• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics

    2015-12-05 08:03:57DilrukshiDewpriyPuswewl

    K.G.S.Dilrukshi,M.A.N.Dewpriy?,U.G.A.Puswewl

    aDepartment of Civil Engineering,University of Moratuwa,Moratuwa,Sri Lanka

    bSchool of Engineering Science,Simon Fraser University,Burnaby,Canada

    Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics

    K.G.S.Dilrukshia,M.A.N.Dewapriyab,?,U.G.A.Puswewalaa

    aDepartment of Civil Engineering,University of Moratuwa,Moratuwa,Sri Lanka

    bSchool of Engineering Science,Simon Fraser University,Burnaby,Canada

    A R T I C L E I N F O

    Article history:

    Accepted 11 March 2015

    Available online 29 May 2015

    Carbon nanotubes

    Molecular dynamics

    Potential field

    Shear modulus

    Poisson’s ratio

    A thorough understanding on the mechanical properties of carbon nanotube(CNT)is essential in extendingtheadvancedapplicationsofCNTbasedsystems.However,conductingexperimentstoestimate mechanical properties at this scale is extremely challenging.Therefore,development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important.This paper presents a comprehensive molecular dynamics simulationstudyonthesizedependencyandpotentialfunctioninfluenceofmechanicalpropertiesofCNT.Commonly used reactive bond order(REBO)and adaptive intermolecular reactive bond order(AIREBO)potential functions were considered in this regard.Young’s modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations.The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs,and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.

    Crown Copyright?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Since the discovery by Iijima[1],carbon nanotubes(CNTs)have attracted considerable attention due to their remarkable mechanical,electrical and thermal properties.In particular,CNTs have shown a broad range of applications in nanotechnology,especially in the development of nanosensors,nanomechanical resonators and as reinforcement in composite materials[2].However,in order to further extend the CNT-based applications of nanotechnology,experimental demonstrations of versatility of CNTshavetobesupportedinparallelbytheoretical/computational models of CNT-based systems.In this regard,accurate knowledge on constitutive properties such as Young’s modulus(E),shear modulus(G),and Poisson’s ratio(ν)of CNT is essential to describe their mechanical behaviour under different loading,boundary and environmental conditions.However,the use of experiments at this scale to measure constitutive properties is extremely challenging and only few studies have been reported[2].These limitations of experimental investigations can be overcome by developing mechanistic models to estimate the mechanical properties of CNTs along with the integration of CNT mechanics with existing continuum mechanics concepts.

    Atomistic systems such as CNT can be accurately modelled by using the first principles methods.However,due to high computational cost,the first principles methods are only applicable to systems with several hundreds of atoms.Continuum modelling is the most computationally efficient method.Those are,however,unable to account for quantum effects of matter at nanoscale,and also the discrete nature of matter at nanoscale[3].Combination of continuum concepts with properties derived using atomistic analysis provides an attractive method to analyse the systems at the nanoscale[4-6].In this regard,molecular dynamics(MD)plays an important role in studying the nanoscale systems.

    Many researchers have used atomistic modelling approaches to determine tensile strength,elastic modulus,shear modulus,and Poisson’s ratio by simulating tension and torsion tests of CNT[7-9].The general approach involves the determination of potential energy of a CNT using MD for different strain levels and then computationofthestress-straincurveusingnumericalquadrature methods.However,the properties of CNT reported in the literature indicate different ranges of values depending(0.8-1.2 TPa)on the CNT diameter and methods of analysis[10-14].The different trends of size dependency of CNT’s shear moduli reported in the literature are significant among these.For example,Yu et al.[7]have reported that shear modulus substantially increases with increasing diameter,whereas,experiments and several theoretical models show an opposite trend[15,16].Some authors haveestimated the shear modulus of CNT from Young’s modulus and Poisson’s ratio obtained from MD simulation of tension tests and using the classical isotropic elasticity relationship between E,ν,and G.These results differ from the shear modulus estimated from MD simulation of a pure torsion test of CNT.Therefore,it is important to examine the reasons for the different trends of sizedependency of CNT moduli reported in the literature and differences in shear modulus values reported from different approaches(i.e.,tensionvs.torsion).Inouropinion,advancedmodellingofCNT systems has limited value if the reasons for the above disagreements are not well understood.Furthermore,accurate estimation of elastic moduli is critical to the continuum analysis of CNT-based systems and devices.

    Thispaper investigatesthesizedependencyand potentialfunction influence on the mechanical properties of CNT derived from MD simulations.Nanoscale MD simulations of CNTs subjected to direct tension and torsion loading were used in this regard,where thecommonlyusedreactivebondorder(REBO)andadaptiveintermolecular reactive bond order(AIREBO)potential functions representthemolecularinteraction.MDsimulationswereperformedfor different chiralities and diameters to understand the influence of potential field on the size dependency of the moduli.In addition,the validity of common isotropic elastic relationship between E,ν,and G was also examined.Also,the size and potential field dependence of torsional strengths was investigated.

