• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于四甲基取代六元瓜環(huán)的四核稀土鏑簇合物的慢磁弛豫

    2015-12-01 02:36:56陳文建孔祥建龍臘生鄭蘭蓀
    無機化學學報 2015年9期
    關鍵詞:化工學院稀土甲基

    陳文建 孔祥建 龍臘生 鄭蘭蓀

    (固體表面物理化學國家重點實驗室,廈門大學化學化工學院化學系,廈門361005)

    基于四甲基取代六元瓜環(huán)的四核稀土鏑簇合物的慢磁弛豫

    陳文建孔祥建*龍臘生*鄭蘭蓀

    (固體表面物理化學國家重點實驗室,廈門大學化學化工學院化學系,廈門361005)

    報道了2個基于四甲基取代六元瓜環(huán)的三明治型四核稀土簇合物,[Ln4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]·(NO3)4·26H2O(Ln=Dy,1;Ln=Tb,2)。晶體結構分析顯示2個簇合物包含2個四甲基取代瓜環(huán)夾心的四核稀土立方烷結構,[Ln4(μ3-OH)4]8+。磁性研究顯示化合物1顯示了慢磁弛豫行為。由于六元瓜環(huán)配體可以有效的傳遞能量給稀土鋱離子,化合物2具有較好的發(fā)光性能。

    簇合物;磁性;發(fā)光;六元瓜環(huán)

    0 Introduction

    Single-molecule magnets(SMMs)continue to be an inviting research field in recent decades,not only because of their intriguing properties,but also their potential applications in quantum computing[1],magnetic information storage[2],nanoelectrons[3],and molecular spintronics[4-5].Since the first SMM of[Mn12O12(AcO)16(H2O)4]appearance in the early 1990s[6],a large number of transition-metal polynuclear compounds with SMMs property have been reported.

    It was found that high spin lanthanide ions are good candidates for constructing new SMMs,due to their large intrinsic magnetic anisotropy[8-11].However, because of the synthetic challenges and the difficulty in promoting magnetic interactions via connecting by bridging ligands,rational design and assembly of pure lanthanide based SMMs remain a challenge[9-11]. Investigations on the lanthanide cluster-based molecular magnetism suggest that selecting appropriate bridgingligand is crucial to the construction of pure lanthanide -based SMMs.So far,a number of organic ligands, such as aminoacids[11-12],o-vanillin[8b],Schiff bases[13], carboxylates[14],β-diketones[15],and calixarenes[9,16]have been used to construct lanthanide SMMs,among which Schiff base based on o-vanillin[8b,10b,17]has been most studied.

    Cucurbit[n]urils(Q[n]s,Fig.1a)and their alkylsubstituted derivatives have proved to be an excellent class of both ligands and organic building blocks due to the two opening portals of these macrocycles with its unique cavity rimmed with π-rich dipole carbonyl groups[18-21].Although a large number of Q[n]s supported transition metal-containing[22]and lanthanide-containing coordination compounds have been reported[23],Q[n]s supported polynuclear lanthanide SMMs are rare[24]. Herein we report a TMeQ[6](Fig.1b)supported Dy4cluster complex,formulated as[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]·(NO3)4·26H2O(1),which features a disordered[Dy4(μ3-OH)4]8+cubane cluster coresandwichedbytwoTMeQ[6]macrocycles. Alternating current susceptibility measurements reveal that the compound 1 exhibits slow relaxation of magnetization.To the best of our knowledge,this is the first example of a TMeQ[6]supported lanthanide cluster with slow relaxation of magnetization.We also obtain its Tb3+analogue[Tb4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ [6])2](NO3)4·26H2O(2),which exhibitsinteresting luminescent property.

