• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Will oscillating wave surge converters survive tsunamis?

    2015-12-05 08:03:56BrienChristodoulidesRenziStefnkisDis

    L.O’Brien,P.Christodoulides,E.Renzi,T.Stefnkis,F(xiàn).Dis,?

    aSchool of Mathematical Sciences,Monash University,Victoria 3800,Australia

    bFaculty of Engineering and Technology,Cyprus University of Technology,Limassol,Cyprus

    cSchool of Mathematical Sciences,University College Dublin,Belfield Dublin 4,Ireland

    dDepartment of Mathematical Sciences,Loughborough University,Loughborough,Leics LE11 3TU,UK

    eCentre de Mathématiques et de Leurs Applications(CMLA),Ecole Normale Supérieure de Cachan,94235 Cachan,F(xiàn)rance

    Will oscillating wave surge converters survive tsunamis?

    L.O’Briena,P.Christodoulidesb,E.Renzic,d,T.Stefanakisc,e,F(xiàn).Diasc,e,?

    aSchool of Mathematical Sciences,Monash University,Victoria 3800,Australia

    bFaculty of Engineering and Technology,Cyprus University of Technology,Limassol,Cyprus

    cSchool of Mathematical Sciences,University College Dublin,Belfield Dublin 4,Ireland

    dDepartment of Mathematical Sciences,Loughborough University,Loughborough,Leics LE11 3TU,UK

    eCentre de Mathématiques et de Leurs Applications(CMLA),Ecole Normale Supérieure de Cachan,94235 Cachan,F(xiàn)rance

    A R T I C L E I N F O

    Article history:

    8 May 2015

    Accepted 14 May 2015

    Available online 9 June 2015

    Tsunami

    Wave energy converter

    Wave loading

    Oscillating wave surge converter

    Wave-structure interaction

    With an increasing emphasis on renewable energy resources,wave power technology is becoming one of the realistic solutions.However,the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean.Itisknownthattsunamisarenearlyundetectableintheopenoceanbutasthewaveapproachesthe shore its energy is compressed,creating large destructive waves.The question posed here is whether an oscillating wave surge converter(OWSC)could withstand the force of an incoming tsunami.Several tools are used to provide an answer:an analytical 3D model developed within the framework of linear theory,a numerical model based on the non-linear shallow water equations and empirical formulas.Numerical resultsshowthatrun-upanddraw-downcanbeamplifiedundersomecircumstances,leadingtoanOWSC lying on dry ground!

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    1.Introduction

    The estimation of the effects of tsunami-induced loading on near-shoreline structures located within inundation zones has recently gained significant interest from researchers,engineers,and government agencies[1,2].Wave energy devices and tidal current turbines are slowly becoming a reality.Various prototypes are now being tested in harsh sea conditions,due for example to violent storms.The effectiveness of a mooring system to hold a turbine under extreme weather conditions has been examined for example by Chen and Lam[3].Tiron et al.[4]provided a review on the challenges that wave energy devices face,in particular those associated with extreme wave events.What about tsunamis?

    Therewasnowaveenergyconverter(WEC)installedatthetime oftheMarch11,2011Japantsunamibut thereissomeinformation available about offshore wind turbines.Simply structured windpower plants proved more resistant to natural disasters than nuclear plants.For example the wind plant 50 m off the coast of Kamisu,Ibaraki Prefecture,survived the massive tsunami and continues to run at full capacity supplying electricity to Tokyo Electric Power Co.,which was greatly compromised when the waves crippled the Fukushima No.1 nuclear plant.The wind plant has seven power generators.Each generator is attached to three propeller blades sitting atop a mast that,when turning,transform wind into electricity.Each mast,sunk into the seabed at a depth of 25 m,stands roughly 70 m above the water.The tsunami reached 5 m.Each transformer is located on a jetty dozens of meters away from the masts.The machine stayed dry amid the tsunami because the jetty,connected to a coastal road,is 9.6 m above sea level and the walls and ceiling kept water from splashing onto the machine.

    Even if offshore wind turbines seem to have survived the 2011 Japan tsunami,it is legitimate to ask whether WECs will resist tsunamis.In the future some WECs could be installed in areas prone to tsunamis(off the coasts of Oregon or Washington for example where a devastating Cascadia earthquake could generate a threatening tsunami).For the North Sea,the threat is not as obvious,even though O’Brien et al.[5]have indicated some possibilities for tsunamis.A large underwater landslide,called the Peach slide,took place on the Barra Fan,about 250 km off the North West coast of Ireland.It has a minimum age of 14680 years BP,was formed through a combination of blocky and muddy debris flows and affects an area of 700 km2.A landslide of such proportion could very well have generated a large scale tsunami.The Storegga slide is one of the world’s largest known submarine landslides and occurred off the west coast of Norway generating a hugetsunami.Recent studies estimate that the slide removed between 2500 km3and 3500 km3of sediment from the slide scar approximately 8200 years BP.It is thought that inundation was as high as 30 m and reached Norway,Shetland,Scotland,and the Faroes.For deep sea WECs,such as Pelamis[6](Fig.1),or for current turbines usually installed at the sea bottom under at least 30 m of water,tsunamis are not anticipated to be a threat since they are located far from the shore(the present Pelamis prototype operating at EMEC[7],Orkney,is located 1.6 km from the shore and the present OpenHydro[8]project in Brittany,F(xiàn)rance,is located 2 km from the shore).Ontheotherhand,fornearshoreWECs,suchastheoscillating wave surge converter(OWSC)Oyster[9](Fig.2),it is important to take a closer look at the effect of tsunamis(the present Oyster prototype operating at EMEC,Orkney,is located 500 m from the shore).Unfortunately there is very few tsunami wave data away from the shoreline.One exception is the Mercator yacht,anchored 1.6 km away from the shore in Thailand during the 2004 Indian Ocean tsunami.The water depth was about 12-13 m and the yacht experienced four major waves,one‘‘depression’’wave(2.8 m)and three‘‘elevation’’waves(3.8,1.7,and 4.2)[10].The problem of tsunami-induced loading is quite different from the problem of wave forces acting on flap-type storm surge barriers[11-13]because the periods involved are different.From the point of view of globalwaveloading,tsunamisarelessofathreatthanstormsurges orextremestormwavesasshownbelow.However,therearesome other issues,e.g.,extreme rundown,wave impact after the OWSC has been left on dry ground,wave breaking on the OWSC.

