• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local buckling analysis of biological nanocomposites based on a beam-spring model

    2015-12-05 08:03:52ZhilingBaiBaohuaJi

    Zhiling Bai,Baohua Ji

    Biomechanics and Biomaterials Laboratory,Department of Applied Mechanics,School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Local buckling analysis of biological nanocomposites based on a beam-spring model

    Zhiling Bai,Baohua Ji?

    Biomechanics and Biomaterials Laboratory,Department of Applied Mechanics,School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    A R T I C L E I N F O

    Article history:

    Accepted 12 May 2015

    Available online 29 May 2015

    Biological materials

    Nanostructure

    Staggered arrangement

    Buckling behaviors

    Aspect ratio

    Composite materials

    Biologicalmaterialssuchasbone,tooth,andnacreareload-bearingnanocompositescomposedofmineral and protein.Since the mineral crystals often have slender geometry,the nanocomposites are susceptible to buckle under the compressive load.In this paper,we analyze the local buckling behaviors of the nanocompositestructureofthebiologicalmaterialsusingabeam-springmodelbywhichwecanconsider plenty of mineral crystals and their interaction in our analysis compared with existing studies.We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral,leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals.We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio,but the effect diminishes when the aspect ratio is large.Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Materials scientists have arrived at a consensus that biological nanocomposites,suchasbone,tooth,nacrehavesuperiormechanical properties due to the exquisite design of their microstructure fromnanotomacroscale[1-6].Itwasshownthatthereisaconvergent nanocomposite structure consisting of mineral crystals and protein where the minerals often have large aspect ratio and staggered arrangement in the protein matrix[1,7-11].A multitude of studies showed that this nanocomposite structure plays a central role in the mechanical properties from stiffness to strength and fracture toughness[12-17],which provided valuable insights into the mechanical principles of the design of biological nanocomposites.

    However,the mechanical behaviors of biological materials under compressive load have not yet been understood.Because the mineral crystals have high aspect ratio,and protein is up to three orders of magnitude softer than mineral,the nanocomposite structures are susceptible to buckle under compression.Therefore,it is interesting to ask the question how the biological materials deal with the possible buckling problem.Ji et al.[18]studied the buckling behaviors of a single mineral in the nanocomposites with the assumption that its neighboring minerals remain unbuckled,i.e.,the interaction between minerals are not considered, which leads to a higher buckling mode.Su et al.[19]studied the buckling behaviors of two neighboring minerals in a periodic unit by considering the coordination among the adjacent mineral crystals.The symmetric and anti-symmetric buckling modes were identified by using the perturbation method,and corresponding buckling strength for each mode was derived.They showed that the anti-symmetric mode often happens at small aspect ratio,but the symmetric mode at high aspect ratio,and their buckling strength both asymptotically approached to that of the continuous fiber reinforced composites predicted by the Rosen model[20,21].

    Those previous studies generally limited their analysis within a periodic unit,and the interaction among minerals beyond the unit is not considered.However,the buckling behaviors of composite structure at larger scale with many minerals should be much different.In this paper,we develop a simple beam-spring model,with which the buckling behaviors of a system with plenty of minerals can be analyzed,where the mineral is modeled by Euler beam while the matrix by distributed elastic spring.We focus on the effect of aspect ratio of minerals and the contact condition at the mineral tips on the buckling behaviors of the biocomposites.

    It is arduous to analyze the buckling behaviors of the composite structure with many mineral crystals even using numerical method.An obstacle of such analysis is that massive elements must be used to discretize the mineral and protein system in order to get accurate buckling modes and strength using conventional2D or 3D elements,which,however,brings unfordable computing workload.In order to address this difficulty,here we introduce the beam-spring model,in which the mineral is modeled by Euler beam while the matrix is simplified by distributed elastic springs between minerals.Fig.1(a)depicts the model of the nanocomposite structure based on the beam-spring model.The mineral is arranged in a staggered manner,while the springs are arranged in a X-type pattern,as shown in Fig.1(b)and 1(c).In addition,we consider two kinds of contact conditions between mineral tips along the longitudinal direction of mineral—one is no contact between the tips under the compressive load(Fig.1(b)),while the other is point contact between the tips(Fig.1(c))modeled by a pinned joint.There are up to 3640 minerals in the whole system.A homemade FORTRAN program is used to create nodes and elements and a MATLAB program to build the connection of springs with minerals and assemble the whole system,and then create the input file for ABAQUS program.In order to apply uniform compressive load,arigidplateisplacedateachloadingboundaryattheleftandright,while the top and bottom ones are maintained as straight lines by using the‘‘coupled degrees of freedom’’method(Fig.1(a)).