    Fig.1 Molecular structure of Q[n]s(a)and TMeQ[6](b)

    1 Experimental

    1.1Materials and methods

    All reagents were of commercial origin with 99% purity and were used as received.TMeQ[6]was prepared by procedures reported elsewhere[19e].The C, H and N microanalyses were carried out with a CE instruments EA 1110 elemental analyzer.TGA curve was obtained on a SDT Q600 thermal analyzer. Magnetic susceptibility was measured by a Quantum Design MPMS superconducting quantum interference device(SQUID).

    1.2Synthesis

    1.2.1[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(1)

    TMeQ[6](0.138 g,0.125 mmol),Dy(NO3)3·5H2O (0.484 g,1.00 mmol)and 1H-[3-(4-pyridyl)pyrazole]-acetic acid(0.104 g,0.50 mmol)were dissolved in 40.0 mL of water while stirring at 70℃.The mixture was heated to 100℃and refluxed for 2 h.The filtrate was left to stand at room temperature in an open beaker(50 mL).After six days,colorless crystals of 1 were obtained and collected in a yield of 36%on the basis of TMeQ[6].Anal.Calcd.for 1(%):C,25.48;H, 4.12;N,20.06.Found(%):C,25.58;H,4.22;N, 20.12.

    1.2.2[Tb4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(2)

    This compound was prepared using the same procedure as described above for the synthesis of its Dy cognate,but using 0.481 g Tb(NO3)3·5H2O(1.00 mmol)instead of Dy(NO3)3·5H2O.Colorless crystals of 2 were obtained after a week and collected in a yield of 40%on the basis of TMeQ[6].Anal.Calcd.for 2 (%):C,25.58;H,4.13;N,20.14.Found(%):C,25.66; H,4.20;N,20.22.

    1.2.3Single-Crystal X-ray structure determination

    Data collections were performed on a Bruker Apex-2000diffractometerusinggraphite monochromated Mo Kα radiation(λ=0.071 073 nm)at 173 K.Absorption corrections were applied using the ultiscan program SADABS[25].The structures were solved by indirect methods(SHELXTL Version 5.10)[25]. Non-hydrogen atoms were refined anisotropically by full-matrix least-squares method on F2.The hydrogen atoms of the organic ligand were generated geometrically(C-H,0.096 nm).Because of severe disorder, 21 water molecules and 3NO3-in the unit cell have been taken into account by the SQUEEZE.Details of the crystal parameters,data collection conditions and refinement parameters for compounds 1 and 2 aresummarized in Table 1.

    CCDC:929607,1;929608,2.

    Table 1Crystal Data and Structure Refinement Details for Compounds 1 and 2

    2 Results and discussion

    2.1Synthesis

    The reaction of TMeQ[6],Ln(NO3)3,and 1H-[3-(4-pyridyl)pyrazole]-acetic acid(1∶8∶4)in distilled water produces 1(Ln=Dy)or 2(Ln=Tb)in good yields. Originally,we intent to synthesize rare-earth-metal coordination polymers that conatin 1H-[3-(4-pyridyl) pyrazole]acetic acid ligand and TMeQ[6].However, the experimental results show that 1H-[3-(4-pyridyl) pyrazole]-acetic acid is not coordinated with rare earth ions in complexes 1 and 2.The ligand of 1H-[3-(4-pyridyl)pyrazole]-aceticacidisnecessaryforthe reactions,although it is not incorporated into the structures of 1 and 2.Absence of 1H-[3-(4-pyridyl) pyrazole]-acetic acid would result in the formation of an one-dimensional chain comprising TMeQ[6]molecules and[Ln(H2O)8]3+with a 1∶1 ratio through hydrogen bonding(Fig.S1).The ligand may play the role of controlling the hydrolysis of the rare earth ions to limitthedegreeofaggregationofthehydroxo intermediates.