    Fig.1.Photo of the Pelamis wave power device[6].The device is typically 1600 m from the shoreline.

    Fig.2.Drawing of the Oyster wave power device[9].The water depth is between 10 m and 13 m where the device is installed.The device is typically 500 m from the shoreline.

    St-Germain et al.[14]simulated the impact on structures of tsunami-like bores rapidly advancing on dry and wet beds.They used a 3D numerical model based on the smoothed particle hydrodynamics(SPH)method.The time-histories of the pressures and net force acting on a square column and a vertical wall due to the impact of these bores were compared qualitatively.To better understand the development of the hydrodynamic forces,a detailed analysis of the velocity field and of the water surface elevation was also incorporated.This study was part of a comprehensive interdisciplinary research program whose purpose was to help develop design guidelines for tsunami-prone structures.

    Until recently there has been very little emphasis on drawdowns.For obvious reasons,residents care more about run-ups!With the development of OWSCs,the focus is different.It is in the vicinity of the extreme draw-down location that the maximum momentum flux occurs[15].

    For the methods,we use an analytical 3D model developed within the framework of linear theory by Renzi and Dias[16],numerical solutions based on the non-linear shallow water equations[17]and empirical formulas[18,19].

    In Section 2,we briefly investigate the transformation of tsunamiwavesastheyapproachtheshore.InSection3,wepresent results based on an analytical model and we show that they do not allow us to conclude on the loading exerted by tsunamis.In Section 4,we discuss numerical results.In Section 5,we discuss the relevance of empirical formulas.

    Table 1Dimensionless numbers.

    2.Tsunami wave transformation

    The wave transformation during the final stage of the propagation of a tsunami has been described in several papers.A particularly clear example is the paper of Madsen and Fuhrman[19].Kajiura[20]considerstheamplificationoftsunamiswhichadvance towards shore over a gentle slope using Green’s law for tsunamis

    whereaiandλiaretheamplitudeandwavelengthofatsunamiata depthhi,attwodifferentpositionsi=1,2.Moreinterestinginthe framework of the present study is the amplification of velocity and consequently of the momentum flux per unit breadthSince uiscales asin linear shallow water theory

    If the water depth is reduced by half between two points,the wave height increases by 19%while the momentum flux increases by 41%.As stated by Carrier et al.[15],f can be interpreted as the drag force per unit breadth for a surface-piercing stationary object placed vertically over the flow depth.

    In order to assess the importance of linear,non-linear and dispersive effects,four dimensionless parameters are defined in Table 1.

    Eq.(1)implies that these dimensionless numbers are transformed as follows:

    For a large tsunami wave with a1= 1 m,h1= 3 km,λ1=100 km,the transformation of the dimensionless parameters arising from Table 1 is shown in Table 2 for two depths:30 m and 10 m.

    Fig.3.Geometry of the array of OWSCs:plan view(left)and side view(right).

    Table 2Transformation of dimensionless numbers for a tsunami at three positions according to Eq.(3).

    The values of relative height?indicate that linear theory can be used to describe the behavior of the wave up to a certain depth and the values of wave shallownessδsuggest that slight dispersive effects should be included for waves traveling over very large distances.As the wave approaches the shore,finite amplitude(nonlinear)effects come into play when the relative height?≈10-1.According to Eq.(3)this occurs at a depth slightly larger than h=30 m.Assuming a seabed slope of 0.02 this occurs at a distance of approximately 1.5 km from the shore,which is about 1/7 ofthewavelengthofatsunamiwithaperiodof10min.Thedimensionless parameters corresponding to h=30 m are shown in column 2 of Table 2.The wave steepness isγ≈0.0003 and the Ursell number is Ur≈ 104? 1,indicating that dispersion is relatively minor compared with the non-linearity except for the front part of the wave.From these considerations,it is reasonable to conclude that at this distance from the shore there is a shift in importance from linear to non-linear effects.Therefore,linear shallow-water equations used offshore should be matched to the inner solution ofthenon-linearshallow-waterequationsatadistancefromshore of about 1/7 of a wavelength of the tsunami.At a depth of 10 m,the situation is even worse.The dimensionless parameters corresponding to h=10 m are shown in column 3 of Table 2.

    Inthenextsection,lineartheoryisusedasafirstapproximation to predict the force exerted on an OWSC.It will be shown in Section 4 that as anticipated the linear results underestimate the force and that it is necessary to use non-linear theory.

    3.Linear theory

    We consider here the following idealized problem:a flap-type structure mounted on a flat sea bottom pierces the surface of the ocean.The structure is assumed to be fixed.The loading on the flap due to a tsunami wave is estimated.The most restrictive assumption is that the bottom is flat.

    The analytical 3D model developed by Renzi and Dias[16]is used to compute the load on the flap.This is the same model that is implemented to determine the hydrodynamic loading on an array of OWSCs in random seas[21-23].Until now,this model had only been used to compute forces under normal operational conditions for OWSCs,that is waves with periods between 5 s and 20 s.Even thoughthereisnoassumptiononthewaveperiodinthederivation of the model,special care must be taken when evaluating the solution for long waves.

