• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于5-磺酸基間苯二甲酸鈉和雙三唑烷烴的Cu配合物的合成、結(jié)構(gòu)和性質(zhì)

    2015-12-05 07:28:08周尚永
    關(guān)鍵詞:間苯二甲酸天津師范大學(xué)丁烷

    李 婷 李 欣 周尚永 田 麗

    (天津師范大學(xué)化學(xué)學(xué)院,天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,無機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,天津300387)

    李婷李欣周尚永田麗*

    (天津師范大學(xué)化學(xué)學(xué)院,天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,無機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,天津300387)

    利用5-磺酸基間苯二甲酸鈉(NaH2sip)和雙三唑烷烴,合成了3個(gè)配合物[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1,btm=雙三唑甲烷),{[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2,btp=雙三唑丙烷)和{[Cu(btb)2(Hsip)]n(3,btb=雙三唑丁烷)?;衔?為一維雙鏈結(jié)構(gòu);化合物2為二維四方網(wǎng)絡(luò)結(jié)構(gòu),多個(gè)二維層依次疊加形成三維超分子結(jié)構(gòu);化合物3也具有二維層狀結(jié)構(gòu),其中金屬銅離子和雙三唑丁烷構(gòu)成的一維雙鏈結(jié)構(gòu)經(jīng)雙齒μ2-Hsip2-配體連接構(gòu)成了二維層狀結(jié)構(gòu)。同時(shí)對(duì)配合物的熱穩(wěn)定性和順磁共振特性進(jìn)行了討論。

    雙三唑甲烷;雙三唑丙烷;雙三唑丁烷;5-磺酸基間苯二甲酸單鈉鹽;超分子結(jié)構(gòu);氫鍵

    Coordinationpolymershaverecentlyaroused much interest as materials,due to not only the structural diversity but also their attractive properties, such as catalytic activity,magnetism,photochemical activity and electrical chemistry[1-9].One of the key steps for preparation of polymeric transition metalcomplexesistoselectthemultidentatebridging ligands or mixed coordination ligands[10-14].Currently, the rational construction of new structurally defined MOFs using the mixed-ligand strategy seems to be a marvelous success[15-21].

    Because of the diversity of the coordination modes and high structural stability,multi-carboxylic ligands with suitable spacers,especially benzoic acid based ligands are frequently used for metal-organic networks[22-27].Benzene-1,3,5-tricarboxylic acid(H3btc, also known as trimesic acid)is a rigid,planar molecule and has been widely used as a bridging ligand in the synthesis of multidimensional MOFs.Compared to the widely used benzene-1,3,5-tricarboxylic acid,5-sulfoisophthalic acid monosodium salt(NaH2sip)has distinctive characteristics:(i)C2symmetry of the ligand may cause the generation of different structures;(ii)the sulfonate group is generally perceived as a weaker group with respect to their coordinating ability and has one more potentially coordinating oxygen atom; (iii)the weak coordination nature of-SO3makes its coordination mode very flexible and sensitive to the chemical environment.

    On the other hand,bis(1,2,4-triazol-1-yl)alkanes arehighlyflexibleligands.Theflexibilityand conformation freedoms of bistriazole alkanes can offer the possibility for the construction of unpredictable and interesting frameworks.

    In this contribution,we describe a series of Cumetal-organic frameworks constructed from rigid multi -carboxylic ligand NaH2sip and flexible bistriazole alkanes.Three novelcomplexes[Cu0.5(btm)(H2O)] (H2sip)·H2O}n(1),{[Cu(btp)2(H2sip)(H2O)](NO3)4H2O}n(2),and{[Cu(btb)2(Hsip)]n(3)were fabricated and structurallycharacterizedbyX-raysinglecrystal analyses.They exhibited novel framework structures varying from 1D chains,to 2D layers.The thermal stability and EPR spectra have also been discussed.

    1 Experimental

    1.1General considerations

    Thereagentsandsolventsemployedwere commercially available and used as received without further purification.Bis(1,2,4-triazol-1-yl)alkanes was synthesized as reported previously[28].The elemental analyses(C,H,and N)were carried out on a Perkin-Elmerelementalanalyzer.TGexperimentswere performed on a NETZSCH TG 209 instrument with a heating rate of 10℃·min-1under nitrogen conditions. EPR spectra were measured on a BRUKER EMX-6/1 EPR spectrometer.

    1.2Preparation

    [Cu0.5(btm)(H2O)](H2sip)·H2O}n(1).A mixture of Cu(NO3)2·3H2O(168 mg,0.7 mmol),NaH2sip(189 mg, 0.7 mmol),btm(91 mg,0.7 mmol)and H2O(12 mL) was added into a parr Teflon-lined stainless steel vessel(25 mL),and then the vessel was sealed and heated to 140℃.After 3 days the autoclave was cooled to room temperature at a rate of 1.5℃·h-1. Blue crystalline products 1 were filtered off,washed with distilled water and dried in air.Yield:45% (based on Cu).Anal.Calcd.(%)for C13H15Cu0.5N6O9S (463.15):C 33.71,H 3.26,N 18.15.Found(%):C 33.38,H 3.55,N 18.46.