    REBO potential(also called Tersoff-Brenner potential)was originally developed to simulate chemical vapour deposition of diamond[17],and later was modified to provide more accurate treatment of the energetic,elastic and vibration properties of solid carbonandsmallhydrocarbons(secondgenerationpotential)[18].

    In REBO potential,the energy stored in the bond between atom i and atom jis given as

    wherebijisthebondordertermwhichmodifiesthestrengthofthe bond depending on the local bonding environment,andare repulsive and attractive potentials, respectively,rijis the distance between atoms i and j,and fis called the cut-off function.The purpose of the cut-off function is to limit the interatomic interactions to the nearest neighbours[18].

    Even though REBO potential is successful in describing the intermolecular interactions in carbon and hydrogen materials[17],it is not appropriate for every hydrocarbon system due to its inability to explicitly capture non-bonded interactions and torsional interactions.By addressing these shortcomings of REBO potential,AIREBO potential has been developed[19],which is an extension of the REBO potential

    The original cut-off function for the REBO potential is given by

    where R(1)and R(2)are the cut-off radii,which have the values of 1.7and 2 ?,respectively.The values of cut-off radii are defined based on the first and second nearest neighbouring distances of hydrocarbons.

    It has been observed that the cut-off function could cause non-physical strain hardening in stress-strain curves of carbon nanostructures[20,21]whereas experiments[22]and ab-initio calculations[23]do not show any strain hardening.Therefore,researchers have modified the cut-off radii ranging from 1.9 ? to 2.2 ?[24,25]to eliminate this non-physical strain hardening.However,none of the previous studies have given much insight into the effect of cut-off function on the stress-strain relation,and this non-physical behaviour continues to prevail in recent simulation studies[21,26].

    To fully understand the influence of the cut-off function,and also to identify the best cut-off radii,a set of uniaxial tensile test was performed in this study on a 4.8 nm long(10,10)CNT using LAMMPS MD simulator[27].The stress-strain curve obtained with defaultcut-offfunction(giveninEq.(3))indicatesstrainhardening at strain value around 0.16 as shown in Fig.1.In order to remove this non-physical behaviour,various modified cut-off functions were tested[6].The results show that a modified cut-off function,fm(r)giveninEq.(4)eliminatesthestrainhardeningwhenthecutoff radius(R)is 2 ?.

    Fig.1 also shows a stress-strain curve based on the modified cut-off function,which qualitatively agrees with the behaviour observed in experiments[20]and ab-initio calculations[23].In order to obtain further insight into the effect of cut-off function on fracture of an individual bond,the force-strain curve of the carbon-carbon(C-C)bond between atoms 1 and 2 in Fig.2 was studied by increasing the bond length r.The positions of other atoms,relative to atoms 1 and 2,were kept unchanged.As shown in Fig.2,the strain hardening of the force-strain curve disappears when both cut-off radii are equal to 2 ?,since bond breaking takes place before bond length reaches 2 ?.It should be noted that the modified cut-off function in Eq.(4)is not continuous as opposed to the original cut-off function in Eq.(3).However,this discontinuity does not affect the simulation results since C-C bond length does not reach the cut-off radius of the modified function(i.e.,2 ?).Therefore,the modified cut-off function given in Eq.(4)was used in the ensuing MD simulations.

    Fig.1.Stress-strain curves of the(10,10)CNT.

    Fig.2.Force-strain curves of the C-C bond between atoms 1 and 2 shown in inset(arrows indicate the strain direction).

    To study the effects of potential field on the mechanical properties obtained from MD simulations,armchair(10,10)and zigzag(17,0)CNTs were subjected to tension and torsion tests.The simulations were repeatedly done using REBO and AIREBO potential fields.Initial investigations of the effect of aspect ratio(length to diameter ratio)for the simulations revealed that the effect is negligible if the aspect ratio is greater than 12.Therefore,considering the computational efficiency,CNTs with aspect ratio of 15 were used for the ensuing simulations.Tensile and torsional loadings were applied on CNTs by changing the coordinates of atoms accordingly.Atoms at the two edges were fixed in position for both tensile and torsional simulations.For tensile loading,extension was applied at an interval of 1.25 ?(length of CNT is~200 ?),and CNTs are allowed to reach equilibrium over 40000 time steps(20 ps).During torsion test simulations,a rotation angle of 5°was applied at a step,and then allowed to reach equilibrium over 80000 time steps(40 ps).The equilibrium potential energy wasobtainedbyaveragingtheenergyover10000timesteps(5ps),after reaching the equilibrium configuration.Fig.3 shows(10,10)and(17,0)CNTs subjected to 50°rotation.The first 30 ? of CNTs from the fixed edge is shown.Only half of CNTs are shown for clarity.The axes of CNTs are along y-direction.