    Let us consider an infinite array of equally spaced thin plates in the open ocean used for the purpose of wave energy conversion.The analysis of the scattering problem,in which the flaps are held fixed in incoming waves,is used here to calculate the velocity potential and so,the pressure exerted on the system.This is important in order to investigate whether an array of nearshore OWSCs would survive the impact from a tsunami.Periodicity of the problem allows the geometry to be reduced to that of a single plate within two waveguides at a mutual distance b,as shown in Fig.3.

    With reference to Fig.3,the plate is represented by a rectangular box of widthwand thickness 2a,fixed along a straight foundation at a distance c from the bottom of the ocean of depth h.The plate is in the middle of a channel of total width b.A plane reference system of coordinates x=(x,y,z)is also set,with x on the center line of the channel,y along the axis of the plate,and z positive upwards.Monochromatic waves of frequencyωare incoming from the left with wave crests parallel to the plate.

    The theoretical basis of the mathematical model is provided by Renzi and Dias[16]and summarized here.Within the framework ofalinearpotential-flowtheory,thevelocitypotentialΦ(x,y,z,t)must satisfy the Laplace equation

    in the fluid domain.On the free-surface,the kinematic-dynamic boundary condition

    is applied,with g being the acceleration due to gravity.Absence of normal flux at the bottom and through the lateral walls of the channel requires

    respectively.

    A no-flux boundary condition must be applied on the lateral surfaces of the fixed plate,yielding

    Since the total thickness of the plate 2a? b,the thin-plate approximation can be used[24]by which the boundary condition on the plate(7)is restated at x= ±0.Finally,the reflected and transmitted wave field respectively on the weather side and the lee side of the plate must be both outgoing at large distances from the origin.

    The system of governing equations(4)-(7)can be solved via the introduction of a complex spatial potential such that

    The velocity potential physically represents oscillating waves of period T=2π/ω,whose spatial variation is described by the sum of two different components,φIandφD.The first term,φI,represents the incident wave field and is given by

    where A and k are respectively the wave amplitude and wavenumber,the latter depending on the wave frequency according to the dispersion relationω2=gktanh(kh).

    The full solution(for details see Refs.[16,25])of(4)-(7)is based on a careful application of the Green integral theorem in the fluid domain.Herein we report the corresponding semianalytical solution and its physical meaning.Eq.(9)describes a monochromatic wave field.Incident monocromatic waves can describe the fundamental behavior of the flap.Referring to Eq.(8),φDis the diffraction potential that describes the modification of the wave field induced by the physical presence of the flap held fixed in water.The mathematical expression ofφD,not reported here for the sake of brevity,can be found in Ref.[25].

    The force of a tsunami on an array of nearshore OWSCs at a depth of 10.9 m is analyzed.If the tsunami has an amplitude of 1 m offshore at a depth of 3 km,then according to Green’s law for tsunamis(1)the amplitude of the wave will be approximately 4 m when it hits the devices.As said above,in order to analyze the tsunami effect on the system,we approximate the OWSCs as an array of fixed plates with a spatial period b=91.6 m and width w=18 m and determine the pressure exerted on one plate from a tsunamiwithamplitude4mandperiod10min.Inthelinearmodel p=-ρ(gz+Φt),the force exerted on the plate is determined by the pressure difference across the plate.We focus here on the dynamic pressure-ρΦt.The pressure jump across the plate is shown in Fig.4.It is plotted against y which runs along the axis of the plate and calculated at six equally spaced depths from the still waterleveltotheseafloor.Thegreatestoverallpressuredifference is felt at the center of the plate(y=0)and is zero at the edges of the plate(y=±9 m)but is invariant with depth.The maximum value isΔP≈3×103N/m2=0.03 bar.

    In order to compare these results to a standard sea state,the pressure jump exerted by a typical swell with amplitude 3 m and period 5 s impacting on the plate is shown in Fig.5.This clearly shows how the pressure changes with depth:the maximum effect is felt at the free surface and the pressure decreases towards the sea floor.Also the magnitude is much greater than that from the tsunami,with a maximumΔP≈ 3×105N/m2=3 bar.From these results we can conclude that the tsunami load exerted on the plate does not vary with depth since it is such a long wave relative to the depth.Moreover,the magnitude of load exerted by the tsunami is approximately 100 times less than that of a normal swell.We can therefore assume that an array of nearshore OWSCs would easily withstand the force from a tsunami according to linear theory.However,as previously noted,non-linear effects will start to become important at approximately 1.5 km from the shore so non-linear effects on the plate will be investigated in the next section.

    Fig.4.The jump in pressure for a typical tsunami across an 18 m plate,in a depth of h=10.9 m at six depths from the free surface to the ocean floor.

    Fig.5.Variousjumpsinpressureacrossan18mplateforatypicalswell.(Thesame scales have been used in Figs.4 and 5.)

    4.Beyond linear theory

    The(1D)fully non-linear shallow water equations read

    Consider a topography consisting of a sloping beach with unperturbed water depth varying linearly with the horizontal coordinate,h(x)= -αx.Carrier et al.[15]carefully evaluated tsunami run-up and draw-down motions on such a uniformly sloping beach.They considered several types of initial conditions.Kano?lu[26]proposed an elegant alternative,which avoids the difficulty with the Carrier-Greenspan transformation,namely the derivation of an equivalent initial condition over the transform space for a given initial wave profile in the physical space.

    Simply by looking at Ref.[15],one can make some interesting comments:

    One sees that a flap mounted in water depths of the order of 10 m will not become dry but it could be close(with a rundown of 8 m).