    {[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2).Blue crystals of 2 were obtained by adopting the similar synthetic procedure as 1 except that btm was replaced by btp(111 mg,0.7 mmol).Yield:48%(based on Cu).Anal.Calcd.(%)for C22H35CuN13O15S(817.25):C 32.33,H 4.32,N 22.29.Found(%):C 32.65,H 4.37, N 22.54.

    [Cu(btb)2(Hsip)]n(3).Bluecrystalsof 3 were obtained by adopting the similar synthetic procedure as 1 except that btm was replaced by btb(120 mg,0.7 mmol).Yield:43%(based on Cu).Anal.Calcd.(%)for C12H14Cu0.5N6O3.5S0.5(346.10):C 41.64,H 4.08,N 24.29. Found(%):C 41.35,H 4.18,N 24.55.

    1.3X-ray crystallography

    Single-crystal X-ray diffraction measurements of 1~3 were carried out with a Oxford Supernova CCD diffractometer and a graphite crystal monochromator situated in the incident beam for data collection at 150(2)K.Lorentz polarization and absorption corrections were applied.The structures were solved by direct methods and refined by full-matrix least-squares techniques using the SHELXS-97 and SHELXL-97[29-30]programs.Allnon-hydrogenatomswererefined anisotropically,and hydrogen atoms were located and refined isotropically.Crystallographic data for 1~3 are summarized in Table1.Selected bond lengths and angles were summarized in Table2.

    CCDC:1023688,1;776320,2;1023689,3.

    Table1 Crystallographic data and structure refinement for complexes 1~3

    Table2 Selected bond lengths(nm)and bond angles(°)for complexes 1~3

    Continued Table2

    2 Results and discussion

    2.1Description of crystal structure of {[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1)

    1 is double-stranded chains which are composed of ribbons of 16-membered rings,each ring involving two copper atoms and two btm molecules,in which the Cu(1)atom is in a general position(Fig.1).The metal coordination sphere is octahedral,with four nitrogen atoms from four btm ligands and two oxygen atoms from two water molecules.The four nitrogen atoms make up the equatorial plane,whereas the two oxygen atoms occupy the apical positions.The Cu-N bonds in 1 are in the normal range,and the axial Cu1-O1 distance(0.237 7(5)nm)is a little longer thanthenormalCu-Odistances,whichcanbe attributed to Jahn-Teller elongation.

    Fig.1 (a)Molecule structure of 1,showing the coordination environments of Cu2+,btm and H2sip-ligands;(b)1D chain of 1;Symmetry Codes:ivx,y+1,z;vx,y-1,z; (c)Extended 1D supramolecular double-chain linked with hydrogen-bonding interactions in 1; (d)3D supramolecularstructure of1 viewed from b direction(dashed line:hydrogen bonding)

    The btm ligand exhibits cis conformation and works as shorter spacers(N…N 0.581 4 nm).Acting as bidentate chelating-bridging ligands,a pair of btm ligands chelate the Cu1 center by triazolyl N donors with the Cu…Cu separation being 0.870 7(4)nm, which leads to an infinite 1D chain(Fig.1b).

    In the framework of 1,free H2sip and lattice water moleculars constitute 1D supramolecular double -chainsalongthecrystallographica-axisthrough classical hydrogen-bonding interactions(O2-H2A…O9vi,O9-H9A…O8ii,O9-H9B…O4viii;Symmetry code:vi-x+2,-y,-z;iix,y-1,z;viii-x+1,-y+1,-z; Table3),which further links the 1D btm-Cu chains into 3D supramolecular architecture(Fig.1c and 1d). The btm-Cu chains carry positive charges,whereas the H2sip--H2O supramolecular chains have negative charge. Thereupon,the3Dsupramolecularstructureisconsolidated by interchain hydrogen bonding interactions as well as electrostatic interactions(Fig.1d).

    Table3 Selected hydrogen bond data for 1~3

    2.2Description of crystal structure {[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2)

    Compound 2 crystallizes in the P21/c space group, and structural determination reveals it as 2D layers linked by μ2-btp ligands.The repeated unit in 2 consists of one crystallographically independent Cu2+ion.As viewed in Fig.2a,Cu1 is six-coordinated in a distortedoctahedralcoordinationspherethatis defined by two different oxygen atoms(one from water, the other two from H2sip-)occupying the axial positions,while the equatorial positions are finished by four nitrogen donors from four btp ligands.The bond distances of Cu1-O8 and Cu1-O1 which occupy the axial positions of the octahedron,are 0.253 6(3)nm and 0.244 5(2)nm,respectively.This axial elongation could be attributed to the Jahn-Teller effect.The other Cu-O and Cu-N bonds in 2 are in the normal range.