    Fig.1.The beam-spring model of the nanocomposite structure of biological materials.(a)Finite element method(FEM)model of the nanocomposite in which themineralsarestaggeredintheproteinmatrix.Rigidbodyplatesareusedtoapply compressive loads at the left and right boundaries;(b)Free-staggered model of the periodic unit,where there is no contact at the mineral tips;(c)Pinned-staggered model of the periodic unit,where there is point contact at the mineral tips modeled by pinned joints.

    The effective Young’s modulus EPand shear modulus GPof protein as function of spring constant K can be derived as(see the Supporting Materials(Appendix A)for detailed derivations),

    whereρxis the number density of springs along the beam length.Considering Poisson’s ratio of protein is almost equal to 0.5,we getθ0=54.7o(the angle between right slanting spring and the positive direction of x axis),and H=hPis the thickness of protein layer.

    The effective Young’s modulus of the nanocomposite structure is then derived using the tension-shear chain model as[8,10]

    We first analyzed the buckling behaviors of the nanocomposite structure for the non-contact condition at the mineral tips(freestaggered model)at different aspect ratios of mineral.We found that the buckling mode was largely dependent on the aspect ratio,as shown in Fig.2.When the aspect ratio was small(i.e.,ρ=5),themineralcrystalswerepronetohaverigidbodyrotationwithout bending,whiletheproteinhadbothshearandtensile/compressive deformation.Note that the nanocomposite exhibited a typical local buckling mode with a periodic pattern along both horizontal and vertical direction;when the aspect ratio was increased to ρ =10,the mineral crystals then had both rigid body rotation and bending deformation,and protein undertook both shear and tensile deformation;if the aspect ratio was further increased to ρ =30,mineral crystal had more bending but less rigid body rotation,and protein undertook more shear deformation with slight lateral stretching at the end of minerals;finally,minerals undertook pure bending and protein had pure shearing when the aspect ratio was increased to as high asρ =50,at which the buckling mode approached to that of Rosen’s model,a global shear buckling mode[20].

    In the Rosen buckling mode,the continuous fibers undertake pure bending deformation,while soft matrix has pure shear deformation.The buckling strength of this buckling mode is given by Rosen’s model as[19]

    whereυPis Poisson’s ratio of protein,and.The critica l buckling strength predicted by the beam-spring model based FEM simulations is close to that of Eq.(3),which again validates the beam-spring model.

    We then analyzed the buckling behaviors of the nanocomposites with point contact condition(pinned-staggered model)at different aspect ratios,as illustrated in Fig.3.We see that at the small aspectratio(ρ=5),thebucklingdeformationseverelylocalizedat theloadingboundariesanddegradedtowardsthecenterofthematerials,which is different from the behaviors of the free-staggered model.The mineral crystals near the loading boundary were prone to have rigid body rotation without bending,while the minerals away from the boundary hardly deformed;when the aspect ratio was increased toρ=10,the material started to exhibit a feature of global buckling,and the mineral crystals undertook both rigid body rotation and bending deformation,while protein had both shear and tensile deformation;when the aspect ratio was further increased toρ=30 and up,the buckling mode exhibited a pure shearing mode,approaching to that of Rosen’s model.