    It was shown in the previous section on linear theory that the forces due to the linear term?Φ/?t can be neglected.On the otherhand,the velocities can become quite large and the linearized approach can fail.A simple analysis provided by Madsen and Fuhrman[19]shows that maximum flow velocities of the order of 9 m/s canbereached.Consequentlythekineticenergycan be quite large.Since the pressure in the fully non-linear model includes a term proportional to u2,the forces can be quite large.Of course the bottom slope is an important parameter.A steep slope will provide smaller maximum flow velocities.

    Carrier et al.[15]state that one of the drawbacks of their method is that it is only applicable for the problems in one spatial dimension with a uniformly sloping beach.Therefore we also used a two dimensionalnon-linearshallowwatersolver,VOLNA[27],to perform additional simulations.If after the first wave recedes the device is left on dry land,a second wave may act as a shock on the plate and do more damage than it would to a partially submerged device.This effect is demonstrated in Fig.6.

    Fig.6.VOLNA simulation from multiple tsunami waves hitting a 13 m high plate in an initial depth of 10 m on a sea bed with slope 0.03(plane view).(a)Bathymetry of a fixed plate on a sloping sea bed with the shore to the right of the plate.(b)The free surfaceηafter a tsunami has inundated the shore and it begins to recede.(c)45 s later,the plate is left on dry land.(d)Another 45 s later,a subsequent wave impacts the plate.

    5.Empirical formulas

    Authorities tend to classify the different forces acting on a structure due to a tsunami in the following way[28-32]:

    ?Hydrostatic Forces:Occur when standing or slowly moving water encounters a structure.They are caused by an imbalance of pressure due to a differential water depth on opposite sides of structure and act perpendicular to the surface.

    ?BuoyancyForces:Concernstructureswithlittleresistancetolift such as light wood frame buildings,basements,or swimming pools.These act vertically through the center of mass of the displaced volume.

    ?Hydrodynamic Forces:Caused by water flowing at a moderate to high velocity around a structure.These are a combination of thelateralforcescausedbythepressureforcesfromthemoving mass of water and the friction forces generated as the water flows around the structure.They include frontal impact,drag along the sides,and suction on the downstream side.These forces depend on flow velocity,fluid density,and structural geometry.

    ?Surge Force:Another variety of hydrodynamic force caused by the leading edge of a surge of a tsunami impinging on a structure.

    ?Impact Force:Results from debris or any object transported by

    floodwaters,striking against a structure.

    Assuming that the load is mainly hydrodynamic,even within thisidealizedframeworkitisnotclearwhatthemainforceisgoing to be.The loading for a solid wall facing the shoreline suggested by Yeh et al.[28](ignoring impact forces and breaking wave forces)is given by the surge force

    or the hydrodynamic force

    whereρis the water density,g is the acceleration due to gravity,wis the width of the wall,A is the area of the wall,h is the surge height,Cd≈ 1.5 is the drag coefficient,andis the design flood velocity.

    A comparison of the above empirical formulas for a plate of width 18 m and a surge of height 10 m gives Fs=8.1×107N and Fd=5.4×107N.Both values are of the same order of magnitude and two order of magnitude larger than the force obtained with linear theory.

    Fig.7.Non-resonant(left)and resonant(right)non-dimensional velocities from a monochromatic wave on a sloping beach with slope tanθ=0.13 and initial shoreline at x=0[35].L is the distance from the shoreline to the point where the bottom becomes horizontal.

    6.Conclusions

    The hydrodynamic load of a tsunami on an array of nearshore OWSCs was investigated.The main conclusion is that non-linear theory must be used.Different forces suggested by standard tsunami design codes were reviewed displaying the variety of formulas and their reliance on estimated coefficients and a conservative velocity estimate.Applying the linear model of Renzi and Dias[16]to an array of fixed plates,a first approximation for the hydrodynamic loading on an OWSC was calculated through determining the jump in the-ρΦtterm.Results showed that the loadingforatypicaltsunamiisinvariantwithdepthandmaximum loading is felt at the center of the plate.By comparison with the loading from a typical swell,it was shown that the maximum net force of a tsunami on a nearshore OWSC is approximately one hundredth of the magnitude of the loading due to a regular sea state.This paradox arises because the linearized theory neglects high-orderhydrodynamicforces,whicharedominantinatsunami.However,further research needs to be done on the effects of multiple waves.Stefanakis et al.[33,34]demonstrated resonant phenomena between the incident wavelength and the beach slope withintheframeworkofthenon-linearshallowwaterequationsin onedimensionformultipletsunamiwaves.Acomparisonbetween the velocities of resonant and non-resonant states from Stefanakis et al.[35]is shown in Fig.7.Furthermore,if after the first wave recedes the device is left on dry land,a second wave may act as a shock on the plate and do more damage than it would to a partially submergeddevice.Webelievethatdangerousconfigurationscould be found with more detailed investigations.

    Acknowledgments

    The authors would like to acknowledge the support provided bytheScienceFoundationIreland(SFI)undertheprojectHigh-end computational modeling for wave energy systems,by the Framework Program for Research,Technological Development,and Innovation of the Cyprus Research Promotion Foundation under the Project AΣTI/0308(BE)/05,by the Irish Research Council for Science Engineering and Technology(IRCSET),by Aquamarine Power and by the European Union’s Seventh Framework Programme for research,technologicaldevelopmentanddemonstrationunderthe grant agreement ASTARTE No.603839.

    References

    [1]D.Palermo,I.Nistor,Y.Nouri,A.Cornett,Tsunami loading of nearshore structures:a primer,Can.J.Civil Eng.36(2009)1804-1815.http://dx.doi.org/10.1139/L09-104.

    [2]Y.Nouri,I.Nistor,D.Palermo,A.Cornett,Experimental investigation of the tsunami impact on free standing structures,Coast.Eng.J.52(1)(2010)43-70.http://dx.doi.org/10.1142/S0578563410002117.

