite is attributed to further condensation of Si-OH as well as the removal of surface water absorbed in the pores of SiO2aerogel,thus two exothermic peak at 244℃and 654℃are observed on the corresponding DSC thermogram.The onset temperature of carboncombustionfortheSiO2/carbonfoamcompositeis almost the same as that for the pristine carbon foam, suggesting that SiO2aerogel is not an effective barrier to oxygen diffusion.This material retains ca.22%of its original mass due to the presence of the SiO2overcoat.Improvement of thermal stability is observed in the SiC/Carbon foam composite.Mass loss does not begin until about 610℃,and complete oxidation of the carbon foam does not occur until 844℃ . According to the Fig.4(c),there is little weight gain at elevated temperatures in air atmosphere caused by oxidation of SiC particles,which is consistent with reference[16].The improved thermal stability suggests that SiC covers most of the carbon foam surface, providing an effective barrier to oxygen diffusion.The remaining mass is 19%,lower than mass loss of SiO2/ Carbon foam composite.It can be inferred that the SiO2content in SiO2/Carbon foam composite is 10%, and the SiC content in SiC/Carbon foam composite is 7%,thus the mass ratio of SiC to SiO2is 70%.It is consistent with Eq.1 which shows a theoretical ratio of 67%,indicating that SiO2layer in SiO2/Carbon foam compositeis totally converted to SiC particles.

    Fig.4 TGA(a),DSC(b)and DTG(c)plots of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite

    Fig.5 shows the thermal conductivities(λ)of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite as a function of testing temperature.The results are calculated by Eq.7 as follows:

    Fig.5 Thermal conductivity of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite as a function of testing temperature

    where ρ is the bulk density of the sample,C is the specific heat capacity and α is the thermal diffusivity.As can be seen from Fig.5,the thermal conductivities at room temperature for carbon foam, SiO2/Carbon foam and SiC/Carbon foam compositeare 0.67,0.44 and 0.52 W·m-1·K-1,respectively.It can be inferred that the incorporation of SiO2aerogel can decrease its thermal conductivity at room temperatureby 31%of the original value of carbon foam.When the temperature is less than 900℃,the thermal conductivity of carbon foam and SiO2/carbon foam composite both increases slowly with the increase of temperature,whereas sharply increases after 900℃. SiC/Carbon foam composite shows a much lower increase inthermal conductivity at temperature over 900℃,in comparison with carbon foam and SiO2/ Carbon foam.It can be explained by the theory of thermalphysicsdescribingthetotalthermal conductivity in carbon foam composites as follows:

    where λsis the conduction through solids,λgis the conduction through gas,λcis the convection within the cells,and λris the radiation through the cell walls and the voids.

    In the pristine carbon foam,the volume fraction of solid phase is as low as 24%,therefore the solid conductivityviaphonontransportislowatroom temperature.The average pore size(400~700 μm) within carbon foam would suppress the convective heattransferandradiationisalsoreducedby adsorption and the repeated reflection from the cell walls.Thus,carbon foam possesses a relatively low thermal conductivity of 0.67 W·m-1·K-1,which is lower than literature reports[35-36].When SiO2aerogel is incorporated in carbon foam,phonon transport through the amorphous carbon and cell walls partly transfers to aerogel part,which needs a much larger heat transfer path than before,thus the solid conduction is inhibitedtoalargeextent,andthethermal conductivity is reduced to 0.44 W·m-1·K-1[37].When the temperature is below 900°C,the increased thermal conductivity of the three samples is caused by the increasedsolidconductivity,whilethesharply increasedthermalconductivityiscausedbythe increase of thermal radiation,because the thermal radiation plays the greatest role for the thermal conductivity of carbon foam and SiO2/Carbon foam composite.However,fortheSiC/Carbonfoam composite,thermal conductivity increases slowly at temperatures over 900℃,in comparison with the other two materials.This can be explained by the produced SiC particles,playing a part as an opacifier at elevated temperatures.The formation of SiC can increase the specific extinction of the composite, which would decrease the thermal radiation,thus the SiC/carbonfoamcompositepossessesthelowest thermal conductivity at high temperatures[38-39].