    All of the btp ligands adopt trans conformation with the N…N distances of 0.743 2 nm(to which N1 belongs)and 0.844 6 nm(to which N7 belongs) between the two donor atoms and a dihedral angle of the two triazole rings of 66.9°and 111.7°,respectively. Each Cuion is linked by four btp ligands,leading to 2D tetragonal layer structures with Cu…Cu separations of 1.002 6 nm(to which N1 belongs)and 1.131 4 nm(to which N7 belongs),as depicted in Fig.2b.The structures provide a very nice example of interdigitation.The sheets occur in which one of the uncoordinated carboxylic groups penetrate the rectangular windows of the partner,as can be clearly seen in Fig. 2c.Whats more,the interdigitating units lead to a 3D supramolecular architecture through the hydrogenbond interactions(O4-H4C…O3iii(iiix,-y+5/2,z-1/2)) (Table3).

    2.3Description of crystal structure [Cu(btb)2(Hsip)]n(3)

    3 crystallizes in the space group Ama2.In 3,the Cu1 atom and S1 atom lie on a twofold axis and the twofold axis is parallel to the b axis.What′s more,the H2sip-ligand is coordinated to the Cu1 with O1 fromthe-SO3group and O3 from COO-group,so the central atom Cu1 is unsymmetric(Fig.3).That is the reason why compound 3 belongs to non-centrosymmetric space group of Ama2.

    Fig.2 (a)Molecule structure of 2,showing the coordination environments of Cu2+,H2sip-and btp ligands;(b)2D layer of compound 2 in ab plane;(c)3D supramolecular structure of 2 viewed from a direction

    The coordination environment of Cuions is presented in Fig.3(a).Every central Cuion is sixcoordinated by two oxygen atoms from two Hsipligands,four nitrogen atoms from four btb ligands, which is in a highly distorted octahedral coordination sphere.The bond distances of Cuions with two Hsip2-oxygen atomsare 0.220 6(8)nm and 0.256 4(7) nm,respectively.This axial elongation could also beattributed to the Jahn-Teller distortion of copperions.All of the other Cu-O and Cu-N bonds are in the normal range.

    Fig.3 (a)Molecule structure of 3,showing the coordination environments of Cu2+,Hsip2-and btb ligands and building unit with 30%thermal ellipsoids;(b)1D double-stranded chain and μ2-Hsip2-ligand in 3; (c)2D layer of 3 viewed from a direction;(d)3D supramolecular structure of 3 viewed from c direction(dashed line:hydrogen bonding)

    The btb ligands adopt cis conformation with the N…N distances of 0.817 1 nm between the two donor atoms and a dihedral angle of the two triazole rings of 83°.Two strands of btb ligands are wrapped around each other and are held together by Cuions,also forming double-stranded chains like compound 1(Fig. 3b).But the Cu…Cu separation across the bridging btb ligand is 1.076 3 nm which is longer than that in 1.In the bc plane,the double-stranded chains are connected into a 2D layer by the link of the μ2-Hsip2-ligands.What′s more,the 2D layers lead to a 3D supramolecular architecture through the weak hydrogen -bond interactions(C12…N5v0.330 4 nm,C12-H12B…N5v126.98°,Symmetry code:v1-x,-y+3/2,z-1/2)).

    2.4Comparison of structures

    In the construction of compounds 1~3,the difference coordination modes(Scheme 1)of the ligand NaH2sip have an important influence on the resulting supramolecular architectures.In 1,the H2sip-ligand did not coordinated to the central Cu2+,it is only as counter ion.In compound 2,H2sip-ion acts as monodentate ligand,and mode a is observed.In 3,Hsip2-ion coordinated to Cu2+ion in mode b as a bidentate ligand.In addition,the versatile conformations of bistriazole alkanes have an important influence on the resulting frameworks.So compound 1 is doublestranded chains;compounds 2 and 3 are two different kinds of 2D frameworks.This work can be compared with our previous results[19,31-34],in which we used flexible bistriazole and rigid multicarboxylic ligands to obtain 1D,2D,3D and interpenetrated complexes.In allthesecomplexes,althoughbistriazoleligands adopted the same μ2linking mode,ligand conformations,deprotonating degree and coordination modes of the aromatic multi-carboxylic ligands are important for various framework structures in crystal engineering.

    Scheme 1 Coordination modes of ligand NaH2sip in 2 and 3

    2.5TGA and EPR characterization for 1~3

    The thermal behaviors of these new crystalline materials were studied by thermogravimetric analysis (TGA)under nitrogen atmosphere(Fig.4).Because of the existence of free H2sip anion in 1,it is very unstable and decomposes gradually above 115℃.The TGA result of 2 displays two steps weight losses.For 2,the first weight loss of 11.00%from 105 to 135℃should be attributed to the loss of water molecules (Calcd.11.01%),and the second weight loss is ascribed to the loss of organic ligands and NO3-anions.The decomposition of the coordination framework of 2 occurs immediately when the temperature is above 235℃.The TG curve for 3 reveals that it is stable up to 210℃.With further heating,rapid mass loss occurs,which is assigned to the decomposition of organic ligands.