    [3]L.Chen,W.-H.Lam,A review of survivability and remedial actions of tidal current turbines,Renew.Sustain.Energy Rev.43(2015)891-900.http://dx.doi.org/10.1016/j.rser.2014.11.071.

    [4]R.Tiron,F(xiàn).Mallon,F(xiàn).Dias,E.G.Reynaud,The challenging life of wave energy devices at sea:A few points to consider,Renew.Sustain.Energy Rev.43(2015)1263-1272.http://dx.doi.org/10.1016/j.rser.2014.11.105.

    [5]L.O’Brien,J.M.Dudley,F(xiàn).Dias,Extreme wave events in Ireland:14 680 BP-2012,Nat.Hazards Earth Syst.Sci.13(3)(2013)625-648.http://dx.doi.org/10.5194/nhess-13-625-2013.URLhttp://www.nat-hazardsearth-syst-sci.net/13/625/2013/.

    [6]Pelamis.www.pelamiswave.com,2015.

    [7]EMEC.www.emec.org.uk,2015.

    [8]OpenHydro.www.openhydro.com,2015.

    [9]Aquamarine.www.aquamarinepower.com,2015.

    [10]T.Rossetto,W.Allsop,I.Charvet,D.Robinson,Physical modelling of tsunami using a new pneumatic water wave generator,Coast.Eng.58(2011)517-527.http://dx.doi.org/10.1016/j.coastaleng.2011.01.012.

    [11]P.Sammarco,H.H.Tran,C.C.Mei,Subharmonic resonance of Venice gates in waves.Part 1.Evolution equation and uniform incident waves,J.Fluid Mech.349(1997)295-325.http://dx.doi.org/10.1017/S0022112097006848.URL http://journals.cambridge.org/article_S0022112097006848.

    [12]P.Sammarco,H.H.Tran,O.Gottlieb,C.C.Mei,SubharmonicresonanceofVenice gates in waves.Part 2.Sinusoidally modulated incident waves,J.Fluid Mech.349(1997)327-359.http://dx.doi.org/10.1017/S0022112097006836.URL http://journals.cambridge.org/article_S0022112097006836.

    [13]T.Tomita,K.Shimosako,T.Takano,Wave forces acting on flap-type storm surge barrier and waves transmitted on it,in:Proc.13th Int.Offshore and Polar Engineering Conf.,Honolulu,Hawaii,USA,2003,pp.639-646.

    [14]P.St-Germain,I.Nistor,R.Townsend,Numerical modeling of the impact with structures of tsunami bores propagating on dry and wet beds using the SPH method,Int.J.Protective Structures 3(2)(2012)221-255.http://dx.doi.org/10.1260/2041-4196.3.2.221.

    [15]G.F.Carrier,T.T.Wu,H.Yeh,Tsunamirun-upanddraw-downonaplanebeach,J.Fluid Mech.475(2003)79-99.http://dx.doi.org/10.1017/S0022112002002653.

    [16]E.Renzi,F(xiàn).Dias,Resonant behaviour of the oscillating wave surge converter in a channel,J.Fluid Mech.701(2012)482-510.http://dx.doi.org/10.1017/jfm.2012.194.URL http://journals.cambridge.org/article_S0022112012001942.

    [17]F.Dias,D.Dutykh,L.O’Brien,E.Renzi,T.Stefanakis,On the modelling of tsunami generation and tsunami inundation,in:Procedia IUTAM,vol.10,pp.338-355(2014).http://dx.doi.org/10.1016/j.piutam.2014.01.029.

    [18]L.O’Brien,P.Christodoulides,E.Renzi,D.Dutykh,F(xiàn).Dias,The force of a Tsunami on a Wave Energy Converter,in:Proceedings of the Twenty-second International Offshore and Polar Engineering Conference,Rhodes,Greece,vol.1,June 17th-23rd(2012).

    [19]P.A.Madsen,D.R.Fuhrman,Run-up of tsunamis and long waves in terms of surf-similarity,Coast.Eng.55(2008)209-223.http://dx.doi.org/10.1016/j.coastaleng.2007.09.007.

    [20]K.Kajiura,Local Behaviour of Tsunamis,in:D.Provis,R.Radok(Eds.),In Waves on Water of Variable Depth,in:Lecture Notes in Physics,vol.64,Springer-Verlag,Berlin,1977,pp.72-79.

    [21]E.Renzi,L.O’Brien,F(xiàn).Dias,Hydrodynamic loading on an array of oscillating wave surge converters in random seas.In:Proceedings of the Twenty-second International Offshore and Polar Engineering Conference,Rhodes,Greece,vol.1,pp.663-668,June 17th-23rd(2012).

    [22]D.Sarkar,E.Renzi,F(xiàn).Dias,Wave power extraction by an oscillating wave surge converter in random seas,in:Proceedings of the 32nd International Conference on Ocean,Offshore and Arctic Engineering,Nantes,F(xiàn)rance,2013.

    [23]D.Sarkar,E.Renzi,F(xiàn).Dias,Wave farm modelling of oscillating wave surge converters,Proc.R.Soc.A 470(2014)20140118.http://dx.doi.org/10.1098/rspa.2014.0118.

    [24]C.M.Linton,P.McIver,Mathematical Techniques for Wave/Structure Interactions,Chapman&Hall/CRC,2001.

    [25]E.Renzi,F(xiàn).Dias,Hydrodynamics of the oscillating wave surge converter in the open ocean,Eur.J.Mech.B Fluids 41(2013)1-10.http://dx.doi.org/10.1016/j.euromechflu.2013.01.007.