    Fig.6 shows the compressive load-strain curves of carbon foam,SiO2/Carbon foam and SiC/Carbon foam composite.The curves indicate that the samples are typical brittle materials with no plateau stresses, which is different from reference[40].The compressive strength of the three samples is 13.76,14.95 and 14.66 MPa,respectively.The incorporation of SiO2in theporesofcarbonfoamslightlyimprovesits compressive strength due to the strengthen effect of cell wall and junctions of carbon foam.In addition, the SiC/Carbon foam composite possesses a slightly lower compressive strength than SiO2/Carbon foam.It is attributed to the decreased thickness of cell walls, damagedligamentsandjunctionsafterthermal treatment at 1 500℃ since tough framework of the carbonfoamsisunfavorabletohighmechanical properties,as indicated by SEM images in Fig.2(d). However,the compressive strength of SiC/Carbon foam composite is much larger than other carbon foams with similar density[41-42].

    Fig.6 Compressive load-strain curves of carbon foam, SiO2/Carbon foam and SiC/Carbon foam composite

    3 Conclusions

    We have demonstrated a method for the synthesis of SiO2/Carbon foam and SiC/Carbon foam composite with sol-gel method,followed by thermal treatment under flowing argon.In comparison with the pristinecarbonfoam,theresultingSiO2/Carbonfoam composite has a slightly higher compressive strength (14.95 MPa)and a much smaller thermal conductivity (0.44 W·m-1·K-1).The SiC/Carbon foam composite maintains a high compressive strength of 14.66 MPa and possesses a rather low thermal conductivity(2.18 W·m-1·K-1)at temperature as high as 1 200℃.In addition,theSiC/Carbonfoamcompositegains improved oxidative thermal resistance than pristine carbon foam.This new class of high compressive strength materials with improved thermal stability in oxidizingatmosphereshouldbeespecially advantageous in potential applications where high compressive strength,low thermal conductivity,and operation at elevated temperatures are desired.

    [1]Wu X W,Fang M H,Mei L F,et al.Mater.Sci.Eng.A,2012, 558:446-450

    [2]Luo R Y,Ni Y F,Li J S,et al.Mater.Sci.Eng.A,2011,528 (4/5):2023-2027

    [3]XIAO Feng(肖鋒),ZHANG Hong-Bo(張紅波),Xiong Xiang(熊翔),et al.Chinese J.Nonferrous Met.(中國有色金屬學(xué)報(bào)),2010,20(7):1346-1352

    [4]HeX,TangZH,ZhuYF,etal.Mater.Lett.,2013,94:55-57

    [5]Sihn S,Roy A K.J.Mech.Phys.Solids,2004,52(1):167-191

    [6]LI Kai(李凱),LUAN Zhi-Qiang(欒志強(qiáng)).New Carbon Mater.(新型炭材料),2004,19(1):77-78

    [7]Neugebauer A,Chen K,Tang A,et al.Energy Build.,2014, 79:47-57

    [8]Wei G S,Liu Y S,Zhang X X,et al.J Non-Cryst.Solids, 2013,362:231-236

    [9]Sun H R,Zhang S C,Deng Z W,et al.Key Eng.Mater., 2014,602:126-129

    [10]Xie T,He Y L,Hu Z J.Int.J.Heat Mass Transfer,2013,58 (1/2):540-552

    [11]Liao Y D,Wu H J,Ding Y F,et al.J.Sol-Gel Sci.Technol., 2012,63(3):445-456

    [12]Jung I K,Gurav J L,Ha T J,et al.Ceram.Int.,2012,38(1): 105-108

    [13]Wei G S,Liu Y S,Zhang X X,et al.Int.J.Heat Mass Transfer,2011,54(11):2355-2366

    [14]ZHANG Jun-Jun(張君君),ZHONG Ya(仲亞),SHEN Xiao-Dong(沈曉冬),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014,30(4):793-799

    [15]LIN Jian-Xin(林建新),ZHENG Yong(鄭勇),ZHENG Ying (鄭瑛),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2006,22(10):1778-1782

    [16]Worsley M A,Kuntz J D,Satcher J J,et al.J Mater.Chem., 2010,20(23):4840-4844

    [17]Labat G A,Zollfrank C,Ortona A,et al.Ceram.Int., 2013,39(2):1841-1851

    [18]KONG Yong(孔勇),SHEN Xiao-Dong(沈曉冬),CUI Sheng (崔升),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2014,30(12):2825-2831

    [19]SHI Ya-Chun(史亞春),LI Tie-Hu(李鐵虎),WANG Xi-Lin (王習(xí)林),et al.Funct.Mater.(功能材料),2013,44(20):3049 -3052

    [20]DU Shan(杜姍).Thesis for the Master′s Degree of Harbin Institute of Technology(哈爾濱工業(yè)大學(xué)碩士學(xué)位論文), 2013.