    2.2Description of crystal structures

    Complexes 1 and 2 are isomorphous,so only the structure of 1 is described in detail.X-ray Singlecrystal structure analysis reveals that complex1 crystallizes in triclinic,P1 space group.As shown in Fig.2,complex 1 possesses a sandwich structure of [Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]4+unit,4 nitrate anions and 26 guest water molecules.It shouldbe noted that all dysprosium ions and μ3-OH atoms have an occupancy factor of 50%,owing to positional disorder,similar to that reported disordered Ln cluster cores[16a-b].

    Fig.2 Crystal structure of[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]4+units in 1

    The cationic cluster of 1 has a distorted cubaneshaped core of[Dy4(μ3-OH)4]8+.Four Dy atoms form a nearly perfect tetrahedron.Two opposite edges of the tetrahedron are further bridged by two μ2-OH anions, while another two opposite edges are bridged by two NO3-anions(Fig.3a).This[Dy4(μ3-OH)4]8+cubane cluster core is sandwiched by two TMeQ[6]macrocycles displaying an antiparallel orientation.As shown in Fig.3b,each of Dy ion locates in the center of a square antiprism geometry and is octa-coordinated with contributions from three μ3-OH,one μ2-OH anion, two O atoms from a TMeQ[6]ligand,one O atom from nitrate anion,and one terminal aqua ligands.The bond lengths of Dy-O rang from 0.195 4(12)to 0.271 8(9)nm (Table S1),comparable to those in the reported complexes containing the same[Dy4(μ3-OH)4]8+core[10-11,17b]. The Dy-Ohydroxy-Dy angles in the[Dy4(μ3-OH)4]8+cubane of 1 are in the range of 99.8(5)°~113.6(7)°obviously larger than 99°[10c].

    Complex 2 is isomorphic to 1.The bond lengths of Tb-O range from 0.210 0(5)to 0.269 0(4)nm and the angles of Tb-Ohydroxy-Tb range from 99.7(2)°to 113.5(4)°(Table S2),comparable to those in reported Tb complex[24b,26].

    Fig.3 (a)Structure of the[Dy4(μ3-OH)4(μ2-OH)2(NO3)2]4+core unit of 1;(b)the coordination geometry of Dy ion in 1

    2.3TG analysis

    The thermogravimetric(TG)curve of the two complexes under N2atmosphere are shown in Fig.4.1 exhibitsthefirstweightlossof12%inthe temperature range from 24 to 125℃,corresponding to the weight loss of 26 lattice water molecules in 1 (Calculated weight loss 12%),and the second weight loss of 2%in the temperature range from 125 to 335℃corresponding to the loss of four coordination water molecules in 1(Calculated weight loss 2%),and then themetal-organiccomplexstartstodecompose accompanying loss of organic ligands.The TGA curve of complex 2 is similar to that of complex 1,the first and second weight loss of complex 2 are 12%(Calcd. 12%)and 2%(Calcd.2%),corresponding to the weight loss of 26 lattice water molecules and 4 coordination water molecules,respectively.Thesimulatedand experimental PXRD patterns for complex 1 and 2 areare almost identical as indicated in Fig.S10 and Fig. S11.

    Fig.4 Thermogram of 1 and 2 showing TGA at the heating rate of 10℃·min-1

    2.4Magnetic properties

    The temperature dependence of direct-current (dc)magnetic susceptibility of crushed crystalline sample of 1 and 2 were carried out in an applied magnetic field of 1 000 Oe in the temperature range of 2~300 K.As shown in Fig.5,the observed χMT value of 1 is 55.78 cm3·mol-1·K at 300 K,close to the expected value of 56.68 cm3·mol-1·K for four uncoupled Dy3+ions(S=5/2,L=5,6H15/2,g=4/3).The χMT gradually decreases until 50 K and then quickly decreases to a minimum of 36.35 cm3·mol-1·K at 2 K, which is lower than four times the χMT value of an isolated mononuclear Dy complex at 2 K,suggesting antiferromagnetic coupling between Dy3+ion.Thus the decreaseinχMTwithdecreasingtemperatureis probably ascribed to a combination of the antiferromagnetic interaction between the Dy3+ions and the thermal depopulation of excited Stark sublevels[27].The data in the range of 30~300 K can be fitted to the Curie-Weiss law,yielding C=63.69 cm3·mol-1·K and θ=-5.01 K for 1.