    [26]U.Kano?lu,Nonlinear evolution and runup-rundown of long waves over a sloping beach,J.Fluid Mech.513(2004)363-372.http://dx.doi.org/10.1017/S002211200400970X.ISSN 1469-7645.

    [27]D.Dutykh,R.Poncet,F(xiàn).Dias,The VOLNA code for the numerical modeling of tsunamiwaves:Generation,propagationandinundation,Eur.J.Mech.BFluids 30(6)(2011)598-615.http://dx.doi.org/10.1016/j.euromechflu.2011.05.005.

    [28]H.Yeh,I.Robertson,J.Preuss,Development of Design Guidlines for Structures thatServeasTsunamiVerticalEvacuationSites,TechnicalReport,Washington Division of Geology and Earth Resources,November 2005.

    [29]Federal Emergency Management Agency,F(xiàn)EMA Coastal Construction Manual,2000.

    [30]ASCE Minimum Design Loads for Buildings and Other Structures,vol.ASCE 7-98,American Society of Civil Engineers,1998.

    [31]City and County of Honolulu Building Code,Department of Planning and Permitting of Honolulu Hawaii,July 2000.

    [32]Dames and Moore,Design and Construction Standards for Residential Construction in Tsunami-prone Areas in Hawaii.Dames&Moore,1980.

    [33]T.Stefanakis,F(xiàn).Dias,D.Dutykh,Local run-up amplification by resonant wave interactions,Phys.Rev.Lett.107(2011).http://dx.doi.org/10.1103/PhysRevLett.107.124502.

    [34]T.S.Stefanakis,S.Xu,D.Dutykh,F(xiàn).Dias,Run-up amplification of transient long waves,Quart.Appl.Math.73(2015)177-199.http://dx.doi.org/10.1090/S0033-569X-2015-01377-0.

    [35]T.S.Stefanakis,F(xiàn).Dias,D.Dutykh,Resonant long-wave run-up on a plane beach,in:Proceedings of the Twenty-second International Offshore and Polar Engineering Conference,Rhodes,Greece,vol.3,June 17th-23rd(2012).

    11 January 2015

    in revised form

    ?at:School of Mathematical Sciences,University College Dublin,Belfield Dublin 4,Ireland.

    E-mail address:laura.obrien@monash.edu(L.O’Brien).

    http://dx.doi.org/10.1016/j.taml.2015.05.008

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    *This article belongs to the Fluid Mechanics

