• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金納米粒表面修飾官能團及其影響細胞作用的機制

    2015-12-01 02:37:01文長春雷文琪沈星燦紀仕辰蔣邦平梁宏
    無機化學學報 2015年9期
    關(guān)鍵詞:官能團藥用教育部

    文長春雷文琪沈星燦紀仕辰蔣邦平梁宏

    (廣西師范大學藥用資源化學與藥物分子工程教育部重點實驗室,桂林541004)

    金納米粒表面修飾官能團及其影響細胞作用的機制

    文長春雷文琪沈星燦*紀仕辰蔣邦平梁宏*

    (廣西師范大學藥用資源化學與藥物分子工程教育部重點實驗室,桂林541004)

    通過配體交換法,在AuNPs表面分別引入羥基(-OH),羧基(-COOH)和甲基(-CH3),制備了3種表面修飾官能團的金納米粒:Au-OH NPs,Au-COOH NPs和Au-CH3NPs,其平均粒徑為(15.6±3.2)nm,ζ電位均為負值。MTT法對比研究表面修飾和未修飾的AuNPs與HeLa細胞和MCG-803細胞作用后的細胞存活率,當濃度達到197 ng·mL-1時,表現(xiàn)出低細胞毒性,且順序為:AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs。細胞周期研究結(jié)果發(fā)現(xiàn),表面未修飾的AuNPs對細胞G2/M期活動有一定的阻滯作用。單個活細胞顯微拉曼光譜原位對比研究表面修飾和未修飾的AuNPs與HeLa細胞的作用,結(jié)果表明:未修飾的AuNPs和Au-CH3NPs與細胞作用的主靶點可能為DNA骨架、堿基和細胞磷脂膜的極性頭部,而Au-COOH NPs與Au-OH NPs對這些位點作用輕微。本研究為解釋表面修飾-COOH和-OH官能團可降低AuNPs細胞毒性提供了研究證據(jù)。

    金納米粒;表面官能團;細胞毒性;分子機制

    0 Introduction

    Over the past decades,gold nanoparticles(AuNPs) have attracted enormous amount of interest for biomedical applications based on their unique optical, chemical,electrical,and catalytic of properties[1-2].The classic ways to prepare AuNPs are chemical reduction of gold chloride with citrate-mediated reductions in boiling water[3],or with sodium borohydride in the presence of alkane thiols in a water-toluene phase[4]. The reliable AuNPs have been synthesized,and surface coatings provide their both solubility and stability[1-6].The strong binding of thiols,phosphines and amines to AuNPs enables easy surface functionalization of AuNPs with various materials, such as polymers[6-7],silica[8],enzymes[9],peptide[10], protein[11],miRNA[12],drugs[13-14]and targeting agents[8,14], leading to important biomedical applications including X-ray/CT imaging,cell imaging,targeted drug delivery,cancer diagnostics and therapeutic agents[6-14]. The new and exciting advances on AuNPs in biology and medicine have been reviewed[1,5,15-16].

    For most of the fascinated cellular and therapeutic uses,AuNPs are often required to pass cell plasma membranes either by endocytosis or by direct penetration to reach target cellular compartments[17].Thus,the interaction of AuNPs with biological systems has become one of the most urgent areas for their bio-applications and toxicological studies. Numerous experimental studies have been conducted to probe AuNPs-cell interactions in the past few years. It has been reported that the size and surface charges can dramatically influence the uptake of AuNPs, showing that cationic 2-nm AuNPs are moderately toxic,whereas anionic 2-nm AuNPs are quite nontoxic[18], and revealing that both the level of penetration and membrane disruption increase as surface charge density of the AuNPs increases[7].In addition,surface modifications can also lead to different AuNPs-cell interactions[6-21].The 18-nm spherical AuNPs with citrate and biotin are not inherently toxic at concentrations up to 250 μmol·L-1(gold atoms), whereas,those capped with glucose or cysteine surface modifiers,or with a reduced gold surface,were nontoxic at concentrations up to 25 μmol·L-1(gold atoms)[19].It was reported that 1.4-nm AuNPs stabilized by triphenylphosphine derivatives causes predominantly rapid cell death via necrosis by oxidative stress,whereas,AuNPs of similar size but capped with glutathione likewise do not induce oxidative stress[20].AuNPs capped by thymidine 5-monophosphate are able to penetrate even into U87 cancer cells nucleus,whereas,those capped with thymine or thymidine only overcome intracellular barriers[21].

    Based on these findings,surface modifications of AuNPs have been considered to be crucial for controlling cell uptake,intracellular localization, reduce the cytotoxicity and enhance the biocompatible.The surface functional groups are the base of modifications structures.However,the surfacefunctional-groups-regulated AuNPs-cells interactions are still poorly understood.The lack of molecularlevel details on AuNPs-cell interactions prevents us from gaining an in-depth understanding of the observed phenomena.The goal of this work is to study the surface-functional-groups-regulated AuNPs-cells interaction.We investigated the effect of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs on human cervical carcinoma(HeLa)cell line and human stomach adenocarcinoma(MCG-803)cell line in vitro. The cell viability and cell cycle has been evaluated when cells are exposed to AuNPs.Moreover, mechanisms of AuNPs-cells interactions have been revealed with micro-Raman spectroscopy.

    1 Experimental

    1.1Materials

    Chemicals of 11-mercapto-1-undecanol(AR),11-mercaptoundecanoic acid(AR),1-undecanethiol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphynyl tetrazolium bromide(MTT,AR)were purchased from Sigma-Aldrich.Chloroaunic acid tetrahydrate(HAuCl4·4H2O) (AR)was obtained from Chengdu Gracia Chemical Technology Company.Sodium citrate(C6H5Na3O7) (AR)was bought from Guangzhou Chemical Regent Factory.All reagents were used without furtherpurification.Ultrapure water(resistivity~18.2 MΩ) was used as the solvent throughout the experiments.