    Fig.5 Plots of temperature dependence of χMT vs T and χM-1vs T for 1

    The field dependence of magnetization of 1 is shown in Fig.6.The magnetization at 2 K increases rapidly below 1.5 T,and then slowly and linearly increases without complete saturation up to 7 T.The maximum value for M is 23.08μBat 7 T,which is slightly larger than the calculated value for four uncorrelated Dy3+magnetic moments(4×5.23μB)[10]. Indeed,the values are lower than the expected saturation value of 40μB(10μBfor each Dy3+ion for J= 15/2 and g=4/3)[10c-10d],which suggests the presence of a significant anisotropy and low-lying excited states, consistent with the observed nonsuperposition M vs H/ T plots at different magnetic fields(Fig.6)[9].

    Fig.6 M vs H/T plots for 1 measured in different fields below 7 T

    To probe the dynamics of magnetization for 1,the temperature dependence of ac magnetic susceptibility under Hdc=0 Oe and Hac=3 Oe was characterized at the indicated frequencies(1~1500 Hz).As shown in Fig.7,complex1displaysanobviousfrequency dependent out-of-phase signal,indicating the slow relaxation of the magnetization.However,the energy barriercannotbederivedbyfittingthepeak temperatures to an Arrhenius type expression due to the absence of maxima of out-of-phase susceptibility signals above 2.0 K(Fig.S5).However,the Eaand τ0valuescanbeobtainedfromfittingtheac susceptibility data by adopting Debye model and using the relationship ln(χ″/χ′=lnτ0+Ea/(KBT),if it is assumed thatthereisonlyonecharacteristicrelaxationprocess[28].The obtained Ea=35.4 K,τ0=1.5×10-5s(Fig. 8)are in agreement with the observed values for some other Dy4SMMs.For 1,the slow magnetic relaxation may result from a coupled system involving the four Dy (III)and the magnetic exchange coupling,although the interactions are expected to be very weak.

    Fig.7 Temperature dependence of the out-of-phase ac susceptibilities at the indicated frequencies for 1 under zero dc field

    The χMT value of 2 is 45.66 cm3·mol-1·K at 300 K (Fig.S4),which is slightly lower than the expected value of 47.28 cm3·mol-1·K for four uncoupled Tb3+ions(S=3, L=3,7F6,g=3/2).Similar to 1,a steady decrease of the χMT values of 2 is observed with deceasing temperature down to 50 K,and then decrease dramatically to 33.05 cm3·mol-1·K at 2 K.The data from 30 to 300 K are fitted to the Curie-Weiss law,leading to C=44.52 cm3· mol-1·K and θ=-5.80 K.As shown in Fig.S6,the magnetization increases rapidly below 1.5 T at 2 K,and then slowly and linearly increases to 18.91μBat 7 T. Notably,the ac susceptibility results of 2 show that no frequency dependent out-of-phase signal is observed in the region of 2~10 K(Fig.S7).Although Dy3+and Tb3+ions have large spin and high anisotropy,only the Dy4cluster exhibits slow paramagnetic relaxation,which may be ascribed to the spin parity effect[26a,29].

    Fig.8 Plots of natural logarithm of χ″/χ′vs 1/T for 1

    2.5Luminescent properties

    The solid-state luminescence of complex 2 at room temperature is shown in Fig.9.Complex 2 exhibits intense photoluminescence upon excitation at 375 nm. The emission spectrum of 2 can be ascribed to the characteristic5D4→7FJtransitions(J=6,5,4,3).The most intense peak with its maximum at 546 nm is attributed to the5D4→7F5transition.Besides this main emission line,the second intense peak at 492 nm(J=6), and much less intense two peaks at 588 nm(J=4)and 622 nm(J=3),respectively,are also observed.This means that TMeQ[6]ligand exhibits efficient energy transfer to Tb3+ion.When excited at 265 nm in the solid state at room temperature,compound 1 displays a wide luminescence spectrum with emission maximum at 390 nm(Fig.S8),whichcanbeassignedtoligand fluorescence(Fig.S9).Compared with the emission of the free ligand at 378 nm,the red shift in 1 may be ascribed to the increase of ligand conformational rigidity.