    91aial.com中文字幕在线观看| 国产精品久久久久久久电影| av免费观看日本| 啦啦啦在线观看免费高清www| 99久久综合免费| 超碰97精品在线观看| 中文字幕久久专区| 最近中文字幕2019免费版| 日本午夜av视频| 我要看日韩黄色一级片| 日本黄色片子视频| 久久国产精品男人的天堂亚洲 | av专区在线播放| 亚洲av二区三区四区| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 一本大道久久a久久精品| 18禁动态无遮挡网站| 国产伦在线观看视频一区| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 我要看黄色一级片免费的| 欧美成人午夜免费资源| 欧美最新免费一区二区三区| 日日撸夜夜添| 99久国产av精品国产电影| 国产在线一区二区三区精| 亚洲国产日韩一区二区| av免费观看日本| 色视频在线一区二区三区| 免费黄色在线免费观看| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕| 99九九线精品视频在线观看视频| 欧美3d第一页| 国产一区二区三区综合在线观看 | 男女免费视频国产| 亚洲美女视频黄频| 黄色怎么调成土黄色| 秋霞在线观看毛片| 国产在线视频一区二区| 久久精品国产自在天天线| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 国产在线视频一区二区| 亚洲怡红院男人天堂| 午夜福利视频精品| 精品亚洲成a人片在线观看| www.av在线官网国产| 伊人久久精品亚洲午夜| 亚洲真实伦在线观看| 午夜久久久在线观看| 男人和女人高潮做爰伦理| 在线观看人妻少妇| 精品人妻偷拍中文字幕| 日韩强制内射视频| 国产一级毛片在线| 成人免费观看视频高清| 国产成人免费观看mmmm| 免费观看的影片在线观看| 精品亚洲乱码少妇综合久久| 天堂中文最新版在线下载| 亚洲精品色激情综合| 人妻人人澡人人爽人人| 亚洲丝袜综合中文字幕| 天天操日日干夜夜撸| 日韩av免费高清视频| 国产片特级美女逼逼视频| 精品久久久噜噜| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 一级毛片我不卡| av在线app专区| 免费av不卡在线播放| 一区二区av电影网| 精品一区二区三区视频在线| 成年女人在线观看亚洲视频| av在线观看视频网站免费| 久久午夜综合久久蜜桃| 国产69精品久久久久777片| 亚洲国产精品999| 一区二区三区精品91| av天堂久久9| 国产日韩欧美视频二区| 大香蕉久久网| 日韩制服骚丝袜av| 老司机影院成人| 美女中出高潮动态图| 天堂中文最新版在线下载| 大码成人一级视频| 秋霞在线观看毛片| 国产黄片美女视频| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 国产综合精华液| 国产精品伦人一区二区| 国产av精品麻豆| av免费在线看不卡| 少妇 在线观看| 日韩在线高清观看一区二区三区| 国产熟女午夜一区二区三区 | 18禁动态无遮挡网站| 国产白丝娇喘喷水9色精品| 一区二区av电影网| 2021少妇久久久久久久久久久| 免费少妇av软件| 久久热精品热| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 欧美三级亚洲精品| 丰满迷人的少妇在线观看| 性色av一级| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 高清不卡的av网站| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 一级av片app| 亚洲成色77777| 七月丁香在线播放| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| 久久精品国产自在天天线| 人妻人人澡人人爽人人| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区视频9| 国产在视频线精品| 少妇的逼水好多| 久久99蜜桃精品久久| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 两个人的视频大全免费| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| a级毛片在线看网站| 中国国产av一级| 18禁动态无遮挡网站| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| 久久久久久人妻| 高清午夜精品一区二区三区| 国产视频首页在线观看| 久久久久久久国产电影| 99视频精品全部免费 在线| 777米奇影视久久| 国产美女午夜福利| 国产在线免费精品| 日韩三级伦理在线观看| 热re99久久精品国产66热6| 黄色配什么色好看| 日韩av免费高清视频| 性色av一级| 亚洲成色77777| 高清av免费在线| 国产日韩欧美视频二区| 九九在线视频观看精品| 久久影院123| 国产爽快片一区二区三区| 亚洲电影在线观看av| 精品一区在线观看国产| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 搡老乐熟女国产| 18禁动态无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 99九九线精品视频在线观看视频| 国产高清三级在线| 哪个播放器可以免费观看大片| 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 国产永久视频网站| 91精品伊人久久大香线蕉| 一个人免费看片子| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 少妇 在线观看| 性高湖久久久久久久久免费观看| √禁漫天堂资源中文www| 一级av片app| 亚洲电影在线观看av| 亚洲国产精品一区三区| 日韩视频在线欧美| 免费播放大片免费观看视频在线观看| 秋霞在线观看毛片| 亚洲国产成人一精品久久久| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 久久国产精品男人的天堂亚洲 | 亚洲激情五月婷婷啪啪| 午夜91福利影院| 久久这里有精品视频免费| 国产一区二区三区av在线| 一本大道久久a久久精品| 中文资源天堂在线| 在线观看三级黄色| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 精品亚洲成a人片在线观看| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 高清视频免费观看一区二区| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美 | 久久人人爽人人爽人人片va| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 中文字幕av电影在线播放| 黄色欧美视频在线观看| 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| 欧美成人午夜免费资源| 久久国产乱子免费精品| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 色哟哟·www| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放 | 免费看日本二区| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 在线观看免费视频网站a站| 又大又黄又爽视频免费| 99热全是精品| 久久久久久久久久久久大奶| 久久午夜福利片| 午夜免费男女啪啪视频观看| 五月玫瑰六月丁香| 国产精品久久久久久久久免| 国产黄色免费在线视频| 在线 av 中文字幕| 黑丝袜美女国产一区| 中国国产av一级| 99热这里只有是精品50| 99久久精品热视频| 人妻系列 视频| 夜夜看夜夜爽夜夜摸| 人人澡人人妻人| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 色视频www国产| av.在线天堂| 少妇裸体淫交视频免费看高清| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 久久精品国产亚洲网站| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 免费看不卡的av| 成人国产av品久久久| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| 日韩中字成人| 性色av一级| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 18+在线观看网站| av免费在线看不卡| 中文字幕制服av| 午夜日本视频在线| 高清欧美精品videossex| 内射极品少妇av片p| 七月丁香在线播放| 国产乱人偷精品视频| 国产极品天堂在线| 色婷婷久久久亚洲欧美| av福利片在线观看| 亚洲成人手机| 十八禁网站网址无遮挡 | av有码第一页| 在线观看美女被高潮喷水网站| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看 | 午夜激情久久久久久久| 久久久国产欧美日韩av| 亚洲av男天堂| 三上悠亚av全集在线观看 | 日日啪夜夜爽| 国产极品粉嫩免费观看在线 | 久久久a久久爽久久v久久| 国产欧美日韩综合在线一区二区 | 国产女主播在线喷水免费视频网站| videossex国产| 久久精品国产亚洲av涩爱| 成人特级av手机在线观看| 成人综合一区亚洲| 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 特大巨黑吊av在线直播| 久久99精品国语久久久| 一级黄片播放器| 男女免费视频国产| 国产亚洲av片在线观看秒播厂| 日韩人妻高清精品专区| 免费观看无遮挡的男女| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 国产精品99久久99久久久不卡 | 丰满饥渴人妻一区二区三| 久久久久国产网址| 日本vs欧美在线观看视频 | 成人毛片60女人毛片免费| 青青草视频在线视频观看| 亚洲人成网站在线播| 久久99一区二区三区| 观看美女的网站| 又黄又爽又刺激的免费视频.