    1.2Synthesis,surfacemodificationand characterizationofgoldnanoparticles

    The gold nanoparticles(AuNPs)were synthesized with citrate-mediated reductions[3].Typically,a stirred aqueous solution of HAuCl4(0.01%,50 mL)was heated to reflux,and then trisodium citrate solution (1%,1.5 mL)was added quickly,resulting in a change in solution color from pale yellow to pink. After the color change,the solution was heated under reflux for an additional 30 min and allowed to cool to room temperature.This procedure resulted in a red solution containing citrate-stabilized AuNPs,and the gold solution was dialyzed for 24 h in deionized water using dialysis membrane(molecular weight cut off 12 kDa)to remove excess unreduced ions in this colloidal solution.

    The obtained AuNPs was modified with the most commonly used approach of thiol functionalization[22-23]. Typically,10 mL of the dialyzed AuNPs solution in a tube was centrifuged at 4000 r·min-1for~30 min,and the rest of the centrifuged AuNPs with final volume<50 μL were added to freshly prepared 10 mL of 1 mmol·L-1ethanolic thiol solutions of 11-mercapto-1-undecanol,11-mercaptoundecanoic acid,1-undecanethiol,and aged at room temperature for 12 h, respectively.The added alkanethiols amount was estimated to be about 270 molar equivalents to monolayer formation on AuNPs surface at optimum condition.Then,20 mL of 3 mol·L-1NaCl solution was slowly added into this mixture,followed with sonication for 10 s.This process was repeated 5 times at a 1 h interval to maximize the surface functional groups loading amounts.The functionalized AuNPs were centrifuged three times to remove displaced citrates and excess thiols in solution.The AuNPs solutions were dispersed to achieve a final Au concentration of 39.4μg·mL-1.The particle concentration of AuNPs solutions was estimated according to Beers law,with extinction coefficient at 520 nm of 2.78×108mol-1·cm-1[24].The absorption spectra of AuNPs were recorded on a Cary-100 UV (Varian,USA)spectrometer.The quantities of thiols attached on the surface of AuNPs were further estimated to be 3.9%~4.6%compared to unmodified AuNPs,the decomposition of which at about 200℃was tested by thermogravimetric analysis(TGA, Labsys Evo;Setaram,France)in nitrogen gas at a temperature ramp of 10℃·min-1.Transmission electron microscopy(TEM)images of AuNPs were observed on an H-8100 transmission electron microscope(Hitachi,Japan).The AuNPs with and without surface modification were dispersed in deionized water to achieve the same Au concentration of 197 ng·mL-1.Furthermore,ζ potentials of these AuNPs solutions were measured with electrophoretic light scattering method using a Nano-ZS90 Zeta potentiometry(Malvern,UK)at room temperature.

    1.3 Gold nanoparticles treatment and cytotoxicity determination by MTT assay

    HeLa cell line and MGC-803 cell line were cultured with dulbeccos modified eagles medium (DMEM)contained 10%fetal calf serum,streptomycin (1 mg·mL-1)and penicillin(1 000 units·mL-1),at 37℃in water-saturated air supplemented with 5%CO2in CO281R CO2cell culture apparatus(New Brunswick Scientific,USA).Actively growing HeLa cells and MGC-803 cells were seeded at a density of 1×105cells·well-1of a 96-well tissue culture plate and incubated overnight.The cells were treated with AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs for 24 and 48 h in quadruplets at a serial of concentrations(cAu:19.7,49.25,98.5 and 197 ng·mL-1), respectively.Control cells were used without AuNPs treatment.At the end of each exposure,the cytotoxicity level of AuNPs was assessed by MTT assay measured at 570 nm using an Infinite M1000 UV-Vis microplate reader(TECAN,Austria).All experiments were performed 3 times,and the average of all experiments has been shown as cell-viability percentage in comparison with the control experiment, while AuNPs untreated controls were considered as 100%viable.

    1.4Flow cytometric analysis of cell-cycle

    HeLa cells cultured and treated with AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs at Au concentrations of 197 ng·mL-1for 48 h.In brief,1× 105cells were collected and washed in PBS,slowly fixed in 75%ethanol,and kept at-20℃for 1 h.The cell pellet was centrifuged for 5 min at 2 500 r·min-1and the pellet re-suspended in 0.5 mL RNase(Sigma, 100 μg·mL-1)and stored at 37℃about 30 min. Then,propidium iodide(PI,Sigma,0.05 mg·mL-1)was added into the cell pellet and incubated for 30 min at 4℃.Total cellular DNA content was analyzed with a FC500 flow cytometer(Beckman Coulter Inc.,Brea, CA,USA).

    1.5Raman microspectrometry of single living cells treated with AuNPs nanoparticles

    HeLa cells were cultured as above and incubated with AuNPs and surface modified AuNPs at Au concentration of 197 ng·mL-1for 48 h.The living cells were analyzed as monolayers,seeding on the cover glass and washed 3 times with PBS.The Raman spectra of single living cells were recorded on the cover glass by confocal Raman spectrometer(Renishaw, inVia,UK)connected to a Leica microscope with a 514-nm emitting.An excitation beam of~20 mW laser power was focused onto a single cell with a 100× objective,and each Raman spectrum was recorded in the range of 500~1 800 cm-1with integration time of 240 s.All obtained spectra were background corrected and normalized to the 1 450 cm-1band.

    1.6Statistical analysis

    For statistical analyses,each experimental value was compared to its corresponding control.Results were expressed as mean±standard deviation(S.D.). Multi-group comparisons of means were carried out using Student t test.Statistical significance for all tests was set at p<0.05.