    [21]HUANG Peng(黃鵬).Thesis for the Master′s Degree of Harbin Institute of Technology(哈爾濱工業(yè)大學(xué)碩士學(xué)位論文),2013.

    [22]Calvo M,Garcia R,Arenillas A,et al.Fuel,2005,84(17): 2184-2189

    [23]Feng J Z,Feng J,Jiang Y G,et al.Mater.Lett.,2011,65 (23/24):3454-3456

    [24]Lin Q L,Luo B,Qu L J,et al.J.Anal.Appl.Pyrolysis, 2013,104:714-717

    [25]Leventis N,Sadekar A,Chandrasekaran N,et al.Chem. Mater.,2010,22(9):2790-2803

    [26]Li X T,Chen X H,Song H H.Mater.Sci.Eng.B,2011,176 (1):87-91

    [27]Mishra S B,Mishra A K,Mamba B B,et al.Mater.Lett., 2011,65(14):2245-2247

    [28]Li X T,Chen X H,Song H H.J.Mater.Sci.,2009,44(17): 4661-4667

    [29]XU Wu-Jun(徐武軍),XU Yao(徐耀),SUN Xian-Yong (孫先勇),et al.New Carbon Mater.(新型炭材料),2006,21 (2):167-170

    [30]Xu S J,Qiao G J,Wang H J,et al.Mater.Lett.,2008,62 (30):4549-4551

    [31]Li S Z,Song Y Z,Song Y,et al.Carbon,2007,45(10):2092 -2097

    [32]Kong Y,Zhong Y,Shen X D,et al.Mater.Lett.,2013,99: 108-110

    [33]Saeedifar Z,Nourbakhsh A A,Kalbasi R J,et al.J.Mater. Sci.Technol.,2013,29(3):255-260

    [34]Zhang N C,Yu A X,Liang A H,et al.J.Appl.Polym.Sci., 2013,130(1):579-586

    [35]Wang X Y,Zhong J M,Wang Y M,et al.Carbon,2006,44 (8):1560-1564

    [36]Mesalhy O,Lafdi K,Elgafy A.Carbon,2006,44(10):2080-2088

    [37]Sihn S,Ganguli S,Anderson D P,et al.Compos.Sci.Technol., 2012,72(7):767-773

    [38]Wang X D,Sun D,Duan Y Y,et al.J.Non-Cryst.Solids, 2013,375:31-39

    [39]Xu L,Jiang Y G,Feng J Z,et al.Ceram.Int.,2015,41(1): 437-442

    [40]Li X,Basso M C,Braghiroli F L,et al.Carbon,2012,50(5): 2026-2036

    [41]Gallego N C,Klett J W.Carbon,2003,41(7):1461-1466

    [42]SHEN Zeng-Min(沈曾民),GE Min(戈敏),CHI Wei-Dong (遲偉東),et al.New Carbon Mater.(新型炭材料),2006,21 (3):193-201

    Preparation and Characterization of SiO2/Carbon Foam and SiC/Carbon Foam Composites

    WU Xiao-Dong1,2SHAO Gao-Feng1,2CUI Sheng1,2WANG Ling3SHEN Xiao-Dong*,1,2
    (1State Key Laboratory of Materials-Oriented Chemical Engineering,College of Materials Science and Engineering,Nanjing Tech University,Nanjing,210009,China) (2Advanced Materials Institute of Nanjing Tech University in Suqian,Jiangsu 223800,China) (3AVIC Composite Corporation Ltd.,National Key Laboratory of Advanced Composite,Beijing,101300,China)

    The synthesis and characterization of carbon foam supported silica aerogel(SiO2/Carbon foam)and silicon carbide composite(SiC/Carbon foam)are presented in this study.The phase composition,microstructure, thermal and mechanical properties are investigated by XRD,SEM,LFA Laser Flashmeasurements,and Universal Material Testing.The resulting SiO2/Carbon foam composite shows a higher compressive strength(14.95 MPa)and a smaller thermal conductivity(0.44 W·m-1·K-1)at room temperature,in comparison with the pristine carbon foam.The SiC/Carbon foam composite maintains a compressive strength of 14.66 MPa,and possesses a low hightemperature thermal conductivity(2.18 W·m-1·K-1at 1 200℃).Mass loss does not begin until 610℃for the SiC/Carbon foam composite,and complete carbon combustion does not occur until 844℃,indicating a much better thermal stability than the pristine carbon foam in oxidizing atmosphere.