    Our results showed that the aspect ratio of minerals plays a paramount role in the buckling behaviors of nanocomposite structure where the mineral are laid in a staggered manner inprotein matrix.Fig.4 depicts the normalized buckling strength of the nanocomposites as function of the aspect ratio for both freestaggered model and pinned-staggered model.We see that the bucklingstrengthcanbesignificantlyimprovedthroughincreasing the aspect ratio of minerals which finally levels off to that of Rosen’s model.The mechanism is that if the aspect ratio was small,the interaction between neighboring minerals was weak because small overlap among them,therefore the minerals were prone to independently rotate or deform,which causes the localization of buckling deformation in materials.But when the aspect ratio was increased,the buckling deformation exhibited a transition to a global manner through the coordination among neighboring minerals because the interaction among them was noticeably enhanced.Therefore,these results also imply that the staggered arrangement of mineral is crucial,which renders the buckling strength insensitive to the flaw at high aspect ratio despite of the flaw-like gap between the mineral tips,and thus approaches to that of the ideally continuous fiber reinforced composite,in consistency with previous studies[19,22].For instance,Xie et al.[22]analyzed the buckling behaviors of stiff lamellae embedded in a compliant matrix under uniaxial compression,and they predicted sinusoidal buckling mode,which is similar to the global buckling configuration at large aspect ratio in this study.

    Our results also showed that the contact conditions can influence the buckling behaviors,particularly at small aspect ratio of mineral.According to the comparison shown in Fig.4,when the aspect ratio was small,the strength of the free-staggered model was much lower than that of the pinned-staggered model,but the difference between the two models diminished when the aspect ratio became larger,at which both models asymptotically approached to that of Rosen’s model.Comparing Fig.2 with Fig.3,we see that the pattern of buckling modes of these two models are significantly different at small aspect ratio.Because the constraint at the pinned joints of minerals is stronger than that of the free ends,the strength of the pinned-staggered model is much larger than that of the free-staggered model at the small aspect ratio.In addition,the local buckling of the free-staggered model exhibited a periodic pattern at small aspect ratio,in stark contrast to that of the pinned-staggered model which was mostly localized at the loading boundary.When the aspect ratio was increased,the constraint from the lateral neighboring minerals rose up and became dominant as the overlap among the minerals increases,while the effect of constraint at the mineral tips became less important,therefore the difference between the two model became negligible at very large aspect ratio.

    We showed that the wave length or the size of the periodic pattern of the buckling mode is larger than the periodic unit of nanocomposite structure,which are different from the buckling mode proposed by Su et al.[19].In addition,the buckling mode in this study is neither pure symmetric mode nor anti-symmetric mode,as proposed by Su et al.This result demonstrates that a large system with many minerals is indispensable for fully understandingthebucklingbehaviorsofnanocompositesbywhich new buckling mode can be found.

    Fig.2.Critical buckling modes of free-staggered model of the nanocomposites at different aspect ratios of minerals.

    Fig.3.Critical buckling modes of pinned-staggered model of nanocomposites at different aspect ratios of minerals.

    Fig.4.Normalizedbucklingstrengthofnanocompositestructureasfunctionofthe aspect ratio of mineral for two kinds of contact conditions at mineral tips.

    Our predictions are consistent with prior experimental studies.For example,Menig et al.[3]carried out the quasi-static and dynamic compression on the abalone shells,and they found the micro-buckling in the layered structure of the shells.Because the aspect ratio of mineral in shells is around 10,which is comparably small,the buckling behaviors of the shells show a mixed feature of the buckling modes that we predicted in this study,i.e.,the local buckling mode(ρ<10)and the global buckling mode(ρ>10).

    In summary,our analysis showed that there is a buckling mode transition from local buckling to global one when the aspect ratio increases,which can significantly enhance the buckling strength.This result suggests that the aspect ratio takes a central role in the buckling properties of the nanocomposite structure,and the staggered arrangement is critically important in the load transfer anddeformationcoordinationamongtheminerals.Inaddition,the contact condition at the mineral tips also influences the buckling behaviors,especially at small aspect ratio.We demonstrated that the wave length or the size of buckling pattern is larger than that of the periodic unit of the nanocomposites,therefore these buckling modes are the lower ones than those found in previous studies.This work may shed more light on the buckling behaviors of biological nanocomposites and provides guidelines for biomimicking design of man made advanced materials.

    Acknowledgment

    This research was supported by the National Natural Science Foundation of China(11025208,11372042,and 11221202).

    Appendix.Supplementary data

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.taml.2015.05.006.

    References

    [1]H.D.Espinosa,J.E.Rim,F(xiàn).Barthelat,M.J.Buehler,Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials,Prog.Mater.Sci.54(2009)1059-1100.http://dx.doi.org/10.1016/j.pmatsci.2009.05.001.