    Fig.1  Schematic illustration of the surface modified gold nanoparticles

    2 Results and discussion

    2.1Physicochemical characterization of surface modified of gold nanoparticles

    The citrate-synthesized AuNPs are ones with surface modified by thiols functionalization in aqueous solution.In this most commonly used approach[22-23], three alkanethiols agents with terminal functional groups of-CH3,-COOH and-OH are adsorbed at the surface of AuNPs via citrate-to-thiol exchanges, generating functionalized Au-CH3NPs,Au-COOH NPs and Au-OH NPs,separately(Fig.1).The ligand exchange of thiols for citrate molecules on AuNPs is made due to the substantial difference in energy between Au-S(~168 kJ·mol-1)[25]and Au-O(~8 kJ·mol-1)interactions[26].The self-assembled monolayers with functional groups are formed on surface of AuNPs due to the strong affinity,and structural characterizations of functional groups in overlayer have been probed by attenuated total reflectioninfrared intensity(ATR-IR)features and X-ray photoelectron spectroscopy(XPS)data in previous studies[22-23].Quantitative determination results show that these thiols attached on the surface of AuNPs under optimum condition are approximate,estimated to be 3.9%~4.6%,which is slightly larger than that reported values in literature[22],attributed the smaller size of AuNPs.

    The as-prepared AuNPs are observed under transmission electron microscopy(TEM),showing unmodified AuNPs and surface modified AuNPs are roughly spherical,and the average diameters are all about(15.6±3.2)nm(Fig.2).For further characterization,dynamic light scattering(DLS)results show that corresponding average hydrodynamic diameters of the AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs are(21.59±7.98),(30.68±9.24),(25.84±9.84)and (25.0±10.71)nm,respectively.The difference in the average diameters by the two techniques of DLS and TEM is expected considering that TEM measures the size of the electron-dense Au core,whereas DLS measures the capping agent shell and the hydration sphere of the AuNPs[27].After functionalized with alkanethiols,there are small increases in the hydrohynamic diameter,probably due to the different surface properties imparted by the capping agents. AuNPs are known to exhibit a surface plasmon resonance(SPR)in the visible region,which is caused by incoming electromagnetic radiation indu-cing the formation of a dipole in the nanoparticle[24].As the UV-Vis spectra shown in Fig.3,the well-defined and narrow SPR absorption of the AuNPs solution is localized at 519 nm,which shifts slightly to 521 nm with an insignificant broadening for Au-CH3NPs,Au-COOH NPs and Au-OH NPs solutions.The observation about SPR bands in absorption spectra (Fig.3)indicates that the surface modification does not bring obvious aggregation and difference of particle sizes is very small,which is also proved by TEM(Fig. 2)and DLS results.Both the prepared AuNPs and surface modified AuNPs are wine-red colloidal solution(inset,Fig.2)with the stability over 4 weeks.

    Fig.2  TEM images of AuNPs and surface modified AuNPs

    For further characterization,ζ potential measurements are carried out to identify the surface charge. ζ potential analysis gives potential values of-30.5,-5.43,-44.2 and-34.1 mV for the AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs,respectively.The results reveal that surface of these AuNPs with negative charge.The negative charged spherical AuNPs and surface modified AuNPs with relatively uniform size and stable in the aqueous phase are further used for the interactions studies with cells.

    Fig.3  UV-Vis spectra of AuNPs and surface modified AuNPs

    2.2Cell viability assay and cell-cycle analysis

    The biocompatibility of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs is assessed by MTT assay in vitro.In this work,after treated with AuNPs and surface modified AuNPs at varied Au concentrations from 19.7 to 197 ng·mL-1in vitro,cell death is only observed at the highest concentration of 197 ng·mL-1with both HeLa and MCG-803 cells(Fig. 4).The results indicate that the concentration of 197 ng·mL-1is a critical point for cell viability. Consequently,the following studies on AuNPs-cells interaction are investigated at Au concentration of 197 ng·mL-1.

    As shown in Fig.4,AuNPs exhibit low cytotoxicity at the highest tested Au concentration of 197 ng·mL-1.The viability of HeLa and MCG-803 cells revealed by MTT data is 79.87%±3.71%and 76.84%±3.55%at exposure time of 24 h,which decreases to 72.65%±2.79%and 71.62%±2.33%at exposure time of 48 h,respectively.Therefore,an increase in exposure time decreases the percentage of cell viable in the two cell lines,and the cell viability is still higher than 70%.In contrast,higher biocompatibility is detected with these cells following exposure to surface modified AuNPs at the two exposure time point.The viability of HeLa cells is increased to 93.61%±4.04%,and that of MCG-803 cells is increased to 91.96%±2.83%after 48 h exposure to Au-OH NPs(Fig.4).This suggests that the modification of functional groups onto the surface of AuNPs is able to render them with improved cytocompatibility in both HeLa and MCG-803 cell lines,and the slight cytotoxicity follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs (Fig.4).

    Fig.4  MTT viability assay of(a)HeLa cells and(b)MCG-803 cells exposed to the AuNPs and surface modified AuNPs,respectively

    To further explore the bio-effects of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs,their exposure induced cell-cycle distribution are analyzed with HeLa cells.It is particularly notable that AuNPs exposure leads to an alteration in cell cycle.Adecrease in G0/G1 phase and an obvious increase in G2/M are noticed after 48 h treatment with AuNPs (Fig.5).The G2/M proportion is 7.74%in control, which increases to 19.43%following exposure to the AuNPs,indicating the AuNPs induce a significant delay of G2/M phase in connection with genotoxicity[28].In contrast,as shown in Fig.5B~D, HeLa cell treatment with surface modified AuNPs at the same dosage,the G2/M proportions increase to 14.05%(Au-CH3NPs),13.58%(Au-COOH NPs)and 13.48%(Au-OH NPs),indicating that the surface modified AuNPs evidently decrease the G2/M phase delay effect of AuNPs.The smaller changes of G2/M arrest induced by Au-CH3NPs,Au-COOH NPs and Au-OH NPs mean higher cytocompatibility and lower genotoxicity surface modified AuNPs,which is consistent with the above MTT assay results.