    Fig.4 TGA curves for 1~3

    The EPR spectra of powdered samples of 1~3 have been measured at the room temperature and are shown in Fig.5.The simulations were carried out by the EasySpin software.The obtained spectra are characteristic for the coppercenters,which are simulated assuming the axial symmetry of g and A tensors.The simulated spectra were obtained by employing the following parameters:g∥=2.21,g⊥=2.05,A1=50 G,A2= 5 G and A3=5 G for compound 1;g1=2.23,g2=2.05,g3= 2.03,A1=90 G,A2=25 G and A3=10 G for compound 2; g1=2.24,g2=2.08,g3=2.05,A1=120 G,A2=0 G and A3= 10 G for compound 3.Both 2 and 3 have three g values, so the Cuions in them exist as unsymmetricallyoctahedral structures.Unlike 2 and 3,the coordination environment of Cuions in 1 appear as symmetrically octahedron,and they only have two g values.The obtained values(g∥>g⊥>2.002 3)for 1 indicate that the unpaired electron is located in the dx2-y2ground state, which is in agreement with the crystal structure and the square-pyramidal coordination around Cu atom.

    Fig.5 Experimental and simulated X-band EPR spectra of a powdered sample of 1(a),2(b),and 3(c)at room temperature

    3 Conclusions

    In summary,three novel inorganic-organic frameworks have been constructed from aromatic polycarboxylate acid(NaH2sip)and Cu(NO3)2in the presence of btm,btp and btb ligands with an increase of the length of-(CH2)-.1 features as 1D double-stranded chains.What′s more,the free H2sip-and water moleculars in 1 constitute into a supremolecular 1D chain through classical hydrogen-bonding interactions(O-H…O).2 has two-dimensional(2D)rectangular networks with a(4,4)topology,which contain 2D planar nano grid networks stacked in a step stacking fashion.In compound 3,the flexible btb ligands and Cu2+ions also gives 1D double-strained chains like that in 1, whiles the double-strained chains constitute to novel 2D layers by the link of μ2-Hsip.Structural analyses indicate that the difference in coordination modes of the aromatic polycarboxylic acids NaH2sip and the versatile conformations of bistriazole alkanes have important influences on the resulting frameworks. Meanwhile,the weak hydrogen-bonding interactions also play important roles in the formation of complexes.

    Acknowledgments:This work was financially supported by the National Natural Science Foundation of China(No. 21371133),and the Natural Science Fund of Tianjin,China (No.12JCZDJC27600).

    [1]Ishikava N,Sugita M,Ishikawa T,et al.J.Am.Chem.Soc., 2003,125:8694-8695

    [2]Zhang J P,Lin Y Y,Zhang W X,et al.J.Am.Chem Soc., 2005,127:14162-14163

    [3]Biradha K,Sarkar M,Rajput L.Chem.Commun.,2006,11: 4169-4179

    [4]Wu C D,Lin W B.Angew.Chem.Int.Ed.,2007,46:1075-1078

    [5]Wu S T,Wu Y R,Kang Q Q,et al.Angew.Chem.Int.Ed., 2007,46:8475-8479

    [6]Zhang J,Chen S M,Valle H,et al.J.Am.Chem.Soc.,2007, 129:14168-14169

    [7]Liu Y,Xu X,Zheng F K,et al.Angew.Chem.Int.Ed., 2008,47:4538-4541

    [8]Morris W,Doonan C J,Furukawa H,et al.J.Am.Chem. Soc.,2008,130:12626-12627

    [9]Ockwig N W,Delgado-Friedrichs O,OKeeffe M,et al.Acc. Chem.Res.,2005,38:176-182

    [10]Biradha K,Sarkar M,Rajput L.Chem.Commun.,2006,11: 4169-4179

    [11]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005, 249:545-565

    [12]Hu S,Chen J C,Tong M L,et al.Angew.Chem.Int.Ed., 2005,44:5471-5475

    [13]Sun D F,Collins D J,Ke Y X,et al.Chem.Eur.J.,2006, 12:3768-3776

    [14]Huang Y G,Yuan D Q,Pan L,et al.Inorg.Chem.,2007,46:9609-9615

    [15]Hesham A H,Joaquin S,Christoph J.Dalton Trans.,2008, 37:1734-1744

    [16]Habib H A,Hoffmann A,Hppe H A,et al.Dalton Trans., 2009,21:1742-1751

    [17]Tian A X,Ying J,Peng J,et al.Cryst.Growth Des.,2008,8: 3717-3724

    [18]Chen Z F,Zhang S F,Luo H S,et al.CrystEngComm,2007, 9:27

    [19]Tian L,Zhang Z J,Yu A,et al.Cryst.Growth Des.,2010, 10:3847-3849

    [20]Ma L F,Han M L,Qin J H,et al.Inorg.Chem.,2012,51: 9431-9442

    [21]Ma L F,Zhao J W,Han M L,et al.Dalton Trans.,2012,41: 2078-2083

    [22]Sun D F,Cao R,Sun Y Q,et al.Inorg.Chem.,2003,42: 7512-7518

    [23]Li B,Zhu X,Zhou J,et al.Polyhedron,2004,23:3133-3141 [24]Wang X,Li B,Zhu X,et al.Eur.J.Inorg.Chem.,2005: 3277-3286