    Variations of strain energy per atom of(10,10)and(17,0)CNTs subject to tension and torsion are shown in Figs.4 and 5, respectively.It can be seen that irrespective of the chirality,potential energy obtained using AIREBO potential is higher than that of REBO potential in tensile test.As opposed to the REBO,the AIREBO potential considers energy from non-bonded interactions and also energy from torsional interactions.Therefore,the energy given by AIREBO potential is higher compared to the energy given by REBO.Change in strain energy of CNTs due to torsional(shear)strain does not have considerable effect from potential field used for the simulation.However,a predominant effect was noted after the initiation of torsional buckling(which can be identified from the point of inflection of the graph),as shown in Fig.5,the rate of strain energy change reduced with the AIREBO potential,whereas,it was constant with the REBO potential.The torque and shear strain variation,which was derived from the energy-strain variation,is shown in Fig.6.

    Fig.4.Variation of potential energy with axial strain for CNTs subjected to uniaxial tensile test.

    Fig.3.(10,10)and(17,0)CNTs after been subjected to 50°rotation.

    Thetorque-strain curvesshow thatirrespectiveof the chirality,torsional buckling of CNT occurred earlier with the AIREBO potential than REBO potential.This may be due to the ability of AIREBO potential to capture the change in energy due to torsional deformations,which gives ability to estimate energy corresponding to initiation of buckling accurately compared to REBO.Further,it was noticed that for the CNT of same diameter,armchair CNTs are subjected to torsional buckling earlier than the armchair CNT(see Fig.6).Also,AIREBO potential indicated slightly higher torsional strength for zigzag CNTs than that of armchair,whereas REBO potential indicated the opposite trend.

    Fig.5.Variation of potential energy with shear strain for CNTs subjected to torsion test.

    Fig.6.Variation of torque with shear strain of CNTs.

    The relationships between the strain energy and the modulus values,defined in structural mechanics,were used to estimate both elastic and shear moduli of CNTs.Since the wall thickness of CNTs is not accurately known(researchers have used various wall thicknesses ranging from 0.06 nm to 6 nm),the surface modulus values were considered.

    The relationship between strain energy(U)and axial strain(ε)for a thin cylindrical shell of radius(a),length(L),and wall thickness(t)can be expressed as

    whereE istheelasticmodulus.Itshouldbenotedthateventhough CNTs are nonlinear,the behaviour at small strains(up to~0.04)can be approximated as linear[20,21].Therefore,U-εrelationship up to the axial strain of 0.04 was conceded in estimating elastic modulus values in the study.

    Also,for a CNT subjected to tensile loading,Poisson’s ratio can also be defined as

    Fig.7.Variation ofv2with strain.

    where r0and rεare the initial radius and radius under axial strain ofε.This relation was used to study the strain dependency of Poisson’s ratio(ν).The value ofνis calculated at the strains where potential energies are obtained in the uniaxial tensile test of CNTs.The value of r0is obtained at the middle length of CNTs(6 nm from edges)after allowing CNTs to relax over 15 ps.Initial radius(r0)of(10,10)and(17,0)CNTs are 6.68 nm and 6.58 nm,respectively.Also,the variation of r0with potential field was negligible.Similar method was used to calculate the values of rε.Fig.7 shows the variation ofνwith strain.It can be observed in the figure that νvalue of(10,10)CNT reduces with increasing strain,whereas the value of(17,0)CNT increases with strain.Also,Poisson’s ratio values obtained by AIREBO potential are always higher than the of REBO potential.

    Calculated elastic modulus and Poisson’s ratio can be used to estimate the shear modulus by

    Torsional test results were also used to estimate shear modulus values.In this case,the potential energy variation of CNTs before the initiation torsional buckling was used.The relationship between potential energy(U),twisting angle(φ),and torsional stiffness(K)can be expressed as

    The torsional stiffness for a thin cylindrical shell of radius a,length L,wall thickness t,and shear modulus G is defined by K = 2πa3Gh/L.Hence,surface shear modulus(Gt)can be obtained as

    Values calculated for surface elastic modulus,Poisson’s ratio and surface shear modulus for CNTs using two potential functions for(17,0)and(10,10)CNTs are given in Table 1.

    Itcanbeseenthat,irrespectiveofchiralitysurfaceelasticmodulus(Et)aswellasthesurfaceshearmodulusvalues(G1t)estimated using REBO potential are higher than the values estimated using AIREBO potential.The effect is significant for(17,0)CNTs with respect to surface elastic modulus and for the armchair CNTs with respect to surface shear modulus.However,the effect is higher for surface shear modulus.This can be attributed to the differentgeometric variations related to the CNTs of different chirality under tensile and torsional strains and ability of capturing the energy variation with respect to them by the two potential functions.