    carbon foam;SiO2;silicon carbide;thermal stability;thermal conductivity;compressive strength

    O613.7

    A

    1001-4861(2015)06-1252-09

    10.11862/CJIC.2015.161

    2015-03-08。收修改稿日期:2015-04-21。

    江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(PAPD);長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(No.IRT1146);江蘇博士后研究基金計(jì)劃項(xiàng)目(1402016A)資助。

    *通訊聯(lián)系人。E-mail:xdshen@njtech.edu.cn;Tel:025-83587234;會(huì)員登記號(hào):E413200441M。

    猜你喜歡
    熱導(dǎo)率泡沫南京
    南京比鄰
    毒泡沫
    “南京不會(huì)忘記”
    空位缺陷對(duì)單層石墨烯導(dǎo)熱特性影響的分子動(dòng)力學(xué)
    廢棄的泡沫盒
    “搞死”國家的泡沫
    連續(xù)碳纖維鋁基復(fù)合材料橫向等效熱導(dǎo)率的模擬分析
    Si3N4/BN復(fù)合陶瓷熱導(dǎo)率及其有限元分析
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    美女中出高潮动态图| 最近手机中文字幕大全| 欧美日韩视频高清一区二区三区二| 国产精品秋霞免费鲁丝片| 亚洲精品日韩在线中文字幕| 精品国产一区二区三区久久久樱花| 精品一品国产午夜福利视频| 精品一区二区三卡| 国产乱人偷精品视频| 午夜激情av网站| 日韩欧美精品免费久久| 日日摸夜夜添夜夜爱| 国产熟女午夜一区二区三区| 日韩av免费高清视频| 久久久久人妻精品一区果冻| www日本在线高清视频| 97精品久久久久久久久久精品| 成年av动漫网址| 国产免费又黄又爽又色| 国产精品久久久av美女十八| 99国产精品免费福利视频| 成年美女黄网站色视频大全免费| 日本一区二区免费在线视频| 久久久久国产一级毛片高清牌| 久久人人爽av亚洲精品天堂| 黄色视频在线播放观看不卡| 搡老岳熟女国产| 男女床上黄色一级片免费看| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久av网站| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx| 热re99久久国产66热| 欧美 日韩 精品 国产| 黄片小视频在线播放| 日韩av在线免费看完整版不卡| 中文精品一卡2卡3卡4更新| 亚洲综合精品二区| 日本欧美视频一区| 日韩人妻精品一区2区三区| 自拍欧美九色日韩亚洲蝌蚪91| 美国免费a级毛片| 成年av动漫网址| 啦啦啦 在线观看视频| 青草久久国产| 亚洲精品av麻豆狂野| 蜜桃国产av成人99| 国产成人精品福利久久| 少妇被粗大猛烈的视频| 久久97久久精品| 在线观看www视频免费| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| 999精品在线视频| 亚洲,欧美,日韩| 在线观看免费日韩欧美大片| xxxhd国产人妻xxx| 丝瓜视频免费看黄片| 岛国毛片在线播放| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区久久| 国产一区有黄有色的免费视频| 叶爱在线成人免费视频播放| 午夜激情久久久久久久| 精品少妇一区二区三区视频日本电影 | 大片免费播放器 马上看| 美女视频免费永久观看网站| 看十八女毛片水多多多| 亚洲精品乱久久久久久| 久热爱精品视频在线9| 久热这里只有精品99| 伊人亚洲综合成人网| 国产精品免费大片| 咕卡用的链子| 成年女人毛片免费观看观看9 | e午夜精品久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| av卡一久久| www.自偷自拍.com| 黄频高清免费视频| 欧美另类一区| 飞空精品影院首页| 大陆偷拍与自拍| 亚洲一卡2卡3卡4卡5卡精品中文| 色播在线永久视频| 天天影视国产精品| 高清黄色对白视频在线免费看| 成人国产av品久久久| 看免费成人av毛片| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 18禁国产床啪视频网站| 免费观看a级毛片全部| 久久ye,这里只有精品| 韩国av在线不卡| 亚洲,欧美精品.