    [25]Wu C D,Lin W B.Angew.Chem.Int.Ed.,2005,44:1958-1961

    [26]Yi L,Yang X,Lu T B,et al.Cryst.Growth Des.,2005,5: 1215-1219

    [27]Zhu X,Ge H,Zhang Y,et al.Polyhedron,2006,25:1875-1883

    [28]Torres J,Lavandera J L,Cabildo P,et al.J.Heterocycl. Chem.,1988,25:771-782

    [29]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [31]Tian L,Niu Z,Yang N.Inorg.Chim.Acta,2011,370:230-235

    [32]Tian L,Yang N,Zhao G Y.Inorg.Chem.Commun.,2010,13: 1497-1500

    [33]Tian L,Chen Z.Inorg.Chem.Commun.,2011,14:1302-1305

    [34]Tian L,Zhou S Y.J.Coord.Chem.,2013,66:2863-2874

    LI TingLI XinZHOU Shang-YongTIAN Li*
    (Tianjin Key Laboratory of Structure and Performance for Functional Molecules,Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,Ministry of Education,College of Chemistry,Tianjin Normal University,Tianjin 300387,China)

    The reaction of coppernitrate with flexible bis(1,2,4-triazol-1-yl)alkanes and rigid ligand 5-sulfoisophthalic acid monosodium salt(NaH2sip)affords three complexes[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1,btm= bis(1,2,4-triazol-1-yl)methane),{[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2,btp=1,3-bis(1,2,4-triazol-1-yl)propane),and {[Cu(btb)2(Hsip)]n(3,btb=1,4-bis(1,2,4-triazol-1-yl)butane).Compound 1 contains one-dimensional(1D)doublestrained chains.Compound 2 contains two-dimensional(2D)rectangular networks with(4,4)topology,in which the 2D planar nanogrid networks stacked in a step stacking fashion.3 is also 2D layers,in which double-strained chains[Cu(btb)]nare connected into 2D layer architectures by the μ2-Hsip2-linkers.The three compounds also are characterized by Elemental analysis,EPR,and thermal stability.CCDC:1023688,1;776320,2;1023689,3.

    bis(1,2,4-triazol-1-yl)methane;1,3-bis-(1,2,4-triazol-1-yl)propane;1,4-bis(1,2,4-triazol-1-yl)butane; 5-sulfoisophthalic acid monosodium salt;supramolecular structure;hydrogen-bond interaction

    O614.121

    A

    1001-4861(2015)06-1215-09

    10.11862/CJIC.2015.145

    2015-01-03。收修改稿日期:2015-03-14。

    國(guó)家自然科學(xué)基金(No.21371133)和天津市自然科學(xué)基金(No.12JCZDJC27600)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:hxxytl@mail.tjnu.edu.cn,Tel:+86-22-23766515;會(huì)員登記號(hào):S06N549M1304。