    Average Poisson’s ratio values obtained for CNTs subjected to axial strain up to 0.04 during the tensile test simulations are given in Table 1.It can be noted that the potential field also has significant effect on Poisson’s ratio.The effect for(17,0)CNT(represents zigzag)is higher than that of(10,10)CNT(represents armchair).The values obtained for Poisson’s ratio were further usedtocalculatesurfaceshearmodulusvaluesusingthestructural mechanics relationship as per Eq.(7)(G2t).As seen in Table 1,the difference between two values(G1t and G2t)is considerably less with AIREBO than the REBO.

    Table 1Poisson’s ratio estimated from REBO and AIREBO potentials.

    Table 2Variation of elastic and shear moduli with diameter.

    Values for elastic modulus and shear modulus were estimated for CNT’s with different diameters and variations are shown in Fig.8.AIREBO potential is used for the simulations.The summary of the results is given in Table 2.

    It can be seen that the value of the shear modulus decreases with the increase of the diameter,which is similar to the experimental observations of Salvetat et al.[15].Also,elastic moduli of CNTs do not show a significant variation with the diameter if the diameter is greater than 1 nm.Irrespective of the potential field,the values of shear modulus of zigzag and armchair tubes are almost similar at particular diameter,whereas elastic moduli of zigzag CNTs are higher than that of armchair.

    In conclusion,the influence of potential field on the estimated mechanical properties is much higher when studying the torsional behaviourofCNTsthanthetensilebehaviour.Whenestimatingthe torsional strength and also studying the torsional behaviour after the initiation of torsional buckling,the effect of potential field is considerable,and the AIREBO potential can produce more realistic results than the REBO potential.This should be attributed to the ability of AIREBO potential to compute the torsional interactions between atoms,which is included into the total energy.Geometry(or chirality)of the CNT also plays a key role in this regard.However,irrespectiveofchiralitysurfaceelasticmodulus(Et)aswellas the surface shear modulus values(G1t)estimated using REBO potentialarehigherthanthevaluesestimatedusingAIREBOpotential and effect seems higher with shear modulus.Also,if the structural mechanics relationships are used to estimate shear modulus using known values of shear modulus and Poisson’s ratio,AIREBO potentialcanproducemoreaccurateresults(closetothevaluesobtained by direct energy method)than the REBO potential.

    Fig.8.Variation of elastic and shear moduli with CNT diameter.

    Acknowledgements

    Authors thank Dr.Nimal Rajapakse for fruitful discussions and useful comments.This work was financially supported by National ScienceFoundation(NSF)ofSriLankaandtheNaturalSciencesand Engineering Research Council(NSERC)of Canada.WestGrid and Compute/Calcul Canada provided computing resources.

    References

    [1]S.Iijima,Helical microtubules of graphitic carbon,Nature 354(1991)56-58.

    [2]R.S.Ruoff,D.Qian,W.K.Liu,Mechanical properties of carbon nanotubes: theoretical prediction and experimental measures,C.R.Physique 4(2003)993-1008.

    [3]L.Tapasztó,T.Dumitric?,S.J.Kim,et al.,Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene,Nat.Phys.8(2012)739-742.

    [4]M.A.N.Dewapriya,A.S.Phani,R.K.N.D.Rajapakse,Influenceoftemperatureand free edges on the mechanical properties of graphene,Modelling Simul.Mater.Sci.Eng.21(2013)065017.

    [5]M.A.N.Dewapriya,R.K.N.D.Rajapakse,A.S.Phani,Atomistic and continuum modelling of temperature-dependent fracture of graphene,Int.J.Fract.187(2014)199-212.

    [6]M.A.N.Dewapriya,Molecular dynamics study of effects of geometric defects onthemechanicalpropertiesofgraphene(MSthesis),TheUniversityofBritish Columbia,Canada,2012.

    [7]W.Yu,W.X.Xi,N.Xianggui,Atomic simulation of the torsional deformation of carbon nanotubes,Modelling Simul.Mater.Sci.Eng.12(2004)1099.

    [8]A.Montazeri,M.Sadeghi,R.Naghdabadi,et al.,Computational modelling of the transverse isotropic elastic properties of single-walled carbon nanotube,Comput.Mater.Sci.49(2010)544-551.

    [9]A.Montazeri,J.Javadpour,A.Khavandi,et al.,Mechanical properties of multiwalled carbon nanotube/epoxy composites,Mater.Des.31(2010)4202-4208.