    Fig.9 Emission spectrum of 2 under 375 nm excitation in the solid state at room temperature

    3 Conclusions

    In summary,two TMeQ[6]-supported lanthanide sandwich complexes containing a cubane-like[Ln4(μ3-OH)4]8+cluster core were prepared and characterized. MagneticstudiesrevealthatDy4exhibitsslowmagnetic relaxation behavior.While the Tb3+analogue of[Ln4(μ3-OH)4]8+cluster core displays interesting luminescent property.The present work not only affords the first example of TMeQ[6]supported lanthanide hydroxide cluster with slow magnetic relaxation behavior,but also provides a new synthetic approach to prepare new lanthanide SMMs based on Cucurbit[n] urils.

    Supportinginformationisavailableathttp://www.wjhxxb.cn

    References:

    [1]Troiani F,Affronte M.Chem.Soc.Rev.,2011,40:3119-3129

    [2]Rogez G,Donnio B,Terazzi E,et al.Adv.Mater.,2009,21: 4323-4333

    [3](a)Sessoli R,Gatteschi D,Caneschi A,et al.Nature,1993, 365:141-143

    (b)Benelli C,Gatteschi D.Chem.Rev.,2002,102:2369-2387

    (c)Bagai R,Christou G.Chem.Soc.Rev.,2009,38:1011-1026

    (d)Kostakis G E,Akoab A M,Powell A K.Chem.Soc.Rev., 2010,39:2238-2271

    [4](a)Coronado E,Day P.Chem.Rev.,2004,104:5419-5448 (b)Sanvito S.Chem.Soc.Rev.,2011,40:3336-3355