    猜你喜歡
    間苯二甲酸天津師范大學(xué)丁烷
    “不速之客”
    天津師范大學(xué)美術(shù)與設(shè)計(jì)學(xué)院作品選登
    An Experimental Study of Tone and Tone Sandhi in the New School of Nanjing Dialect
    蘭花
    在線處理脫丁烷塔壓差高
    間苯二甲酸二烯丙酯合成方法
    新型3-氨基氮雜環(huán)丁烷衍生物的合成
    正丁烷氧化制順酐催化劑的制備及其催化性能
    1-叔丁基氧羰基-2'-氧-螺-[氮雜環(huán)丁烷-3,3'-二氫吲哚]的合成
    基于5,5'-亞甲基二間苯二甲酸及1,2-雙(咪唑基-1-甲基)苯的Zn2+、Co2+配位聚合物的合成及晶體結(jié)構(gòu)
    久久精品国产亚洲av涩爱 | 亚洲av成人不卡在线观看播放网| 亚洲国产精品sss在线观看| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 欧美三级亚洲精品| 国产不卡一卡二| 精品久久久久久久久av| 亚洲成av人片免费观看| 国产在视频线在精品| 尤物成人国产欧美一区二区三区| 淫妇啪啪啪对白视频| 免费在线观看日本一区| 欧美一区二区精品小视频在线| 宅男免费午夜| 99riav亚洲国产免费| 国产亚洲欧美98| 两人在一起打扑克的视频| 一级黄片播放器| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区不卡视频| 亚洲中文字幕日韩| 亚洲国产精品合色在线| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 欧美激情久久久久久爽电影| eeuss影院久久| 国产亚洲欧美在线一区二区| 亚洲欧美激情综合另类| 欧美日本视频| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区| 美女 人体艺术 gogo| 99热精品在线国产| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 能在线免费观看的黄片| 精品久久久久久久人妻蜜臀av| 两个人的视频大全免费| 88av欧美| 久久午夜亚洲精品久久| 久久久久久大精品| 在线看三级毛片| 看黄色毛片网站| 一区二区三区高清视频在线| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 宅男免费午夜| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 国产精品98久久久久久宅男小说| 国产精品影院久久| 久久99热这里只有精品18| 国产精品,欧美在线| 国产精品爽爽va在线观看网站| 亚洲欧美日韩卡通动漫| 午夜精品在线福利| 性欧美人与动物交配| 老司机午夜十八禁免费视频| 精品日产1卡2卡| 真实男女啪啪啪动态图| av专区在线播放| 成年版毛片免费区| 麻豆久久精品国产亚洲av| 少妇高潮的动态图| 夜夜看夜夜爽夜夜摸| 中文资源天堂在线| 无人区码免费观看不卡| 久久久色成人| 夜夜夜夜夜久久久久| 中文字幕av在线有码专区| 国产乱人视频| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 久久精品国产亚洲av涩爱 | 三级毛片av免费| 午夜免费男女啪啪视频观看 | 永久网站在线| 琪琪午夜伦伦电影理论片6080| 亚洲人与动物交配视频| 少妇的逼水好多| 国产精品久久久久久亚洲av鲁大| 一夜夜www| 成人亚洲精品av一区二区| 国产成+人综合+亚洲专区| 欧美日韩黄片免| 成人三级黄色视频| 一区福利在线观看| 天堂动漫精品| 美女cb高潮喷水在线观看| 观看免费一级毛片| 身体一侧抽搐| www.色视频.com| 女生性感内裤真人,穿戴方法视频| or卡值多少钱| 女人被狂操c到高潮| 搞女人的毛片| 香蕉av资源在线| 男人的好看免费观看在线视频| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 欧美黑人欧美精品刺激| 一级作爱视频免费观看| 欧美乱色亚洲激情| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 亚洲成人免费电影在线观看| 床上黄色一级片| 国产中年淑女户外野战色| 中文资源天堂在线| 国产精品一及| 美女 人体艺术 gogo| 国产午夜精品论理片| 亚洲成人中文字幕在线播放| 亚洲五月天丁香| 老女人水多毛片| 999久久久精品免费观看国产| 长腿黑丝高跟| 中出人妻视频一区二区| av天堂中文字幕网| 亚洲国产欧美人成| 亚洲精品456在线播放app | 最新中文字幕久久久久| a在线观看视频网站| 免费观看精品视频网站| 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 久久人妻av系列| 国产精品一区二区性色av| 久久久久久大精品| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 日本与韩国留学比较| 岛国在线免费视频观看| 国产精品电影一区二区三区| 五月伊人婷婷丁香| 高清毛片免费观看视频网站| 中文资源天堂在线| 搡女人真爽免费视频火全软件 | 深夜精品福利| 亚洲一区高清亚洲精品| 午夜两性在线视频| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 国产久久久一区二区三区| 999久久久精品免费观看国产| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 午夜亚洲福利在线播放| 国产 一区 欧美 日韩| 91字幕亚洲| 嫩草影院新地址| 国产av一区在线观看免费| 免费在线观看影片大全网站| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 无遮挡黄片免费观看| 欧美在线一区亚洲| 国产激情偷乱视频一区二区| 搡女人真爽免费视频火全软件 | 国产一区二区在线av高清观看| 国产视频内射| 亚洲精品在线美女| а√天堂www在线а√下载| 久久久久精品国产欧美久久久| 成人毛片a级毛片在线播放| 欧美性感艳星| 亚洲在线观看片| 神马国产精品三级电影在线观看| 久久久久九九精品影院| 91在线观看av| 88av欧美| 色综合欧美亚洲国产小说| 在线观看66精品国产| 男女做爰动态图高潮gif福利片| 在线观看美女被高潮喷水网站 | 亚洲精品在线美女| 男女之事视频高清在线观看| 