    [10]O.Gülseren,T.Yildirim,S.Ciraci,Systematicabinitiostudyofcurvatureeffects in carbon nanotubes,Phys.Rev.B.65(2002)153405.

    [11]D.Sánchez-Portal,E.Artacho,J.M.Soler,et al.,Ab initio structural,elastic,and vibrational properties of carbon nanotubes,Phys.Rev.B.59(1999)12678.

    [12]S.Xiao,W.Hou,Studies of size effects on carbon nanotubes’mechanical properties by using different potential functions,F(xiàn)ullerenes,Nanotubes Carbon Nanostruct.14(2006)9-16.

    [13]B.W.Xing,Z.C.Chun,C.W.Zhao,Simulation of Young’s modulus of singlewalled carbon nanotubes by molecular dynamics,Physica B 352(2004)156-163.

    [14]J.Y.Hsieh,J.M.Lu,M.Y.Huang,et al.,Theoretical variations in the Young’s modulus of single-walled carbon nanotubes with tube radius and temperature:a molecular dynamics study,Nanotechnology 17(2006)3920.

    [15]J.P.Salvetat,G.A.D.Briggs,J.M.Bonard,etal.,Elasticandshearmoduliofsinglewalled carbon nanotube ropes,Phys.Rev.Lett.82(1999)944-947.

    [16]T.Natsuki,K.Tantrakarn,M.Endo,Prediction of elastic properties for singlewalled carbon nanotubes,Carbon 42(2004)39-45.

    [17]D.W.Brenner,Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond,Phys.Rev.B 42(1990)9458.

    [18]D.W.Brenner,O.A.Shenderova,J.A.Harrison,et al.,A second-generation reactive bond order(REBO)potential energy expression for hydrocarbons,J.Phys.:Condens.Matter.14(2002)783-802.

    [19]S.J.Stuart,A.B.Tutein,J.A.Harrison,A reactive potential for hydrocarbons with intermolecular interactions,J.Appl.Phys.112(2000)6472.

    [20]O.A.Shenderova,D.W.Brenner,A.Omeltchenko,et al.,Atomistic modeling of the fracture of polycrystalline diamond,Phys.Rev.B 61(2000)3877.

    [21]A.J.Cao,J.M.Qu,Atomisticsimulationstudyofbrittlefailureinnanocrystalline graphene under uniaxial tension,Appl.Phys.Lett.102(2013)071902.

    [22]B.Peng,M.Locascio,P.Zapol,et al.,Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements,Nature Nanotechnol.3(2008)626-631.

    [23]F.Liu,P.Ming,J.Li,Abinitiocalculationofidealstrengthandphononinstability of graphene under tension,Phys.Rev.B 76(2007)064120.

    [24]H.Zhao,N.R.Aluru,Temperature and strain-rate dependent fracture strength of graphene,J.Appl.Phys.108(2010)064321.

    [25]M.A.N.Dewapriya,R.K.N.D.Rajapakse,Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects,J.Appl.Mech.81(2014)081010.

    [26]L.Wang,Q.Zhang,Elastic behavior of bilayer graphene under in-plane loadings,Curr.Appl.Phys.12(2012)1173-1177.

    [27]S.J.Plimpton,F(xiàn)ast parallel algorithms for short-range molecular dynamics,J.Comput.Phys.117(1995)1-19.

    28 October 2014

    ?.

    E-mail address:mandewapriya@sfu.ca(M.A.N.Dewapriya).

    http://dx.doi.org/10.1016/j.taml.2015.05.005

    2095-0349/Crown Copyright?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to Solid Mechanics