| 国产精品无大码| 欧美国产精品一级二级三级| 日韩中文字幕欧美一区二区 | 91aial.com中文字幕在线观看| 91老司机精品| 免费黄网站久久成人精品| 亚洲中文av在线| 日韩不卡一区二区三区视频在线| 日本欧美国产在线视频| 国产精品国产三级国产专区5o| 美女中出高潮动态图| 一级,二级,三级黄色视频| 成人影院久久| 嫩草影视91久久| 大陆偷拍与自拍| 国产精品人妻久久久影院| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 两性夫妻黄色片| 高清不卡的av网站| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频 | 久久久久网色| 午夜福利,免费看| 波多野结衣一区麻豆| 国产成人a∨麻豆精品| 国产野战对白在线观看| 午夜日本视频在线| 亚洲,一卡二卡三卡| 嫩草影视91久久| 免费观看av网站的网址| 精品久久蜜臀av无| 水蜜桃什么品种好| 日本黄色日本黄色录像| 777米奇影视久久| 一级a爱视频在线免费观看| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 啦啦啦视频在线资源免费观看| 人人妻,人人澡人人爽秒播 | 超色免费av| 国产精品女同一区二区软件| av在线app专区| 国产伦人伦偷精品视频| av一本久久久久| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 啦啦啦在线观看免费高清www| 九色亚洲精品在线播放| 久久鲁丝午夜福利片| 日韩伦理黄色片| 9191精品国产免费久久| 日韩一区二区视频免费看| 免费人妻精品一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 九九爱精品视频在线观看| 99精国产麻豆久久婷婷| 成人影院久久| 涩涩av久久男人的天堂| 电影成人av| 一边亲一边摸免费视频| 日本欧美国产在线视频| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 久久鲁丝午夜福利片| 午夜日本视频在线| 国产人伦9x9x在线观看| 亚洲国产精品成人久久小说| 久久婷婷青草| 人成视频在线观看免费观看| www.精华液| 亚洲四区av| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色片欧美黄色片| 少妇人妻久久综合中文| 国产日韩欧美视频二区| 欧美激情高清一区二区三区 | 欧美日本中文国产一区发布| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 日本爱情动作片www.在线观看| tube8黄色片| 久久精品亚洲av国产电影网| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区国产| 国产男女超爽视频在线观看| 91老司机精品| 国产一区有黄有色的免费视频| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 最近手机中文字幕大全| 宅男免费午夜| 菩萨蛮人人尽说江南好唐韦庄| 最近的中文字幕免费完整| 亚洲av日韩精品久久久久久密 | 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| bbb黄色大片| 老司机在亚洲福利影院| 99re6热这里在线精品视频| 两性夫妻黄色片| 精品一区二区三区av网在线观看 | 国产亚洲av片在线观看秒播厂| 51午夜福利影视在线观看| 久久久精品国产亚洲av高清涩受| 中文字幕高清在线视频| 精品亚洲乱码少妇综合久久| 在线天堂最新版资源| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| av在线观看视频网站免费| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 日韩av免费高清视频| 男人舔女人的私密视频| 亚洲人成电影观看| 国产精品嫩草影院av在线观看| 久久鲁丝午夜福利片| 亚洲精品国产一区二区精华液| 国产精品久久久久久久久免| 人成视频在线观看免费观看| 婷婷色综合www| 精品少妇黑人巨大在线播放| 男女国产视频网站| 美女中出高潮动态图| 男人操女人黄网站| a 毛片基地| 亚洲成人国产一区在线观看 | 日韩伦理黄色片| 国产av国产精品国产| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| 国产麻豆69| 9191精品国产免费久久| 搡老岳熟女国产| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| 99re6热这里在线精品视频| 欧美日韩视频精品一区| h视频一区二区三区| 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 国产乱来视频区| 国产一卡二卡三卡精品 | 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡 | 纵有疾风起免费观看全集完整版| 国产精品国产三级专区第一集| 黄频高清免费视频| 久久精品亚洲av国产电影网| 国产精品成人在线| 人人妻人人澡人人看| xxx大片免费视频| 中文乱码字字幕精品一区二区三区| 国产av一区二区精品久久| 在线天堂最新版资源| 亚洲精品国产一区二区精华液| 最近手机中文字幕大全| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 色吧在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久av美女十八| 国产成人精品福利久久| 国产 一区精品| 国产免费视频播放在线视频| 91成人精品电影| 满18在线观看网站| www.