    [2]A.P.Jackson,J.F.V.Vincent,R.M.Turner,The mechanical design of nacre,Proc.R.Soc.London B 234(1988)415-440.

    [3]R.Menig,M.H.Meyers,M.A.Meyers,K.S.Vecchio,Quasi-static and dynamic mechanical response of Haliotis rufescens(abalone)shells,Acta Materialia 48(2000)2383-2398.

    [4]S.Kamat,X.Su,R.Ballarini,A.H.Heuer,Structural basis for the fracture toughness of the shell of the conch Strombus gigas,Nature 405(2000)1036-1040.http://dx.doi.org/10.1038/35016535.

    [5]S.Weiner,A.Veis,E.Beniash,T.Arad,J.W.Dillon,B.Sabsay,F(xiàn).Siddiqui,Peritubular dentin formation:Crystal organization and the macromolecular constituents in human teeth,J.Struct.Biol.126(1999)27-41.

    [6]B.Ji,H.Gao,Mechanical principles of biological nanocomposites,Annu.Rev.Mater.Res.40(2010)77-100.http://dx.doi.org/10.1146/annurev-matsci-070909-104424.

    [7]I.J?ger,P.Fratzl,Mineralized collagen fibrils:A mechanical model with a staggered arrangement of mineral particles,Biophys.J.79(2000)1737-1746.http://dx.doi.org/10.1016/S0006-3495(00)76426-5.

    [8]H.Gao,B.Ji,I.L.Jager,E.Arzt,P.Fratzl,Materials become insensitive to flaws at nanoscale:Lessons from nature,Proc.Natl.Acad.Sci.USA 100(2003)5597-5600.http://dx.doi.org/10.1073/pnas.0631609100.

    [9]H.Gao,B.Ji,M.J.Buehler,H.Yao,F(xiàn)lawtolerantbulkandsurfacenanostructures of biological systems,Mech.Chem.Biosyst.1(2004)37-52.

    [10]B.Ji,H.Gao,Mechanical properties of nanostructure of biological materials,J.Mech.Phys.Solids 52(2004)1963-1990.http://dx.doi.org/10.1016/j.jmps.2004.03.006.

    [11]B.Ji,H.Gao,A study of fracture mechanisms in biological nano-composites via the virtual internal bond model,Mater.Sci.Eng.A 366(2004)96-103.http://dx.doi.org/10.1016/j.msea.2003.08.121.

    [12]F.Barthelat,R.Rabiei,Toughness amplification in natural composites,J.Mech.Phys.Solids 59(2011)829-840.http://dx.doi.org/10.1016/j.jmps.2011.01.001.

    [13]Y.Shao,H.-P.Zhao,X.-Q.Feng,H.Gao,Discontinuous crack-bridging model for fracture toughness analysis of nacre,J.Mech.Phys.Solids 60(2012)1400-1419.http://dx.doi.org/10.1016/j.jmps.2012.04.011.

    [14]F.Song,A.K.Soh,Y.L.Bai,Structural and mechanical properties of the organic matrix layers of nacre,Biomaterials 24(2003)3623-3631.http://dx.doi.org/10.1016/S0142-9612(03)00215-1.

    [15]B.Bar-On,H.D.Wagner,Mechanicalmodelforstaggeredbio-structure,J.Mech.Phys.Solids 59(2011)1685-1701.http://dx.doi.org/10.1016/j.jmps.2011.06.005.

    [16]G.Liu,B.Ji,K.-C.Hwang,B.C.Khoo,Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials,Compos.Sci.Technol.71(2011)1190-1195.http://dx.doi.org/10.1016/j.compscitech.2011.03.011.

    [17]B.Ji,H.Gao,Elastic properties of nanocomposite structure of bone,Compos.Sci.Technol.66(2006)1212-1218.http://dx.doi.org/10.1016/j.compscitech.2005.10.017.

    [18]B.Ji,H.Gao,K.J.Hsia,How do slender mineral crystals resist buckling in biological materials?Phil.Mag.Lett.84(2004)631-641.http://dx.doi.org/10.1080/09500830512331329141.