国产精品野战在线观看| 精品久久久久久,| 色哟哟·www| 免费人成视频x8x8入口观看| 18禁黄网站禁片午夜丰满| 十八禁国产超污无遮挡网站| 看十八女毛片水多多多| 国内揄拍国产精品人妻在线| 男女之事视频高清在线观看| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 久久6这里有精品| 怎么达到女性高潮| 男女下面进入的视频免费午夜| 久久久色成人| 波野结衣二区三区在线| 欧美性感艳星| 日日夜夜操网爽| 欧美在线黄色| 中文字幕精品亚洲无线码一区| h日本视频在线播放| 国产三级黄色录像| 乱码一卡2卡4卡精品| 国产精品影院久久| 国产欧美日韩一区二区精品| 亚洲av二区三区四区| 丰满乱子伦码专区| 老女人水多毛片| 久久人人精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 亚洲av.av天堂| 非洲黑人性xxxx精品又粗又长| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 日本黄色片子视频| 国产乱人视频| 在现免费观看毛片| 伦理电影大哥的女人| 亚洲国产欧美人成| 国产成人a区在线观看| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 91在线观看av| 五月伊人婷婷丁香| 色精品久久人妻99蜜桃| 久久伊人香网站| 日日摸夜夜添夜夜添小说| xxxwww97欧美| 日本三级黄在线观看| 国产白丝娇喘喷水9色精品| avwww免费| 女人十人毛片免费观看3o分钟| 色av中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲精品一区av在线观看| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美| 久久久久性生活片| 伊人久久精品亚洲午夜| 午夜a级毛片| 男插女下体视频免费在线播放| 91在线观看av| 变态另类丝袜制服| 亚洲美女搞黄在线观看 | 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 国产 一区 欧美 日韩| 美女免费视频网站| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 男插女下体视频免费在线播放| 亚洲最大成人中文| 日本免费a在线| 看免费av毛片| 免费电影在线观看免费观看| 国产精品永久免费网站| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 国产淫片久久久久久久久 | 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 高清日韩中文字幕在线| 久久草成人影院| 日韩欧美 国产精品| 老鸭窝网址在线观看| 亚洲国产日韩欧美精品在线观看| 色哟哟·www| 欧美极品一区二区三区四区| 久久香蕉精品热| 国产精品三级大全| 国产69精品久久久久777片| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 一夜夜www| 直男gayav资源| 免费在线观看影片大全网站| 最近视频中文字幕2019在线8| 夜夜夜夜夜久久久久| 在线观看66精品国产| 国产黄色小视频在线观看| 国产在线男女| 色综合站精品国产| 看片在线看免费视频| 五月玫瑰六月丁香| 观看免费一级毛片| 在线免费观看的www视频| 内地一区二区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| www.色视频.com| 精品日产1卡2卡| 村上凉子中文字幕在线| 日韩有码中文字幕| 日本免费一区二区三区高清不卡| av中文乱码字幕在线| 男女视频在线观看网站免费| h日本视频在线播放| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 少妇的逼好多水| 国产大屁股一区二区在线视频| 少妇丰满av| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 一级av片app| av天堂在线播放| 国产成人aa在线观看| av在线蜜桃| 久久久久九九精品影院| 日本黄色视频三级网站网址| 18禁裸乳无遮挡免费网站照片| 亚洲经典国产精华液单 | 成人特级黄色片久久久久久久| 亚洲五月天丁香| 日韩国内少妇激情av| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 久久精品夜夜夜夜夜久久蜜豆| 一夜夜www| 99久久成人亚洲精品观看| 日韩免费av在线播放| 偷拍熟女少妇极品色| 又爽又黄a免费视频| 大型黄色视频在线免费观看| 中国美女看黄片| 中文字幕久久专区| 亚洲美女黄片视频| 欧美xxxx黑人xx丫x性爽| 九色国产91popny在线| 欧美又色又爽又黄视频| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 色精品久久人妻99蜜桃| a级一级毛片免费在线观看| 国产不卡一卡二| 亚洲人成电影免费在线| 成人国产一区最新在线观看| x7x7x7水蜜桃| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 亚洲精品成人久久久久久| 国产精品伦人一区二区| 欧美bdsm另类| 别揉我奶头 嗯啊视频| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 国产主播在线观看一区二区| 日韩欧美国产在线观看| 97超视频在线观看视频| 一本精品99久久精品77| 97超视频在线观看视频| 亚洲三级黄色毛片| 国产一区二区激情短视频| 可以在线观看毛片的网站| 国产一区二区激情短视频| 天堂网av新在线| 婷婷六月久久综合丁香| 国产视频内射| 久久九九热精品免费| 窝窝影院91人妻| 少妇被粗大猛烈的视频| 日韩有码中文字幕| 日本成人三级电影网站| 嫩草影院精品99| 精品一区二区三区av网在线观看| 少妇丰满av| 亚洲成人久久爱视频| 亚洲成人免费电影在线观看| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式| 悠悠久久av| 日本免费a在线| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 无遮挡黄片免费观看| 午夜福利在线观看吧| 国产伦精品一区二区三区四那| 久久亚洲精品不卡| xxxwww97欧美| 欧美一区二区精品小视频在线| a在线观看视频网站| 国内精品一区二区在线观看| 久久久久久久午夜电影| 久久精品国产亚洲av天美| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久| 国产精品久久久久久久久免 | 亚洲国产精品sss在线观看| 久99久视频精品免费| 午夜两性在线视频| 91在线精品国自产拍蜜月| 99热这里只有是精品50| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 在线观看66精品国产| 亚洲av一区综合| 看免费av毛片| 亚洲av.av天堂| 校园春色视频在线观看| www.