熟女人妻精品国产| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 看免费成人av毛片| 亚洲国产av影院在线观看| 超碰成人久久| 午夜免费男女啪啪视频观看| 天堂中文最新版在线下载| svipshipincom国产片| 一边摸一边做爽爽视频免费| 捣出白浆h1v1| 亚洲欧洲国产日韩| 欧美 亚洲 国产 日韩一| 国产淫语在线视频| 在线观看免费日韩欧美大片| 久久精品久久精品一区二区三区| 国产日韩欧美在线精品| 男人操女人黄网站| 色播在线永久视频| 日本欧美视频一区| 久久99精品国语久久久| 丁香六月欧美| 少妇精品久久久久久久| 男的添女的下面高潮视频| 国产日韩一区二区三区精品不卡| 中文字幕亚洲精品专区| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 老司机在亚洲福利影院| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| 久久久国产一区二区| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看| 亚洲国产av新网站| 国产日韩欧美视频二区| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 久久久久久免费高清国产稀缺| 两个人免费观看高清视频| 亚洲天堂av无毛| 婷婷色综合www| 18禁国产床啪视频网站| 精品国产一区二区久久| a级毛片黄视频| 国产精品二区激情视频| 亚洲伊人久久精品综合| 九色亚洲精品在线播放| 99国产精品免费福利视频| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 黄色一级大片看看| 国产成人欧美在线观看 | 好男人视频免费观看在线| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| av电影中文网址| 国产淫语在线视频| 国产极品粉嫩免费观看在线| a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 免费在线观看完整版高清| 日韩精品有码人妻一区| www日本在线高清视频| 日韩,欧美,国产一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲三区欧美一区| 国产免费福利视频在线观看| 久久精品久久精品一区二区三区| 久久久国产欧美日韩av| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| av.在线天堂| 91精品国产国语对白视频| 午夜福利,免费看| www.熟女人妻精品国产| 一级爰片在线观看| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 成人国语在线视频| 亚洲欧美一区二区三区国产| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 丝袜脚勾引网站| 伦理电影大哥的女人| 国产精品人妻久久久影院| 青春草国产在线视频| 国产精品av久久久久免费| 午夜久久久在线观看| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 99久久人妻综合| 最新的欧美精品一区二区| 中文字幕高清在线视频| 久热这里只有精品99| 亚洲欧洲国产日韩| 久热爱精品视频在线9| 国产极品天堂在线| 亚洲精品在线美女| 99热国产这里只有精品6| 天天躁夜夜躁狠狠躁躁| 亚洲av男天堂| 一级爰片在线观看| √禁漫天堂资源中文www| 一区福利在线观看| 在线观看国产h片| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| 国产精品麻豆人妻色哟哟久久| 日本色播在线视频| 91精品伊人久久大香线蕉| 久久久久久人妻| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩一区二区| 熟女少妇亚洲综合色aaa.| 九九爱精品视频在线观看| 一级片免费观看大全| 久久精品久久精品一区二区三区| 国产成人系列免费观看| 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 黄色一级大片看看| 成人影院久久| 午夜影院在线不卡| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的| 亚洲七黄色美女视频| 国产1区2区3区精品| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 女人久久www免费人成看片| 精品第一国产精品| 欧美97在线视频| 亚洲国产av影院在线观看| 蜜桃国产av成人99| 一级,二级,三级黄色视频| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 一边摸一边抽搐一进一出视频| 男的添女的下面高潮视频| 亚洲精品第二区| 国产一区二区三区av在线| 国产爽快片一区二区三区| 国产黄频视频在线观看| 晚上一个人看的免费电影| 视频区图区小说| 涩涩av久久男人的天堂| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6| 亚洲第一青青草原| www.