    2.3Surface-functional-groups-regulated AuNPscells interaction

    Micro-Raman spectroscopy is used to obtain rich biochemical information from individual living cells in a non-invasive way,without the need of labels or other contrast[29-33].As the surface-enhanced Raman spectroscopy(SERS)-active nanoprobe,the endocytic AuNPs are crucial to obtained SERS spectra originated from bio-molecules that are in close proximity to the enhanced electromagnetic field at the Au surface in situ.The Raman spectra of normal HeLa cells and those treated with unmodified and modified AuNPs recorded in the 600~1 800 cm-1regions are compared in Fig.6,and proposed band assignments[30-34]are also included.

    Fig.5  Cell cycle distribution in HeLa cells:(A)HeLa Cells control;HeLa cells exposed to(B)AuNPs;(C)Au-CH3NPs; (D)Au-COOH NPs;(E)Au-OH NPs.The concentrations of Au are 197 ng·mL-1

    Firstly,the influence to phospholipid membrane of the single living HeLa cells is presented in Fig.6. As shown in Fig.6a,the Raman band at 722 cm-1is assigned to the symmetric C-N stretching vibration of phosphatidyl choline headgroup N+(CH3)3[30],which shifts to 726 cm-1and 725 cm-1after treated with AuNPs and Au-CH3NPs,respectively(Fig.6b and c). Whereas,these symmetric stretching vibrations are observed at 721 cm-1with slight shifts when treated with Au-COOH and Au-OH NPs(Fig.6d and e). Besides,the intensities of 958 cm-1asymmetric stretching vibration[31]distinctively decrease after treated with AuNPs and Au-CH3NPs,while insignificant changes are found with the corresponding peaks with Au-COOH and Au-OH NPs(Fig.6d and e). The peaks at 1 067 and 1 125 cm-1are assigned vibrations of C-C chain stretching of the phospholipid membrane(Fig.6a)[32].These Raman peaks move to 1071 cm-1,1 126 cm-1induced by AuNPs(Fig.6b),and are observed at 1 068 cm-1,1 120 cm-1induced by Au-CH3NPs(Fig.6c).The corresponding Raman peaks are shown at 1 068 cm-1,1 123 cm-1for Au-COOH NPs(Fig.6d),and no shifts induced by Au-OH NPs are observed(Fig.6e).Furthermore,the intense mode at 1 449 cm-1assigned to protein and lipid CH deflexed bending mode(Fig.6a)[32]moves to 1 444 cm-1due to treatment of the AuNPs,however,the bands remain approximately constant(Fig.6b~e)with the surface modified Au NPs.The data suggest that polar choline headgroups of phospholipid membrane are target sites for AuNPs and Au-CH3NPs in cells. Besides,the binding of AuNPs and Au-CH3NPs disarrange slightly of C-C chains of phospholipid membrane.In contrast,the special interactions on phospholipid membrane are obviously decreased induced by Au-COOH NPs and Au-OH NPs.

    Fig.6  Raman spectra of single living HeLa cells.(a)HeLa cell control;HeLa cell treated with:(b)AuNPs;(c)Au-CH3NPs; (d)Au-COOH NPs;(e)Au-OH NPs.The concentrations of Au are 197 ng·mL-1

    Secondly,Raman spectral profiles provide information about DNA-AuNPs interactions in HeLa cells.Especially,the band assigned to the phosphate diester(PO2-)symmetric stretching mode of the DNA backbone shifts from 1 097 cm-1(Fig.6a)to 1 102 and 1 100 cm-1after interaction with AuNPs and Au-CH3NPs(Fig.6b and c),respectively.The most significant spectral changes are also observed at 827 cm-1peaks (Fig.6a)corresponding to the phosphodiester(O-P-O) stretching bond of DNA backbone[33-34],which move to 824 cm-1after treatment with AuNPs or Au-CH3NPs (Fig.6b and c).Whereas,the treatments with Au-COOH NPs and Au-OH NPs have no significant contribution for both O-P-O and PO2-stretching vibrations in the spectra(Fig.6d and e).Besides,the vibrational mode observed at 782 cm-1correlates with cytosine ring breathings of pyrimidine,and 1 337 cm-1assigned to adenine(A)and guanine(G)ring stretching[33-34]shift to 778 and 1 331 cm-1induced by Au NPs,respectively(Fig.6b).These Raman bands show insignificant changes as treated with Au-CH3NPs,Au-COOH NPs and Au-OH NPs(Fig.6c~e). According to this observation,the basic assumption is that the backbone and nucleic bases of DNA molecules have chemisorptions occurring on the surface of AuNPs.Whereas,AuNPs modified with-COOH and-OH can obviously decrease this surface interaction.

    Interestingly,exposure to AuNPs induces obvious spectral changes with Raman peaks associated with the polar headgroup of phospholipid membrane,and Raman vibrations are attributed to backbone and nucleic bases of DNA.Therefore,our micro-Raman results provide the evidence in situ that the polar headgroup of phospholipid membrane and backbone and nucleic bases of DNA are probably the targeted sites of AuNPs-cells interaction.The detected difference suggests that AuNPs and surface modifiedAuNPs exposure displays different effect on DNA and phospholipid membrane,following the order AuNPs> Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.The conclusion also supports the cytotoxicity results of Au-CH3NPs attained by MTT assay,and is consistent with the flow cytometry results of cell cycle G2/M arrest.The present studies determine the difference interactions of AuNPs containing a variety of surface functional groups with cells.The surface-functionalgroups-regulated interactions provide the probable mechanism to explain the surface-modified regulated cytotoxicity of AuNPs,although further experiments would be necessary to conclusively demonstrate this.

    3 Conclusions

    Taken togeth er,negative charged spherical and stable AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs with diameter~16 nm have been prepared. The data suggest that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng·mL-1for both HeLa and MCG-803 cells in vitro,and induce a cell cycle slightly arrest in the G2/ M phase.The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.Our results demonstrate the molecular mechanism in situ that the polar headgroup of phospholipid membrane,backbone and nucleic bases of DNA are the mainly interacted target sites of the AuNPs and Au-CH3NPs in living cells.In contrast, the binding to these sites are insignificant induced by Au-COOH NPs and Au-OH NPs.