    [5]Sokol J J,Hee A G,Long J R.J.Am.Chem.Soc.,2002, 124:7656-7657

    [6]Sessoli R,Tsai H L,Schake A R,et al.J.Am.Chem.Soc., 1993,115:1804-1816

    [7]Murrie M.Chem.Soc.Rev.,2010,39:1986-1995

    [8](a)Woodruff D N,Winpenny R E P,Layfield R A.Chem. Rev.,2013,113:5110-5148

    (b)Hewitt I J.Tang J K,Madhu N T,et al.Angew.Chem. Int.Ed.,2010,49:6352-6356

    (c)Guo Y N,Xu G F,Gamez P,et al.J.Am.Chem.Soc., 2010,132:8538-8539

    [9]Bi Y F,Wang X T,Liao W P,et al.Inorg.Chem.,2009,48: 11743-11747

    [10](a)Abbas G,Lan Y H,Kostakis G E,et al.Inorg.Chem., 2010,49:8067-8072

    (b)Lin P H,Burchell T J,Ungur L,et al.Angew.Chem. Int.Ed.,2009,48:9489-9492

    (c)Ke H S,Gamez P,Zhao L,et al.Inorg.Chem.,2010,49: 7549-7557

    (d)Tang J K,Hewitt I,Madhu N T,et al.Angew.Chem.Int. Ed.,2006,45:1729-1733

    [11]Kong X J,Wu Y L,Long L S,et al.J.Am.Chem.Soc., 2009,131:6918-6919

    [12]Wang R,Selby H D,Liu H,et al.Inorg.Chem.,2002,41: 278-286

    [13]Deacon G B,Feng T,Hockless D C R,et al.Chem.Commun., 1997:341-342

    [14]Peng J B,Kong X J,Zhang Q C,et al.J.Am.Chem.Soc., 2014,136:17938-17941

    [15]Bürgstein M R,Gamer M T,Roesky P W,et al.J.Am. Chem.Soc.,2004,126:5213-5218

    [16]Liu C M,Zhang D Q,Hao X,et al.Cryst.Growth Des., 2012,12:2948-2954

    [17](a)Hewitt I J,Lan Y,Anson C E,et al.Chem.Commun., 2009:6765-6767

    (b)Gao Y,Xu G F,Zhao L,et al.Inorg.Chem.,2010,48: 11495-11497

    (c)Habib F,Lin P O,Long J,et al.J.Am.Chem.Soc., 2011,133:8830-8833

    [18](a)Behrend R,Meyer E,Rusche F.Justus Liebigs Ann. Chem.,1905,339:1-37

    (b)Freeman W A,Mock W L,Shih N Y.J.Am.Chem.Soc., 1981,103:7367-7368

    (d)Day A I,Blanch R J,Arnold A,et al.Angew.Chem., Int.Ed.,2002,41:275-277

    [19](a)Flinn A,Hough G C,Stoddart J F,et al.Angew.Chem. Int.Ed.,1992,31:1475-1477

    (b)Zhao J Z,Kim H J,Oh J,et al.Angew.Chem.,Int.Ed., 2001,40:4233-4235

    (c)Jon S Y,Selvapalam N,Oh D H.et al.J.Am.Chem. Soc.,2003,125:10186-10187

    (d)Huang W H,Zavalij P Y,Isaacs L.Angew.Chem.Int. Ed.,2007,119:7569-7571

    (e)Zhao Y J,Xue S F,Zhu Q J,et al.Chin.Sci.Bull., 2004,49:1111-1116

    [20]Chen W J,Yu D H,Xiao X,et al.Inorg.Chem.,2011,50: 6956-6964

    [21](a)Hernandez-Molina R,Sokolov M N,Sykes A G.Acc. Chem.Res.,2001,34:223-230

    (b)Fedin V P.J.Coord.Chem.,2004,30:151-152

    (c)Hernandez-Molina R,Sokolov M N,Clausen M,et al. Inorg.Chem.,2006,45:10567-10575

    (d)Gushchin A L,Ooi B,Harris P,et al.Inorg.Chem., 2009,48:3832-3839

    [22](a)Lü J,Lin J X,Cao M N,et al.Coord.Chem.Rev.,2013, 257:1334-1357

    (b)Ni X L,Xue S F,Tao Z.Coord.Chem.Rev.,2015,287:

    89-113

    [23](a)Tripolskaya A A,Mainicheva E A,Mitkina T V,et al. Russ.J.Coord.Chem.,2005,31:768-774

    (b)Thuery P.Inorg.Chem.,2009,48:4497-4513

    (c)Thuery P.Inorg.Chem.,2010,49:9078-9085

    (d)Thuery P.Inorg.Chem.,2011,50:10558-10560

    (e)Kushwaha S,Rao S A,Sudhakar P P.Inorg.Chem., 2012,51:267-273

    (f)Liang L L,Ni X L,Zhao Y,et al.Inorg.Chem.,2013, 52:1909-1915

    (g)Liang L L,Zhao Y,Tao Z,et al.CrystEngComm,2013, 15:3943-3950

    (h)Liu J X,Hu Y F,Lin R L,et al.CrystEngComm,2012, 14:6983-6989

    [24](a)Gerasko O A,Mainicheva E A,Naumova M I,et al. Inorg.Chem.,2008,47:8869-8880

    (b)Gerasko O A,Mainicheva E A,Naumova M I,et al. Eur.J.Inorg.Chem.,2008,3:416-424

    [25]SHELXTL Program Package,Version 6.10,Bruker AXS, Inc.,Madison,WI,2000.