    [19]Y.Su,B.Ji,K.-C.Hwang,Y.Huang,Micro-buckling in the nanocomposite structure of biological materials,J.Mech.Phys.Solids 60(2012)1771-1790.http://dx.doi.org/10.1016/j.jmps.2012.05.003.

    [20]B.W.Rosen,Mechanisms of Composite Strengthening,in:Fiber Composite Materials,American Society of Metals,1964.

    [21]R.Parnes,A.Chiskis,Buckling of nano-fibre reinforced composites:a reexamination of elastic buckling,J.Mech.Phys.Solids 50(2002)855-879.

    [22]W.-H.Xie,X.Huang,Y.-P.Cao,B.Li,X.-Q.Feng,Buckling and postbuckling of stiff lamellae in a compliant matrix,Compos.Sci.Technol.99(2014)89-95.http://dx.doi.org/10.1016/j.compscitech.2014.05.015.

    13 January 2015

    ?.Tel.:+86 10 68918309.E-mail address:bhji@bit.edu.cn(B.Ji).

    http://dx.doi.org/10.1016/j.taml.2015.05.006

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Solid Mechanics.

    中文在线观看免费www的网站| 日韩精品有码人妻一区| 综合色丁香网| 成人二区视频| 国产精品99久久久久久久久| 中文欧美无线码| 精品久久久久久久久av| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 伦理电影大哥的女人| 国产精品成人在线| 少妇裸体淫交视频免费看高清| 亚洲精品第二区| 男女无遮挡免费网站观看| 99视频精品全部免费 在线| 一区在线观看完整版| 一级二级三级毛片免费看| 欧美精品亚洲一区二区| 一级毛片aaaaaa免费看小| 肉色欧美久久久久久久蜜桃| 亚洲精品色激情综合| 成人无遮挡网站| 熟妇人妻不卡中文字幕| 赤兔流量卡办理| 日韩一区二区视频免费看| 欧美成人a在线观看| 在线观看免费高清a一片| 亚洲国产最新在线播放| 国产久久久一区二区三区| 免费大片黄手机在线观看| 国产精品无大码| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 成年女人在线观看亚洲视频| 久久久午夜欧美精品| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲网站| 人人妻人人看人人澡| 日韩av在线免费看完整版不卡| 国产精品三级大全| 国产视频内射| 国产探花极品一区二区| 精品国产三级普通话版| av国产久精品久网站免费入址| 亚洲图色成人| 国产有黄有色有爽视频| 九色成人免费人妻av| 中文乱码字字幕精品一区二区三区| 成人美女网站在线观看视频| 亚洲精品视频女| 噜噜噜噜噜久久久久久91| 久久久久国产精品人妻一区二区| 伦精品一区二区三区| 久久99蜜桃精品久久| 美女xxoo啪啪120秒动态图| 日韩一区二区三区影片| 国产伦在线观看视频一区| 日本与韩国留学比较| 青青草视频在线视频观看| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 亚洲,一卡二卡三卡| 国产欧美日韩一区二区三区在线 | 亚洲图色成人| 午夜福利网站1000一区二区三区| 伦理电影免费视频| 18禁动态无遮挡网站| 日韩国内少妇激情av| 免费观看a级毛片全部| 嫩草影院新地址| 91精品国产九色| 亚洲在久久综合| 国产精品福利在线免费观看| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 在线观看一区二区三区| av国产久精品久网站免费入址| 欧美高清成人免费视频www| 久久精品人妻少妇| 超碰av人人做人人爽久久| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 亚洲色图综合在线观看| 蜜桃久久精品国产亚洲av| 夫妻性生交免费视频一级片| 97超视频在线观看视频| 少妇 在线观看| 在线播放无遮挡| 精品人妻视频免费看| 亚洲精品久久午夜乱码| 老女人水多毛片| 永久免费av网站大全| 国国产精品蜜臀av免费| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 亚洲欧美日韩另类电影网站 | 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看 | 我要看黄色一级片免费的| 极品教师在线视频| 午夜免费观看性视频| 国产在线免费精品| 