    Acknowledgements:The Authors are grateful to Professor SHEN Pan-Wen at Nankai University for providing us long-term support,attention and guidance.

    References:

    [1]Yeh Y C,Creran B,Rotello V M.Nanoscale,2012,4:1871 -1880

    [2]Daniel M C,Astruc D.Chem.Rev.,2004,104:293-346

    [3]Turkevich J,Stevenson P C,Hillier J.Discuss.Faraday Soc., 1951,11:55-75

    [4]Frens G.Nat.Phys.Sci.,1973,241:20-22

    [5]Giljohann D A,Seferos,D S,Daniel W L,et al.Angew. Chem.Int.Ed.,2010,49:3280-3294

    [6]Wang Z,Tan B,Hussain I,et al.Langmuir,2007,23:885 -895

    [7]Ding Y,Bian X,Yao W,et al.ACS Appl.Mater.Inter., 2010,2:1456-1465

    [8]Huang P,Bao L,Zhang C,et al.Biomaterials,2011,32: 9796-9809

    [9]Wu P,Hwang K,Lan T,et al.J.Am.Chem.Soc.,2013,135: 5254-5257

    [10]Bartczak D,Nitti S,Millar T M,et al.Nanoscale,2012,4: 4470-4472

    [11]Park J,Park J H,Ock K S,et al.J.Colloid Interface Sci., 2011,363:105-113

    [12]Ghosh R,Singh L C,Shohet J M,et al.Biomaterials, 2013,34:807-816

    [13]Wang F,Wang Y-C,Dou S,et al.ACS Nano,2011,5:3679 -3692

    [14]Heo D N,Yang D H,Kwon K.Biomaterials,2012,33:856 -866

    [15]Mieszawska A J,Mulder W J M,Fayad Z A,et al.Mol. Pharmaceutics,2013,10:831-847

    [16]Jans H,Huo Q.Chem.Soc.Rev.,2012,41:2849-2866

    [17]Pan Y,Neuss S,Leifert A,et al.Small,2007,3:1941-1949

    [18]Goodman C M,McCusker C D,Yilmaz T,et al.Bioconjugate Chem.,2004,15:897-900

    [19]Connor E E,Mwamuka J,Gole A,et al.Small,2005,1:325 -327

    [20]Pan Y,Leifert A,Ruau D,et al.Small,2009,5:2067-2076

    [21]Avvakumova S,Scari G,Porta F.RSC Adv.,2012,2:3658-3661

    [22]Park J-W,Shumaker-Parry J S.ACS Nano,2015,9:1665 -1682

    [23]Zhou Y,Wang S X,Zhang K,et al.Angew.Chem.,2008, 120:7564-7566

    [24]Zhao W,Chiuman W,Lam J C F,et al.J.Am.Chem.Soc., 2008,130:3610-3618

    [25]Nuzzo R G,Zegarski B R,Dubois L H.J.Am.Chem.Soc., 1987,109:733-740

    [26]Chen F,Li X,Hihath J,et al.J.Am.Chem.Soc.,2006,128: 15874-15881

    [27]Jiang B P,Zhang L,Zhu Y,et al.J.Mater.Chem.B, 2015,3:3767-3776

    [28]Jeyaraj M,Arun R,Sathishkumar G,et al.Mater.Res.Bull., 2014,52:15-24

    [29]Puppels G J,de Mul F F,Otto C,et al.Nature,1990,347: 301-303

    [30]Konorov S O,Schulze H G,Piret J M,et al.J.Raman Spectrosc.,2011,42:1135-1141

    [31]Bush S F,Adams R G,Levin I W.Biochemistry,1980,19: 4429-4436

    [32]Notingher I,Verrier S,Haque S,et al.Biopolymer,2003,72: 230-240

    [33]Zoladek A,Pascut F C,Patel P,et al.J.Raman Spectrosc., 2011,42:251-258

    [34]Pyrgiotakis G,Kundakcioglu O E,Pardalos P M,et al.J. Raman Spectrosc.,2011,42:1222-1231

    Comparative Interaction Mechanisms Between Cells and Gold Nanoparticles Modified with Different Chemical Functional Groups

    WEN Chang-Chun LEI Wen-Qi SHEN Xing-Can*JI Shi-Chen JIANG Bang-Ping LIANG Hong*
    (Key Laboratory of Medicinal Chemical Resources and Molecular Engineering,Ministry of Education,Guangxi Normal University,Guilin 541004,China)

    Chemical functional groups of-CH3,-COOH and-OH have been introduced to the surface of AuNPs, separately.The AuNPs,Au-OH NPs,Au-COOH NPs and Au-CH3NPs are spherical with dimension of(15.6± 3.2)nm,displaying negativeζpotentials.The cytotoxicity of these AuNPs has been evaluated by methylthiazoletetrazolium(MTT)assay against Hela cells and MCG-803 cells in vitro,separately.MTT data reveal that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng·mL-1for both HeLa and MCG-803 cells in vitro.The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.Cell cycle analysis indicates that AuNPs cause cell cycle slightly arrest at the G2/M phase.Micro-Raman spectra of individual living HeLa cells demonstrate that the backbone and nucleic bases of DNA as well as the polar headgroup of phospholipid in cells are the probable target binding sites of AuNPs and Au-CH3NPs.Whereas,the interfacial interactions are significantly reduced when cells are treated with Au-COOH NPs and Au-OH NPs.Our results on the interaction mechanisms between AuNPs and cells demonstrate that AuNPs modified with surface functional groups of-COOH or-OH can improve their cytocompatibility.

    gold nanoparticles(AuNPs);surface functional groups;cycotoxicity;molecular mechanisms