    欧美乱码精品一区二区三区| 国产av一区二区精品久久| 国产欧美日韩精品亚洲av| 国产精品久久视频播放| 欧美丝袜亚洲另类 | 女性生殖器流出的白浆| 一区在线观看完整版| 高清在线国产一区| av免费在线观看网站| av天堂在线播放| 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到| 亚洲avbb在线观看| 国产精品久久久久成人av| 丝袜在线中文字幕| 十八禁网站免费在线| 国产黄色免费在线视频| 国产精品久久电影中文字幕 | 亚洲第一青青草原| 在线观看免费日韩欧美大片| 国产精品欧美亚洲77777| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 一夜夜www| 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 欧美精品高潮呻吟av久久| 一个人免费在线观看的高清视频| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 在线观看免费视频日本深夜| 久久久精品免费免费高清| 香蕉丝袜av| 日本wwww免费看| 高潮久久久久久久久久久不卡| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 日日夜夜操网爽| 亚洲精品国产区一区二| 国产精品九九99| tocl精华| 亚洲精品av麻豆狂野| 黄色 视频免费看| av视频免费观看在线观看| 男女免费视频国产| 夫妻午夜视频| 日本黄色视频三级网站网址 | 69av精品久久久久久| 国产单亲对白刺激| 好看av亚洲va欧美ⅴa在| 日本五十路高清| 午夜福利免费观看在线| e午夜精品久久久久久久| 色综合婷婷激情| 999久久久国产精品视频| 国产欧美日韩精品亚洲av| 男人操女人黄网站| 50天的宝宝边吃奶边哭怎么回事| 午夜精品国产一区二区电影| 久久国产精品大桥未久av| 极品人妻少妇av视频| 成人精品一区二区免费| videos熟女内射| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 看黄色毛片网站| 亚洲全国av大片| 国产精品免费一区二区三区在线 | 黄色片一级片一级黄色片| 日日爽夜夜爽网站| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 亚洲情色 制服丝袜| 建设人人有责人人尽责人人享有的| 精品国产美女av久久久久小说| 丝袜人妻中文字幕| 国产激情欧美一区二区| 男女午夜视频在线观看| 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 亚洲第一青青草原| 久久九九热精品免费| 久久人妻av系列| 国产亚洲一区二区精品| 一个人免费在线观看的高清视频| 亚洲综合色网址| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲| 日本a在线网址| 成熟少妇高潮喷水视频| 又紧又爽又黄一区二区| 日本黄色日本黄色录像| 亚洲成国产人片在线观看| 超碰成人久久| 他把我摸到了高潮在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 香蕉久久夜色| 国产蜜桃级精品一区二区三区 | 久久久久久人人人人人| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲午夜精品一区,二区,三区| 精品人妻在线不人妻| 一级,二级,三级黄色视频| av一本久久久久| 久久香蕉精品热| 日韩欧美三级三区| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又粗又硬又大视频| 欧美午夜高清在线| 女警被强在线播放| www日本在线高清视频| avwww免费| 中亚洲国语对白在线视频| 成人影院久久| 亚洲av成人不卡在线观看播放网| 天天操日日干夜夜撸| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 波多野结衣一区麻豆| 丁香六月欧美| 十八禁高潮呻吟视频| 久久人妻熟女aⅴ| 国产男女内射视频| 变态另类成人亚洲欧美熟女 | 国产在线观看jvid| a在线观看视频网站| 免费在线观看日本一区| 国产深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| avwww免费| 最新的欧美精品一区二区| 精品国产乱子伦一区二区三区| 大型黄色视频在线免费观看| cao死你这个sao货| 一级毛片精品| 一区福利在线观看| 操出白浆在线播放| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免费看| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 欧美国产精品va在线观看不卡| 亚洲片人在线观看| 无人区码免费观看不卡| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| x7x7x7水蜜桃| 757午夜福利合集在线观看| 国产精品国产av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美不卡视频在线免费观看 | 亚洲五月天丁香| 久久人妻熟女aⅴ| 777米奇影视久久| 国产亚洲精品久久久久久毛片 | 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀| 国产成人av教育| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| e午夜精品久久久久久久| 老司机在亚洲福利影院| 色94色欧美一区二区| 精品久久蜜臀av无| ponron亚洲| 免费观看人在逋| √禁漫天堂资源中文www| 身体一侧抽搐| 国产成人精品久久二区二区91| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 99精品在免费线老司机午夜| 91成人精品电影| 日韩人妻精品一区2区三区| 亚洲欧美日韩高清在线视频| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女 | 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 欧美日韩黄片免| 91av网站免费观看| 脱女人内裤的视频| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 