精华液| 国产精品麻豆人妻色哟哟久久| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 欧美日韩精品网址| 精品福利永久在线观看| 我要看黄色一级片免费的| 69精品国产乱码久久久| 又粗又硬又长又爽又黄的视频| 侵犯人妻中文字幕一二三四区| 国产成人精品久久久久久| 亚洲欧美一区二区三区久久| 国产探花极品一区二区| 色视频在线一区二区三区| 80岁老熟妇乱子伦牲交| 日韩av免费高清视频| 日韩欧美一区视频在线观看| 久久青草综合色| 丝袜美腿诱惑在线| 97精品久久久久久久久久精品| 亚洲熟女精品中文字幕| 一个人免费看片子| 国产精品一区二区在线不卡| 久久久久久久久久久免费av| 在现免费观看毛片| 中文欧美无线码| 亚洲av在线观看美女高潮| 色综合欧美亚洲国产小说| a级片在线免费高清观看视频| 久久青草综合色| 精品国产乱码久久久久久男人| 国产老妇伦熟女老妇高清| 又大又爽又粗| 999久久久国产精品视频| 可以免费在线观看a视频的电影网站 | 国产av码专区亚洲av| 国产 精品1| 国产一区二区三区av在线| 十八禁高潮呻吟视频| 大片电影免费在线观看免费| 高清视频免费观看一区二区| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 18禁观看日本| 亚洲精品国产一区二区精华液| 亚洲成av片中文字幕在线观看| 好男人视频免费观看在线| 人成视频在线观看免费观看| 悠悠久久av| 一本色道久久久久久精品综合| 免费看不卡的av| 少妇猛男粗大的猛烈进出视频| 满18在线观看网站| 黄色 视频免费看| 最新在线观看一区二区三区 | 九草在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 人妻 亚洲 视频| 校园人妻丝袜中文字幕| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 中文乱码字字幕精品一区二区三区| 日韩人妻精品一区2区三区| 久久久久久久大尺度免费视频| 日韩大片免费观看网站| 黄片小视频在线播放| 高清不卡的av网站| 国产精品.久久久| 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区 | bbb黄色大片| 男女无遮挡免费网站观看| 久久99热这里只频精品6学生| 在线天堂最新版资源| 亚洲熟女毛片儿| 日本wwww免费看| 国产av一区二区精品久久| 国产成人a∨麻豆精品| 伊人亚洲综合成人网| 中文字幕制服av| 亚洲综合色网址| 国产毛片在线视频| 日韩成人av中文字幕在线观看| www.av在线官网国产| 亚洲国产最新在线播放| 亚洲人成电影观看| 精品亚洲成a人片在线观看| 欧美精品av麻豆av| 国产高清不卡午夜福利| 国产亚洲av高清不卡| 亚洲国产av影院在线观看| 亚洲人成网站在线观看播放| 99九九在线精品视频| 天天躁夜夜躁狠狠久久av| 18禁动态无遮挡网站| 亚洲精品国产一区二区精华液| 国产在线免费精品| 狂野欧美激情性bbbbbb| 日韩一卡2卡3卡4卡2021年| 蜜桃在线观看..| 丝袜美足系列| 日韩大码丰满熟妇| 精品亚洲成a人片在线观看| 国产精品一区二区在线不卡| 在线天堂最新版资源| 在线观看www视频免费| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 99热网站在线观看| 精品国产一区二区三区四区第35| av一本久久久久| 久久精品国产亚洲av涩爱| av卡一久久| 精品国产乱码久久久久久男人| 成年人午夜在线观看视频| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 亚洲第一av免费看| 一级毛片电影观看| 亚洲精品美女久久久久99蜜臀 | 曰老女人黄片| 这个男人来自地球电影免费观看 | 美女主播在线视频| 精品少妇黑人巨大在线播放| 啦啦啦在线观看免费高清www| 亚洲国产看品久久| 伦理电影免费视频| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 男女之事视频高清在线观看 | 黄色毛片三级朝国网站| 国产av码专区亚洲av| 欧美日韩av久久| 两性夫妻黄色片| 亚洲av成人不卡在线观看播放网 | 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 最黄视频免费看| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 国产免费一区二区三区四区乱码| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 欧美xxⅹ黑人| 成年av动漫网址| 中国国产av一级| 在线看a的网站| 老汉色∧v一级毛片| √禁漫天堂资源中文www| 成人免费观看视频高清| 国产亚洲av高清不卡| av又黄又爽大尺度在线免费看| 亚洲精品美女久久av网站| 一级a爱视频在线免费观看| 最近最新中文字幕免费大全7| 不卡视频在线观看欧美| 国产精品免费视频内射| 一级毛片 在线播放| 亚洲久久久国产精品| 国产精品一区二区精品视频观看| 七月丁香在线播放| 亚洲在久久综合| 最近2019中文字幕mv第一页| 日日撸夜夜添| 久久久久精品人妻al黑| 免费黄色在线免费观看|