    O614.123

    A

    100-4861(2015)09-1903-10

    10.11862/CJIC.2015.253

    2015-06-18。收修改稿日期:2015-08-04。

    國家自然科學基金(No.21161003,21364002),廣西自然科學基金杰青(2013GXNSFGA019001),教育部新世紀優(yōu)秀人才支持計劃(NCET-13-0743),藥用資源化學與藥物分子工程教育部重點實驗室主任基金(2015-A)資助項目。

    *通訊聯(lián)系人。E-mail:xcshen@mailbox.gxnu.edu.cn;hliang@gxnu.edu.cn,Tel:+86-0773-5846273;會員登記號:05M140629103。

    猜你喜歡
    官能團藥用教育部
    熟記官能團妙破有機題
    酒釀搭配藥用最養(yǎng)生
    在對比整合中精準把握有機官能團的性質(zhì)
    試論藥用觀賞植物在園林綠化配置中的應用
    教育部召開座談會推進一流大學和一流學科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    蕨類植物在利尿通淋中的藥用研究(二)
    蒙藥藥用資源
    污泥中有機官能團的釋放特性
    逆向合成分析法之切斷技巧
    教育部:高考地方性加分項目2018年減至35個
    中出人妻视频一区二区| 国产高清videossex| 一级片免费观看大全| 九色成人免费人妻av| 美女大奶头视频| 久久久久久人人人人人| 亚洲自偷自拍图片 自拍| 在线观看舔阴道视频| 波多野结衣巨乳人妻| 欧美精品啪啪一区二区三区| 三级国产精品欧美在线观看 | 一本综合久久免费| www.自偷自拍.com| 男女下面进入的视频免费午夜| av国产免费在线观看| 精华霜和精华液先用哪个| 波多野结衣高清无吗| 老司机在亚洲福利影院| 日本撒尿小便嘘嘘汇集6| tocl精华| 青草久久国产| www.www免费av| 亚洲五月天丁香| 一夜夜www| 国产精品av久久久久免费| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品sss在线观看| 精品人妻1区二区| 又粗又爽又猛毛片免费看| 黄色 视频免费看| 国产男靠女视频免费网站| 天堂动漫精品| 1024视频免费在线观看| svipshipincom国产片| 99精品在免费线老司机午夜| 91在线观看av| 高潮久久久久久久久久久不卡| 免费看美女性在线毛片视频| 国产av一区二区精品久久| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕在线视频| 成人永久免费在线观看视频| 99久久99久久久精品蜜桃| 99久久99久久久精品蜜桃| 国产v大片淫在线免费观看| 欧美黄色淫秽网站| 国产麻豆成人av免费视频| 午夜免费激情av| 母亲3免费完整高清在线观看| 国产精品香港三级国产av潘金莲| 黄色 视频免费看| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| av国产免费在线观看| 神马国产精品三级电影在线观看 | 午夜福利高清视频| 午夜视频精品福利| 日本五十路高清| 欧美黑人精品巨大| 国产视频一区二区在线看| 亚洲中文字幕一区二区三区有码在线看 | 人妻丰满熟妇av一区二区三区| 一个人免费在线观看电影 | 两人在一起打扑克的视频| 精品午夜福利视频在线观看一区| 久久久国产成人精品二区| 可以在线观看的亚洲视频| 这个男人来自地球电影免费观看| 99热只有精品国产| 男人舔奶头视频| 久久久久国产精品人妻aⅴ院| 日日摸夜夜添夜夜添小说| 欧美又色又爽又黄视频| 国产aⅴ精品一区二区三区波| 国产亚洲欧美在线一区二区| 久久婷婷成人综合色麻豆| 香蕉久久夜色| 一级毛片高清免费大全| 性欧美人与动物交配| 国产激情久久老熟女| 成年版毛片免费区| 国产视频一区二区在线看| 久久久精品大字幕| 免费搜索国产男女视频| 亚洲成人国产一区在线观看| 国产成人系列免费观看| 国产精品久久久久久久电影 | 亚洲中文日韩欧美视频| 97超级碰碰碰精品色视频在线观看| 黄频高清免费视频| 国产午夜精品久久久久久| 午夜福利欧美成人| 午夜两性在线视频| 日韩三级视频一区二区三区| 欧美又色又爽又黄视频| 国产熟女xx| 9191精品国产免费久久| 午夜成年电影在线免费观看| 99久久国产精品久久久| 中文字幕人妻丝袜一区二区| 国内揄拍国产精品人妻在线| 美女大奶头视频| 国产99白浆流出| 欧美激情久久久久久爽电影| 最近最新免费中文字幕在线| 国产免费男女视频| 狂野欧美白嫩少妇大欣赏| 亚洲成人国产一区在线观看| 久久精品亚洲精品国产色婷小说| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 日韩欧美国产在线观看| 久久久国产成人免费| 成人午夜高清在线视频| a级毛片a级免费在线| 俄罗斯特黄特色一大片| 欧美性猛交╳xxx乱大交人| 1024香蕉在线观看| 最好的美女福利视频网| 色噜噜av男人的天堂激情| 亚洲av美国av| 黄色毛片三级朝国网站| 亚洲九九香蕉| 国产91精品成人一区二区三区| 男女下面进入的视频免费午夜| 精华霜和精华液先用哪个| 亚洲av电影在线进入| 99久久无色码亚洲精品果冻| www国产在线视频色| 在线国产一区二区在线| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av | 一个人免费在线观看电影 | av有码第一页| 亚洲人成电影免费在线| 九色国产91popny在线| 一二三四在线观看免费中文在| 日韩国内少妇激情av| 精品电影一区二区在线| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 黑人巨大精品欧美一区二区mp4| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免费看| 99热只有精品国产| 久久精品91无色码中文字幕| 日本一区二区免费在线视频| 99精品在免费线老司机午夜| 又粗又爽又猛毛片免费看| 91麻豆精品激情在线观看国产| 色老头精品视频在线观看| 十八禁人妻一区二区| 美女黄网站色视频| 亚洲一区高清亚洲精品| 国产真实乱freesex| 中国美女看黄片| 一边摸一边抽搐一进一小说| 99国产精品一区二区蜜桃av| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 日日干狠狠操夜夜爽| 巨乳人妻的诱惑在线观看| 日韩精品中文字幕看吧| 午夜福利成人在线免费观看| av超薄肉色丝袜交足视频| 听说在线观看完整版免费高清| 亚洲最大成人中文| 国产免费男女视频| √禁漫天堂资源中文www| 在线观看午夜福利视频| 久久中文字幕人妻熟女| 我要搜黄色片| 