| 自拍偷自拍亚洲精品老妇| 精品少妇内射三级| 久久婷婷青草| 欧美日韩视频精品一区| 成人无遮挡网站| 另类亚洲欧美激情| av福利片在线| 麻豆成人午夜福利视频| 不卡视频在线观看欧美| 国产高清国产精品国产三级| 日日摸夜夜添夜夜添av毛片| 天堂8中文在线网| 免费看不卡的av| 成人特级av手机在线观看| 男人和女人高潮做爰伦理| 日本免费在线观看一区| 日韩免费高清中文字幕av| av福利片在线观看| 热re99久久国产66热| 女人久久www免费人成看片| 综合色丁香网| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 人妻一区二区av| a级毛片免费高清观看在线播放| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 观看av在线不卡| 在线观看www视频免费| 日韩av在线免费看完整版不卡| 熟女人妻精品中文字幕| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲av欧美aⅴ国产| 女性被躁到高潮视频| 免费观看在线日韩| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 国产亚洲精品久久久com| 成年美女黄网站色视频大全免费 | 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 黄色欧美视频在线观看| 欧美另类一区| 国产伦在线观看视频一区| 综合色丁香网| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| a 毛片基地| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 国产亚洲一区二区精品| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| 亚洲国产av新网站| 在线观看人妻少妇| 有码 亚洲区| 国产午夜精品一二区理论片| 免费大片18禁| 免费大片黄手机在线观看| 一区二区三区四区激情视频| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 国产成人精品久久久久久| 精品一区二区三区视频在线| freevideosex欧美| 如何舔出高潮| 一区二区av电影网| 国产成人精品一,二区| 免费久久久久久久精品成人欧美视频 | 亚洲成色77777| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 麻豆成人午夜福利视频| av在线观看视频网站免费| 嘟嘟电影网在线观看| 久久久久精品久久久久真实原创| 日本91视频免费播放| 精品午夜福利在线看| 精品一区二区三卡| 中国国产av一级| 国产探花极品一区二区| 精品少妇内射三级| 寂寞人妻少妇视频99o| 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 亚洲国产欧美日韩在线播放 | h视频一区二区三区| 亚洲精品国产色婷婷电影| 亚洲欧美成人精品一区二区| 中文字幕av电影在线播放| 亚洲成人av在线免费| 一本一本综合久久| 男女边摸边吃奶| 麻豆乱淫一区二区| 精华霜和精华液先用哪个| 亚洲不卡免费看| 亚洲国产精品专区欧美| 久久婷婷青草| 午夜免费鲁丝| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 亚洲av中文av极速乱| 国产一级毛片在线| av免费在线看不卡| 国产在线男女| 日日爽夜夜爽网站| 精品熟女少妇av免费看| 国产美女午夜福利| 五月伊人婷婷丁香| 亚洲国产毛片av蜜桃av| 男女边吃奶边做爰视频| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 91久久精品电影网| 超碰97精品在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| 日本午夜av视频| 国产日韩欧美亚洲二区| 欧美另类一区| 国产精品一区二区三区四区免费观看| 人妻人人澡人人爽人人| 日韩av在线免费看完整版不卡| 久热久热在线精品观看| 极品人妻少妇av视频| 男人添女人高潮全过程视频| 亚洲国产精品一区三区| 老司机影院毛片| 一本大道久久a久久精品| 91午夜精品亚洲一区二区三区| 丰满饥渴人妻一区二区三| 亚洲欧美成人综合另类久久久| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久 | 97超碰精品成人国产| 精品少妇久久久久久888优播| 色网站视频免费| 水蜜桃什么品种好| 国产欧美日韩综合在线一区二区 | 日韩制服骚丝袜av| 日韩欧美一区视频在线观看 | 99视频精品全部免费 在线| 国产精品一区www在线观看| 亚洲天堂av无毛| 免费黄频网站在线观看国产| 激情五月婷婷亚洲| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 欧美日韩精品成人综合77777| 精品人妻一区二区三区麻豆| 多毛熟女@视频| 99re6热这里在线精品视频| 精品久久久精品久久久| freevideosex欧美| 国产在线一区二区三区精| 国产精品三级大全| 岛国毛片在线播放| 99久国产av精品国产电影| 国产精品偷伦视频观看了| 亚洲国产精品国产精品| 国产视频首页在线观看| 夫妻性生交免费视频一级片| 免费黄色在线免费观看| 国产伦精品一区二区三区视频9| 日韩电影二区| 日本爱情动作片www.在线观看| 欧美日韩一区二区视频在线观看视频在线| 三级国产精品片| 亚洲欧美成人综合另类久久久| 免费人成在线观看视频色| 欧美日韩视频高清一区二区三区二| 最近中文字幕2019免费版| 少妇人妻精品综合一区二区| 国产极品粉嫩免费观看在线 | 极品教师在线视频| 日本色播在线视频| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 国产成人91sexporn| 亚洲三级黄色毛片| 大片电影免费在线观看免费| 久久这里有精品视频免费| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 观看av在线不卡| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 亚洲精品乱码久久久v下载方式| 色吧在线观看| 成人综合一区亚洲| 亚洲欧洲精品一区二区精品久久久 | 日韩人妻高清精品专区| 在线观看www视频免费| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 日韩av免费高清视频| 亚洲,欧美,日韩| 亚洲成人手机| 国产女主播在线喷水免费视频网站| 51国产日韩欧美| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美 | 欧美国产精品一级二级三级 | 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 偷拍熟女少妇极品色| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 男人和女人高潮做爰伦理| 伊人亚洲综合成人网| 一级黄片播放器| 久久国产乱子免费精品| 久久久久久人妻| 最近最新中文字幕免费大全7| av在线老鸭窝| 午夜久久久在线观看| 国产精品不卡视频一区二区| 欧美性感艳星| av有码第一页| 一本大道久久a久久精品| av网站免费在线观看视频| 青春草国产在线视频| 欧美日韩精品成人综合77777| 精品人妻一区二区三区麻豆| 偷拍熟女少妇极品色| 在线看a的网站| 欧美日韩亚洲高清精品| 欧美少妇被猛烈插入视频| 最近中文字幕2019免费版| 亚洲av综合色区一区| 亚洲综合色惰| 一个人看视频在线观看www免费| 成年人午夜在线观看视频| 看非洲黑人一级黄片| 午夜免费观看性视频| 美女福利国产在线| 亚洲精品亚洲一区二区| 丝袜喷水一区| 久久久久久久精品精品| a级毛片在线看网站| 丁香六月天网| av在线播放精品| 亚洲精品自拍成人| 又黄又爽又刺激的免费视频.| 久久97久久精品| 男人舔奶头视频| videos熟女内射| 视频中文字幕在线观看| 国产成人精品无人区| 亚洲图色成人| 综合色丁香网| 日韩人妻高清精品专区| 丁香六月天网| 日日爽夜夜爽网站| 2022亚洲国产成人精品| 亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 久久久午夜欧美精品| tube8黄色片| 亚洲色图综合在线观看| 婷婷色麻豆天堂久久| 国产色爽女视频免费观看| 久久6这里有精品| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲 | 国产黄片视频在线免费观看| 一级,二级,三级黄色视频| 久久久久久久亚洲中文字幕|