变态另类成人亚洲欧美熟女 | 午夜免费观看网址| 狂野欧美激情性xxxx| 麻豆乱淫一区二区| 亚洲性夜色夜夜综合| 欧洲精品卡2卡3卡4卡5卡区| 老熟女久久久| 最近最新免费中文字幕在线| 国产免费男女视频| 深夜精品福利| 国产精品免费大片| 99国产极品粉嫩在线观看| a级毛片在线看网站| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 国产成人啪精品午夜网站| 美女视频免费永久观看网站| 最近最新免费中文字幕在线| av不卡在线播放| 亚洲av美国av| 欧美另类亚洲清纯唯美| 久久人人97超碰香蕉20202| 欧美日韩亚洲综合一区二区三区_| 夜夜夜夜夜久久久久| 丁香六月欧美| 999精品在线视频| 99在线人妻在线中文字幕 | 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久精品区二区三区| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 久久中文看片网| 女人精品久久久久毛片| 老汉色∧v一级毛片| 天堂中文最新版在线下载| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 操美女的视频在线观看| 丝袜在线中文字幕| 亚洲人成电影观看| 成年人午夜在线观看视频| 在线免费观看的www视频| 久久久久视频综合| 好男人电影高清在线观看| 久久久久久久久久久久大奶| 两性午夜刺激爽爽歪歪视频在线观看 | 国产又色又爽无遮挡免费看| 国产亚洲欧美98| 国产一区二区三区视频了| 满18在线观看网站| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 丰满人妻熟妇乱又伦精品不卡| av中文乱码字幕在线| 桃红色精品国产亚洲av| 777久久人妻少妇嫩草av网站| 欧美日韩中文字幕国产精品一区二区三区 | 欧美午夜高清在线| 国产精品免费大片| 日本欧美视频一区| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 91九色精品人成在线观看| 一本一本久久a久久精品综合妖精| 女人被狂操c到高潮| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲熟妇少妇任你| 久久国产精品大桥未久av| 人人澡人人妻人| 国产真人三级小视频在线观看| 女警被强在线播放| 飞空精品影院首页| 中文欧美无线码| 欧美国产精品va在线观看不卡| 国产精品.久久久| 最近最新中文字幕大全电影3 | 亚洲一卡2卡3卡4卡5卡精品中文| 九色亚洲精品在线播放| 五月开心婷婷网| 国产成人欧美在线观看 | 欧美激情极品国产一区二区三区| 午夜精品在线福利| 热re99久久国产66热| 日韩欧美一区二区三区在线观看 | 国产高清视频在线播放一区| 成年人黄色毛片网站| 美女国产高潮福利片在线看| а√天堂www在线а√下载 | 中亚洲国语对白在线视频| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品sss在线观看 | 成人三级做爰电影| 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 欧美亚洲 丝袜 人妻 在线| 曰老女人黄片| 满18在线观看网站| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| 老汉色av国产亚洲站长工具| 国产高清videossex| 美女午夜性视频免费| 岛国毛片在线播放| 黑人欧美特级aaaaaa片| 丰满的人妻完整版| 一级片'在线观看视频| videos熟女内射| 无人区码免费观看不卡| www.自偷自拍.com| 成人手机av| 欧美不卡视频在线免费观看 | 久久久精品国产亚洲av高清涩受| 久久人人97超碰香蕉20202| 国产av又大| 少妇 在线观看| 男女下面插进去视频免费观看| 天天躁日日躁夜夜躁夜夜| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 一本一本久久a久久精品综合妖精| 色尼玛亚洲综合影院| 一级a爱片免费观看的视频| 国产成人免费观看mmmm| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 精品人妻1区二区| bbb黄色大片| 少妇粗大呻吟视频| 99热国产这里只有精品6| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 热re99久久精品国产66热6| 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 一边摸一边抽搐一进一小说 | 欧美精品一区二区免费开放| 亚洲中文字幕日韩| 欧美亚洲 丝袜 人妻 在线| 久久国产精品影院| 又大又爽又粗| 天堂俺去俺来也www色官网| 一级片免费观看大全| a级毛片黄视频| 亚洲av第一区精品v没综合| 国产在视频线精品| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 国产精品自产拍在线观看55亚洲 | 天堂中文最新版在线下载| 香蕉久久夜色| 51午夜福利影视在线观看| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 欧美精品啪啪一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美色中文字幕在线| 免费不卡黄色视频| 精品久久久久久,| 美女 人体艺术 gogo| 手机成人av网站| 女性生殖器流出的白浆| 成人影院久久| 亚洲男人天堂网一区| 最新美女视频免费是黄的| 1024香蕉在线观看| 黄色a级毛片大全视频| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 国精品久久久久久国模美| 久久久久精品人妻al黑| 99国产精品99久久久久| 午夜福利在线免费观看网站| 一本综合久久免费| 最近最新中文字幕大全免费视频| 久久久久国产精品人妻aⅴ院 | 999久久久精品免费观看国产| 国产精华一区二区三区| 老司机靠b影院| 99香蕉大伊视频| 日韩免费av在线播放| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 性少妇av在线| 一级a爱片免费观看的视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看 | xxx96com| 人人妻人人爽人人添夜夜欢视频| 