岛国在线免费视频观看| 久久草成人影院| netflix在线观看网站| 久久婷婷成人综合色麻豆| 日本成人三级电影网站| 久久99热这里只有精品18| 国产精品久久久久久人妻精品电影| 啦啦啦免费观看视频1| 舔av片在线| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲| 午夜精品在线福利| 国产av麻豆久久久久久久| 免费在线观看日本一区| 三级国产精品欧美在线观看 | 国产黄a三级三级三级人| 哪里可以看免费的av片| 亚洲熟妇中文字幕五十中出| av在线天堂中文字幕| 国产成人精品无人区| 在线永久观看黄色视频| 不卡一级毛片| 悠悠久久av| 一级黄色大片毛片| 激情在线观看视频在线高清| 法律面前人人平等表现在哪些方面| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品久久男人天堂| 午夜久久久久精精品| 人妻丰满熟妇av一区二区三区| 久久人妻av系列| 成人精品一区二区免费| 精品少妇一区二区三区视频日本电影| 精品国产亚洲在线| 亚洲国产欧美网| 国产精品国产高清国产av| 熟妇人妻久久中文字幕3abv| 久久国产精品人妻蜜桃| 99精品在免费线老司机午夜| 亚洲国产欧美网| 老汉色∧v一级毛片| 亚洲一区二区三区色噜噜| 真人做人爱边吃奶动态| 久久伊人香网站| 法律面前人人平等表现在哪些方面| 俄罗斯特黄特色一大片| 久9热在线精品视频| 国产单亲对白刺激| 韩国av一区二区三区四区| 精品欧美一区二区三区在线| 性色av乱码一区二区三区2| 久久九九热精品免费| 精品久久蜜臀av无| 亚洲av电影不卡..在线观看| 一级毛片精品| 岛国在线观看网站| 成人av一区二区三区在线看| 国产精品香港三级国产av潘金莲| 欧美日本亚洲视频在线播放| 1024香蕉在线观看| 91成年电影在线观看| 后天国语完整版免费观看| 亚洲人成伊人成综合网2020| 亚洲国产中文字幕在线视频| 9191精品国产免费久久| 国产午夜精品论理片| 三级国产精品欧美在线观看 | 女生性感内裤真人,穿戴方法视频| 日本 av在线| 嫩草影院精品99| 黄色视频,在线免费观看| 国产高清激情床上av| 香蕉av资源在线| 国产私拍福利视频在线观看| videosex国产| www.999成人在线观看| 岛国在线观看网站| 欧美精品亚洲一区二区| 久久久久久人人人人人| 国产精品一区二区精品视频观看| 好看av亚洲va欧美ⅴa在| 熟妇人妻久久中文字幕3abv| 亚洲一区中文字幕在线| 在线a可以看的网站| 亚洲成人久久性| 91字幕亚洲| 亚洲乱码一区二区免费版| 午夜福利高清视频| 男人舔女人的私密视频| 身体一侧抽搐| 美女大奶头视频| 香蕉丝袜av| 日本 欧美在线| 国产精华一区二区三区| bbb黄色大片| 成人亚洲精品av一区二区| 亚洲国产中文字幕在线视频| 日韩大尺度精品在线看网址| 波多野结衣巨乳人妻| 国产片内射在线| 露出奶头的视频| 国产高清有码在线观看视频 | 午夜福利在线在线| 久久这里只有精品中国| 日韩欧美免费精品| 给我免费播放毛片高清在线观看| 色播亚洲综合网| 两性夫妻黄色片| 两人在一起打扑克的视频| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av教育| 精品久久久久久久久久免费视频| 一a级毛片在线观看| 国产一区二区三区在线臀色熟女| 国产爱豆传媒在线观看 | 此物有八面人人有两片| 在线免费观看的www视频| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 久久 成人 亚洲| 一二三四社区在线视频社区8| 久久精品综合一区二区三区| 99久久无色码亚洲精品果冻| 看片在线看免费视频| 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放 | 成人精品一区二区免费| 美女午夜性视频免费| 两个人视频免费观看高清| 午夜激情福利司机影院| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 少妇裸体淫交视频免费看高清 | 日韩高清综合在线| 97超级碰碰碰精品色视频在线观看| 精品久久久久久成人av| 99久久久亚洲精品蜜臀av| 大型黄色视频在线免费观看| 制服丝袜大香蕉在线| 亚洲在线自拍视频| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡| 99在线人妻在线中文字幕| 男女视频在线观看网站免费 | 丰满人妻熟妇乱又伦精品不卡| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 一本久久中文字幕| 国内精品一区二区在线观看| 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 男人舔女人的私密视频| 国产成年人精品一区二区| 国产亚洲欧美98| 国产av一区在线观看免费| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 无限看片的www在线观看| 久久精品91蜜桃| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| www日本黄色视频网| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 亚洲片人在线观看| 99热只有精品国产| 成年女人毛片免费观看观看9| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 色尼玛亚洲综合影院| 亚洲专区中文字幕在线| 国模一区二区三区四区视频 | 三级毛片av免费| 中文字幕av在线有码专区| 中文亚洲av片在线观看爽| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 91在线观看av| 国产精品九九99| 黄色丝袜av网址大全| 国产男靠女视频免费网站| 毛片女人毛片| 国产精品一区二区三区四区免费观看 | av有码第一页| 国产精品永久免费网站| 精品国产乱子伦一区二区三区| 又紧又爽又黄一区二区| 国产在线观看jvid| 日本撒尿小便嘘嘘汇集6| 国产99白浆流出| 久久久久久久精品吃奶| 亚洲国产欧美网| www日本黄色视频网| 久久久国产成人免费| 欧美激情久久久久久爽电影| 露出奶头的视频| 黄色a级毛片大全视频| 国产主播在线观看一区二区| 操出白浆在线播放| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品论理片| 国产成人系列免费观看| 欧美日韩福利视频一区二区| 日韩精品青青久久久久久| tocl精华| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 91麻豆av在线| 成人三级黄色视频| 很黄的视频免费| www.