高清黄色对白视频在线免费看 | 久久99热这里只有精品18| 伦理电影免费视频| 中文乱码字字幕精品一区二区三区| 成年av动漫网址| kizo精华| 中文天堂在线官网| 菩萨蛮人人尽说江南好唐韦庄| 深爱激情五月婷婷| 成年人午夜在线观看视频| 精品亚洲成a人片在线观看 | 午夜福利视频精品| 美女视频免费永久观看网站| 成人美女网站在线观看视频| 黄片无遮挡物在线观看| 精品久久久精品久久久| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 五月开心婷婷网| 国产成人免费观看mmmm| 人妻系列 视频| 不卡视频在线观看欧美| 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| 成人免费观看视频高清| 国产亚洲91精品色在线| 欧美日韩亚洲高清精品| 男女免费视频国产| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 成人影院久久| 涩涩av久久男人的天堂| 蜜臀久久99精品久久宅男| 久久6这里有精品| 国产大屁股一区二区在线视频| 22中文网久久字幕| 黄色怎么调成土黄色| 内地一区二区视频在线| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 国产永久视频网站| 99久久综合免费| 中文字幕久久专区| 亚洲欧美成人综合另类久久久| 在现免费观看毛片| 九草在线视频观看| 欧美精品国产亚洲| 纯流量卡能插随身wifi吗| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 午夜日本视频在线| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 国产成人免费观看mmmm| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 天堂8中文在线网| 又爽又黄a免费视频| 久久热精品热| av国产久精品久网站免费入址| 99久久精品一区二区三区| 日本色播在线视频| 乱系列少妇在线播放| 99国产精品免费福利视频| av免费在线看不卡| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 18禁裸乳无遮挡免费网站照片| h视频一区二区三区| 亚洲成人中文字幕在线播放| 水蜜桃什么品种好| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 国产精品蜜桃在线观看| 日韩一本色道免费dvd| 久久6这里有精品| 男人添女人高潮全过程视频| 美女主播在线视频| 亚洲精品成人av观看孕妇| 亚洲经典国产精华液单| 欧美性感艳星| h视频一区二区三区| 最黄视频免费看| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 久久精品久久久久久久性| 精品国产露脸久久av麻豆| 日韩强制内射视频| 黄色欧美视频在线观看| 日韩中字成人| 韩国av在线不卡| 免费av不卡在线播放| a级毛片免费高清观看在线播放| 久热久热在线精品观看| 男人舔奶头视频| 精品久久久久久久末码| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 色视频www国产| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 国产精品不卡视频一区二区| 一级片'在线观看视频| 如何舔出高潮| 只有这里有精品99| 尤物成人国产欧美一区二区三区| 蜜臀久久99精品久久宅男| 久久午夜福利片| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 一本一本综合久久| 亚洲色图av天堂| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡动漫免费视频| 天堂俺去俺来也www色官网| 日本-黄色视频高清免费观看| 国产精品精品国产色婷婷| 老女人水多毛片| 街头女战士在线观看网站| 国产av国产精品国产| 尤物成人国产欧美一区二区三区| 插逼视频在线观看| 亚洲美女视频黄频| 亚洲国产最新在线播放| 成人午夜精彩视频在线观看| 国产淫语在线视频| 在线观看av片永久免费下载| 一级片'在线观看视频| 内地一区二区视频在线| 好男人视频免费观看在线| 国产乱人偷精品视频| 欧美激情国产日韩精品一区| 色综合色国产| www.