色视频.com| 人妻久久中文字幕网| 精品人妻1区二区| 1024手机看黄色片| 一级黄色大片毛片| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 亚洲一区二区三区色噜噜| 午夜精品在线福利| 久久香蕉精品热| 色精品久久人妻99蜜桃| 久久精品国产亚洲av涩爱 | 九色国产91popny在线| 亚洲av成人av| 亚洲无线观看免费| 亚洲精华国产精华精| 永久网站在线| 亚洲成a人片在线一区二区| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 一进一出抽搐gif免费好疼| 亚洲成人精品中文字幕电影| 日韩成人在线观看一区二区三区| 久久九九热精品免费| av在线蜜桃| www.www免费av| 精品福利观看| 九九热线精品视视频播放| 看免费av毛片| 久久精品综合一区二区三区| 国产精品不卡视频一区二区 | 国产综合懂色| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 色吧在线观看| 国产高清三级在线| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| av国产免费在线观看| 久久久国产成人免费| 国产一区二区三区视频了| 精品无人区乱码1区二区| 美女免费视频网站| 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 男人和女人高潮做爰伦理| 听说在线观看完整版免费高清| 高潮久久久久久久久久久不卡| 如何舔出高潮| 91久久精品电影网| 日韩亚洲欧美综合| 麻豆成人av在线观看| 亚洲黑人精品在线| 成年版毛片免费区| а√天堂www在线а√下载| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站| 变态另类丝袜制服| 亚洲不卡免费看| 搡老岳熟女国产| 久久久久性生活片| 又粗又爽又猛毛片免费看| 高清毛片免费观看视频网站| 国产精品98久久久久久宅男小说| 色播亚洲综合网| 亚洲成人免费电影在线观看| 欧美色欧美亚洲另类二区| 久久婷婷人人爽人人干人人爱| 成人欧美大片| 欧美zozozo另类| 国产极品精品免费视频能看的| 简卡轻食公司| 又粗又爽又猛毛片免费看| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 简卡轻食公司| 91午夜精品亚洲一区二区三区 | 亚洲七黄色美女视频| 成人欧美大片| 精品久久久久久久久av| 国产免费男女视频| 青草久久国产| 免费看a级黄色片| 尤物成人国产欧美一区二区三区| 久久久久久大精品| av天堂中文字幕网| x7x7x7水蜜桃| 国产欧美日韩一区二区三| 小蜜桃在线观看免费完整版高清| 嫩草影院入口| 91字幕亚洲| 欧美高清性xxxxhd video| 精品久久国产蜜桃| 国产黄片美女视频| 精品人妻熟女av久视频| 精品国产三级普通话版| 国产在线男女| 最近最新免费中文字幕在线| 男人舔奶头视频| 直男gayav资源| 亚洲无线在线观看| 麻豆成人av在线观看| 很黄的视频免费| www.色视频.com| 国产亚洲精品综合一区在线观看| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线| av黄色大香蕉| 国产精品爽爽va在线观看网站| av天堂中文字幕网| xxxwww97欧美| 亚洲av美国av| 国产探花极品一区二区| 99在线视频只有这里精品首页| 18禁黄网站禁片免费观看直播| 国内精品久久久久精免费| 狠狠狠狠99中文字幕| 国产高潮美女av| 欧美日韩亚洲国产一区二区在线观看| 国产蜜桃级精品一区二区三区| 久久久久久久亚洲中文字幕 | 成人精品一区二区免费| 90打野战视频偷拍视频| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 国产亚洲精品av在线| 久久久精品欧美日韩精品| 中文资源天堂在线| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| 99久久无色码亚洲精品果冻| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 热99re8久久精品国产| 色在线成人网| 老司机福利观看| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 精品久久国产蜜桃| 在线播放无遮挡| 99国产精品一区二区蜜桃av| 国产精品久久久久久久电影| 真人一进一出gif抽搐免费| 国产高清视频在线播放一区| x7x7x7水蜜桃| 久久精品国产自在天天线| 亚洲人成网站高清观看| 午夜福利免费观看在线| 成人国产综合亚洲| 国产精华一区二区三区| 91字幕亚洲| 一级av片app| 国产高清激情床上av| av在线老鸭窝| 精品久久国产蜜桃| 一本综合久久免费| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 亚洲 国产 在线| 亚洲一区高清亚洲精品| 日本 av在线| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 国产免费男女视频| 中国美女看黄片| 国产精品一区二区性色av| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 校园春色视频在线观看| 五月玫瑰六月丁香| 国产白丝娇喘喷水9色精品| 久久久久性生活片| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 亚洲欧美激情综合另类| 国产精品一区二区三区四区久久| 国产白丝娇喘喷水9色精品| aaaaa片日本免费| 高清日韩中文字幕在线| 欧美激情国产日韩精品一区| 精品人妻熟女av久视频| 美女免费视频网站| 天堂网av新在线| 天美传媒精品一区二区| 全区人妻精品视频| 夜夜夜夜夜久久久久|