亚洲精品av麻豆狂野| 成人免费观看视频高清| 咕卡用的链子| 在线看a的网站| 9热在线视频观看99| 日韩人妻精品一区2区三区| 侵犯人妻中文字幕一二三四区| 国产精品久久视频播放| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站| 久久久国产欧美日韩av| 国产精品免费大片| 在线免费观看的www视频| 人妻丰满熟妇av一区二区三区 | 中文字幕最新亚洲高清| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 91成年电影在线观看| 精品久久久精品久久久| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美软件| 母亲3免费完整高清在线观看| 久久国产精品影院| 免费观看a级毛片全部| 自线自在国产av| 国产亚洲欧美98| 欧美在线黄色| 91大片在线观看| 午夜福利,免费看| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| av电影中文网址| 精品免费久久久久久久清纯 | 国产av又大| 男人舔女人的私密视频| 国产成人欧美在线观看 | 免费观看精品视频网站| 成在线人永久免费视频| 久久精品亚洲熟妇少妇任你| 国产黄色免费在线视频| 一进一出抽搐gif免费好疼 | 午夜91福利影院| 18禁美女被吸乳视频| 下体分泌物呈黄色| 欧美精品一区二区免费开放| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品自产拍在线观看55亚洲 | 超色免费av| 少妇粗大呻吟视频| 最新在线观看一区二区三区| 一区二区日韩欧美中文字幕| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人澡人人爽人人夜夜| 无限看片的www在线观看| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 91麻豆av在线| 在线免费观看的www视频| 丁香六月欧美| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女 | 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 午夜影院日韩av| 国产成人啪精品午夜网站| 美女高潮喷水抽搐中文字幕| 9191精品国产免费久久| 久久99一区二区三区| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美网| 黄频高清免费视频| 亚洲中文字幕日韩| 很黄的视频免费| 在线观看一区二区三区激情| 伦理电影免费视频| videosex国产| 亚洲一区中文字幕在线| tocl精华| 在线视频色国产色| 久久ye,这里只有精品| 大香蕉久久网| 色老头精品视频在线观看| 成人手机av| 亚洲男人天堂网一区| 色播在线永久视频| 国产精品 国内视频| 美女视频免费永久观看网站| 免费在线观看亚洲国产| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 99国产精品99久久久久| 欧美在线一区亚洲| 丝袜在线中文字幕| 成年女人毛片免费观看观看9 | 亚洲免费av在线视频| 久热这里只有精品99| 久久人妻av系列| 精品久久久久久久毛片微露脸| 一边摸一边抽搐一进一出视频| 久久精品亚洲av国产电影网| 极品少妇高潮喷水抽搐| 国产片内射在线| 成人免费观看视频高清| 777久久人妻少妇嫩草av网站| 久久久国产成人免费| 国产亚洲精品第一综合不卡| 欧洲精品卡2卡3卡4卡5卡区| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美98| 久久天堂一区二区三区四区| 午夜日韩欧美国产| 老鸭窝网址在线观看| ponron亚洲| 成熟少妇高潮喷水视频| 成年人免费黄色播放视频| 免费日韩欧美在线观看| 两性夫妻黄色片| tube8黄色片| xxx96com| 国产亚洲精品久久久久5区| 日韩中文字幕欧美一区二区| 最新在线观看一区二区三区| 亚洲,欧美精品.| 欧美乱码精品一区二区三区| 亚洲人成电影观看| 村上凉子中文字幕在线| 久久人人爽av亚洲精品天堂| 丝袜美腿诱惑在线| 亚洲精品在线美女| 中文字幕色久视频| 免费在线观看完整版高清| 日韩免费高清中文字幕av| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 国产在线精品亚洲第一网站| 黄频高清免费视频| 老司机靠b影院| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 一边摸一边抽搐一进一出视频| 99香蕉大伊视频| av在线播放免费不卡| 日日爽夜夜爽网站| 一级片免费观看大全| 欧美+亚洲+日韩+国产| 午夜久久久在线观看| 女性生殖器流出的白浆| 在线观看66精品国产| 精品一区二区三区四区五区乱码| 国产不卡av网站在线观看| 咕卡用的链子| 久久九九热精品免费| 免费少妇av软件| 99精品在免费线老司机午夜| 欧美精品人与动牲交sv欧美| 国产深夜福利视频在线观看| 国产高清国产精品国产三级| 久久中文字幕一级| 身体一侧抽搐| 亚洲精品国产一区二区精华液| 黄色视频不卡| 久热爱精品视频在线9| 日本vs欧美在线观看视频| 亚洲,欧美精品.| 超碰成人久久| 久99久视频精品免费| 国产蜜桃级精品一区二区三区 | 最近最新免费中文字幕在线| 婷婷精品国产亚洲av在线 | 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品一二三| 欧美乱色亚洲激情| 欧美人与性动交α欧美精品济南到| avwww免费| 亚洲午夜理论影院| 欧美乱妇无乱码| 啦啦啦免费观看视频1| 国产1区2区3区精品| 又大又爽又粗| 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 色精品久久人妻99蜜桃| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| av网站免费在线观看视频| 韩国精品一区二区三区| 久久影院123| 久久99一区二区三区| 亚洲av成人不卡在线观看播放网| 丰满迷人的少妇在线观看| 国产成人精品久久二区二区91| 日韩制服丝袜自拍偷拍| 亚洲情色 制服丝袜| 欧美在线一区亚洲| 精品人妻1区二区| 午夜免费鲁丝| av超薄肉色丝袜交足视频| 好男人电影高清在线观看| 久久影院123| 久久久久久久精品吃奶| av天堂在线播放| 亚洲精品久久午夜乱码|