色视频.com| 少妇 在线观看| 国产精品一区二区三区四区免费观看| 99久久精品热视频| 国产淫片久久久久久久久| 成人综合一区亚洲| 22中文网久久字幕| 观看美女的网站| 免费黄频网站在线观看国产| 男人舔奶头视频| 成人无遮挡网站| 国产又色又爽无遮挡免| 日本vs欧美在线观看视频 | 欧美一区二区亚洲| 国产精品一二三区在线看| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 男男h啪啪无遮挡| 欧美日韩亚洲高清精品| 黄色日韩在线| 国产精品人妻久久久影院| 国产深夜福利视频在线观看| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片 | 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 91精品国产九色| 成人亚洲欧美一区二区av| 日韩中文字幕视频在线看片 | 午夜福利在线在线| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 成年美女黄网站色视频大全免费 | 欧美三级亚洲精品| 欧美日韩国产mv在线观看视频 | 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 在线观看国产h片| 精品久久久噜噜| 亚洲国产av新网站| 久久久久久人妻| 国产真实伦视频高清在线观看| 国产黄色视频一区二区在线观看| av网站免费在线观看视频| 一本久久精品| 精品国产一区二区三区久久久樱花 | 美女cb高潮喷水在线观看| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 亚洲,欧美,日韩| 欧美另类一区| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 欧美bdsm另类| 亚洲av不卡在线观看| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 欧美xxⅹ黑人| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 亚洲国产日韩一区二区| 久久99热这里只频精品6学生| 日韩成人伦理影院| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 欧美精品国产亚洲| 男人添女人高潮全过程视频| 啦啦啦在线观看免费高清www| 乱码一卡2卡4卡精品| 精品久久久久久电影网| 亚洲国产精品国产精品| 一级毛片 在线播放| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 成年av动漫网址| 少妇被粗大猛烈的视频| 久久久久久人妻| 最黄视频免费看| 极品教师在线视频| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 国产69精品久久久久777片| 欧美区成人在线视频| 欧美亚洲 丝袜 人妻 在线| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 亚洲美女黄色视频免费看| 18禁裸乳无遮挡免费网站照片| 成年女人在线观看亚洲视频| 日本午夜av视频| 久久国内精品自在自线图片| 97超碰精品成人国产| 日韩制服骚丝袜av| 最近的中文字幕免费完整| 女人久久www免费人成看片| 少妇的逼好多水| 中文字幕亚洲精品专区| 我的老师免费观看完整版| 亚洲色图综合在线观看| h视频一区二区三区| 又大又黄又爽视频免费| 国产 精品1| 九草在线视频观看| 国国产精品蜜臀av免费| av黄色大香蕉| 91aial.com中文字幕在线观看| 色婷婷久久久亚洲欧美| 中文资源天堂在线| 青春草亚洲视频在线观看| 尾随美女入室| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 久久久色成人| 亚洲精品视频女| 三级国产精品片| 亚洲精品,欧美精品| 欧美丝袜亚洲另类| 久久99蜜桃精品久久| 免费看日本二区| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 色吧在线观看| 日韩电影二区| 亚洲国产精品一区三区| 国产欧美亚洲国产| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 丝袜脚勾引网站| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 免费观看a级毛片全部| 亚洲人成网站在线播| 国产精品av视频在线免费观看| av线在线观看网站| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| 国产黄片视频在线免费观看| 亚洲经典国产精华液单| 99久国产av精品国产电影| 日韩欧美 国产精品| 精品人妻熟女av久视频| 国产精品无大码| 午夜精品国产一区二区电影| www.色视频.com| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 亚洲人成网站在线观看播放| 久久99热这里只频精品6学生| 性高湖久久久久久久久免费观看| 我要看黄色一级片免费的| 国产女主播在线喷水免费视频网站| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 婷婷色av中文字幕| www.