自偷自拍.com| 亚洲一卡2卡3卡4卡5卡精品中文| 精品高清国产在线一区| 老汉色av国产亚洲站长工具| 特大巨黑吊av在线直播| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久电影 | 久久精品影院6| 91大片在线观看| 欧美av亚洲av综合av国产av| 国产视频内射| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 级片在线观看| 欧美在线黄色| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 亚洲精品美女久久av网站| 成人18禁在线播放| 丁香欧美五月| 99热6这里只有精品| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 久久国产精品影院| 淫秽高清视频在线观看| 黄色毛片三级朝国网站| 亚洲av美国av| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 色综合欧美亚洲国产小说| 日本 av在线| 日本a在线网址| 亚洲成av人片在线播放无| av有码第一页| 美女黄网站色视频| 一级毛片女人18水好多| 视频区欧美日本亚洲| 国产午夜精品论理片| 不卡一级毛片| 在线观看免费日韩欧美大片| 99国产精品一区二区三区| 九九热线精品视视频播放| 丁香六月欧美| 怎么达到女性高潮| 99re在线观看精品视频| 精品久久蜜臀av无| 成人国产一区最新在线观看| 国产成人aa在线观看| 免费看a级黄色片| 午夜激情福利司机影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美98| av在线播放免费不卡| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 久久热在线av| ponron亚洲| 久久久国产成人免费| 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 美女免费视频网站| 婷婷丁香在线五月| 日韩欧美三级三区| 欧美大码av| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看 | 男女午夜视频在线观看| tocl精华| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 日韩大码丰满熟妇| 欧美日韩国产亚洲二区| 国产精品久久久av美女十八| 国产视频内射| 亚洲va日本ⅴa欧美va伊人久久| 国产av麻豆久久久久久久| 国产真人三级小视频在线观看| 青草久久国产| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 亚洲五月婷婷丁香| 18美女黄网站色大片免费观看| 成人精品一区二区免费| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 日日夜夜操网爽| 久久久久亚洲av毛片大全| 国产成人影院久久av| 国产成人欧美在线观看| xxxwww97欧美| 国产熟女xx| 国产精品,欧美在线| 在线播放国产精品三级| 老司机深夜福利视频在线观看| 精品国内亚洲2022精品成人| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| av福利片在线观看| 欧美一区二区国产精品久久精品 | 99在线人妻在线中文字幕| 99国产精品99久久久久| 巨乳人妻的诱惑在线观看| 狂野欧美白嫩少妇大欣赏| 国产精华一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| 我要搜黄色片| 久久久久国产一级毛片高清牌| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 美女黄网站色视频| 亚洲avbb在线观看| av欧美777| 欧美性长视频在线观看| 在线永久观看黄色视频| 亚洲一区高清亚洲精品| 久久精品人妻少妇| 久久久久久九九精品二区国产 | 美女高潮喷水抽搐中文字幕| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 国产精品国产高清国产av| 国产不卡一卡二| 麻豆国产av国片精品| 色老头精品视频在线观看| 亚洲精品粉嫩美女一区| www国产在线视频色| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av高清一级| av在线播放免费不卡| 岛国视频午夜一区免费看| a在线观看视频网站| 一本大道久久a久久精品| 1024香蕉在线观看| 欧美乱妇无乱码| 欧美久久黑人一区二区| 美女黄网站色视频| 黄色毛片三级朝国网站| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 午夜影院日韩av| 色av中文字幕| 99国产极品粉嫩在线观看| 亚洲av成人av| 成人欧美大片| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 成人午夜高清在线视频| 手机成人av网站| 欧美成人午夜精品| 天堂动漫精品| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 国产成人系列免费观看| 男女之事视频高清在线观看| 999精品在线视频| 国产亚洲欧美98| 99久久精品热视频| 欧美久久黑人一区二区| 亚洲九九香蕉| 亚洲av五月六月丁香网| 欧美一区二区国产精品久久精品 | 一级作爱视频免费观看| 久久久久亚洲av毛片大全| 精品久久蜜臀av无| 亚洲熟妇中文字幕五十中出| 亚洲午夜理论影院| 黄片大片在线免费观看| 91字幕亚洲| 青草久久国产| 国产亚洲精品第一综合不卡| 国内久久婷婷六月综合欲色啪| 日韩 欧美 亚洲 中文字幕| 国产片内射在线| 亚洲男人天堂网一区| 9191精品国产免费久久| av超薄肉色丝袜交足视频| 亚洲真实伦在线观看| 国产久久久一区二区三区| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 中文字幕人成人乱码亚洲影| www国产在线视频色| 国产精品av视频在线免费观看| 99久久综合精品五月天人人| 88av欧美| 国产午夜精品论理片| 亚洲欧美日韩高清专用| 成人三级黄色视频| 亚洲精品av麻豆狂野| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 香蕉av资源在线| 在线国产一区二区在线| 免费人成视频x8x8入口观看| 久久香蕉精品热| 中国美女看黄片| 中文亚洲av片在线观看爽| 国内精品久久久久久久电影| 一级a爱片免费观看的视频| 日韩欧美国产在线观看| 久久精品综合一区二区三区| 高潮久久久久久久久久久不卡| 欧美在线黄色|