色视频.com| 国产日韩欧美在线精品| 亚洲精品国产成人久久av| 国产精品99久久久久久久久| 精品久久久久久久末码| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 99久久精品热视频| 久久精品熟女亚洲av麻豆精品| 精品一区在线观看国产| 国产探花极品一区二区| 一级毛片我不卡| 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 久久久久久人妻| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| 人人妻人人添人人爽欧美一区卜 | 亚洲av.av天堂| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 伦精品一区二区三区| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产成人a区在线观看| 国国产精品蜜臀av免费| 久久鲁丝午夜福利片| 夜夜骑夜夜射夜夜干| 日本免费在线观看一区| 亚洲欧美日韩另类电影网站 | 99热6这里只有精品| 欧美精品一区二区免费开放| 日日啪夜夜爽| 国国产精品蜜臀av免费| 亚洲欧美日韩东京热| 一区二区三区乱码不卡18| h日本视频在线播放| 久久99热这里只频精品6学生| 国产精品不卡视频一区二区| 欧美另类一区| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 亚洲国产高清在线一区二区三| 亚洲欧美一区二区三区国产| 欧美日韩精品成人综合77777| 老师上课跳d突然被开到最大视频| 精品久久久久久久久av| 亚洲最大成人中文| 大香蕉97超碰在线| 国产黄频视频在线观看| av黄色大香蕉| 精品一区在线观看国产| 成人免费观看视频高清| av女优亚洲男人天堂| 亚洲美女黄色视频免费看| 伊人久久国产一区二区| 丰满乱子伦码专区| 成人免费观看视频高清| 丝袜脚勾引网站| 日本色播在线视频| 国产成人a区在线观看| 青春草亚洲视频在线观看| h日本视频在线播放| 男人爽女人下面视频在线观看| 日本与韩国留学比较| 亚洲精品一区蜜桃| 亚洲欧洲日产国产| 欧美激情极品国产一区二区三区 | 国产精品偷伦视频观看了| 亚洲图色成人| 免费av中文字幕在线| 国产成人精品福利久久| av女优亚洲男人天堂| 久久国产乱子免费精品| tube8黄色片| 欧美性感艳星| 高清午夜精品一区二区三区| 韩国av在线不卡| 亚洲国产av新网站| 国产午夜精品一二区理论片| 亚洲成人手机| 欧美精品人与动牲交sv欧美| 国产91av在线免费观看| 国产精品三级大全| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 日本av免费视频播放| 精品亚洲成国产av| 深爱激情五月婷婷| 欧美三级亚洲精品| 国产精品久久久久久精品古装| av免费在线看不卡| 久久av网站| 日韩免费高清中文字幕av| 久久久午夜欧美精品| 精品亚洲乱码少妇综合久久| 日韩强制内射视频| 欧美区成人在线视频| 久久久久性生活片| 色吧在线观看| 欧美人与善性xxx| 国产亚洲精品久久久com| 中文欧美无线码| 国产高清三级在线| 嫩草影院新地址| 三级国产精品欧美在线观看| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 看免费成人av毛片| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| 黄色欧美视频在线观看| 女人十人毛片免费观看3o分钟| 永久免费av网站大全| 欧美极品一区二区三区四区| 国产亚洲午夜精品一区二区久久| 亚洲成色77777| 久久人人爽人人片av| 国产成人免费观看mmmm| 亚洲性久久影院| av不卡在线播放| 亚洲美女黄色视频免费看| 亚洲av成人精品一区久久| 日本爱情动作片www.在线观看| 午夜福利在线观看免费完整高清在| 一级av片app| 777米奇影视久久| 国产在线视频一区二区| 亚洲国产色片| 国内揄拍国产精品人妻在线| 国产午夜精品一二区理论片| 精品久久久精品久久久| 国产精品无大码| 欧美一级a爱片免费观看看| 久久97久久精品| 久久热精品热| av黄色大香蕉| 日韩成人av中文字幕在线观看| 三级国产精品欧美在线观看| 国产爽快片一区二区三区| 97在线视频观看| 国产av精品麻豆| 干丝袜人妻中文字幕| 大片电影免费在线观看免费| 久久久久久久久久久免费av| 国产乱来视频区| 国产一区亚洲一区在线观看| 欧美激情国产日韩精品一区| 中文乱码字字幕精品一区二区三区| 免费播放大片免费观看视频在线观看| 国产又色又爽无遮挡免| 我要看黄色一级片免费的| 欧美日韩精品成人综合77777| 成人午夜精彩视频在线观看| 91精品伊人久久大香线蕉| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| 亚洲美女黄色视频免费看| 九色成人免费人妻av| 国产色婷婷99| 成人特级av手机在线观看| 亚洲久久久国产精品| 欧美成人a在线观看| 亚洲电影在线观看av| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 久久久国产一区二区| 久久毛片免费看一区二区三区| 观看美女的网站| 久久国产精品大桥未久av | 国模一区二区三区四区视频| 在线看a的网站| 人妻系列 视频| 视频区图区小说| 免费少妇av软件| 青春草亚洲视频在线观看| 黄色配什么色好看| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 日本黄色片子视频| 精品久久久久久电影网| 亚洲丝袜综合中文字幕| 日本爱情动作片www.在线观看| 一级毛片黄色毛片免费观看视频| 在线亚洲精品国产二区图片欧美 |