    [26](a)Yan P F,Lin P H,Habib F.et al.Inorg.Chem.,2011, 50:7059-7065

    (b)Jami A K,Baskar V,Sanudo E C,et al.Inorg.Chem., 2013,52:2432-2438

    [27]Langley S K,Moubaraki B,Forsyth C M,et al.Dalton Trans.,2010,39:1705-1708

    [28]Bartolomé J,Filoti G,Kuncser V,et al.Phys.Rev.B,2009, 80:014430

    [29](a)Wernsdorfer W,Bhaduri S,Boskovic C,et al.Phys.Rev. B,2002,65:180403

    (b)Wernsdorfer W,Chakov N E,Christou G,et al.Phys. Rev.Lett.,2005,95:037203

    Slow Magnetic Relaxation in Sandwich-Type Tetranuclear Dysprosium Complex with TMeQ[6](TMeQ[6]=α,α,δ,δ-Tetramethylcucurbit[6]uril)

    CHEN Wen-JianKONG Xiang-Jian*LONG La-Sheng*ZHENG Lan-Sun
    (State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen,Fujian 361005,China)

    Two TMeQ[6]-supported sandwich tetranuclear complexes,[Ln4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(Ln=Dy,1;Ln=Tb,2),have been prepared and characterized.Crystal structural analysis reveals that both complexes contain a cubane-like[Ln4(μ3-OH)4]8+cluster core sandwiched between two TMeQ[6]macrocycles.Magnetic investigations indicate that complex 1 displays slow magnetization relaxation.Complex 2 exhibits intense photoluminescence owing to the efficient energy transfer from TMeQ[6]ligand to Tb3+ion.CCDC: 929607,1;929608,2.

    cluster;magnetism;photoluminescence;curcurbit[6]

    O614.342

    A

    1001-4861(2015)09-1867-08

    10.11862/CJIC.2015.226

    2015-06-01。收修改稿日期:2015-07-07。

    國家自然科學基金(nos.21422106,21371144,21431005)資助項目。

    *通訊聯(lián)系人。E-mail:xjkong@xmu.edu.cn;lslong@xmu.edu.cn;會員登記號:S06N455S1203(陳文建);S06N3944M1007(龍臘生)。

    猜你喜歡
    化工學院稀土甲基
    使固態(tài)化學反應100%完成的方法
    中國的“稀土之都”
    UIO-66熱解ZrO2負載CoMoS對4-甲基酚的加氫脫氧性能
    分子催化(2022年1期)2022-11-02 07:10:56
    1,2,4-三甲基苯氧化制備2,3,5-三甲基苯醌的技術進展
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    稀土鈰與鐵和砷交互作用的研究進展
    四川冶金(2019年5期)2019-12-23 09:04:36
    廢棄稀土拋光粉的綜合利用綜述
    聚甲基亞膦酸雙酚A酯阻燃劑的合成及其應用
    中國塑料(2016年2期)2016-06-15 20:30:00
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    手机成人av网站| 一本综合久久免费| 色婷婷久久久亚洲欧美| 男男h啪啪无遮挡| 精品国产国语对白av| 免费av中文字幕在线| 国产高清videossex| 精品久久久久久电影网| 两人在一起打扑克的视频| 国产激情久久老熟女| 国产精品三级大全| 国产成人a∨麻豆精品| 国产在视频线精品| 欧美日韩黄片免| 晚上一个人看的免费电影| 成人国产一区最新在线观看 | 免费在线观看完整版高清| 国产免费现黄频在线看| 日韩人妻精品一区2区三区| 超色免费av| 免费不卡黄色视频| 日本av手机在线免费观看| 日日爽夜夜爽网站| 亚洲图色成人| 亚洲第一青青草原| 国产精品一区二区在线观看99| 欧美97在线视频| 熟女av电影| 亚洲av电影在线进入| a级毛片在线看网站| 女警被强在线播放| 国产精品一区二区在线不卡| 精品久久久精品久久久| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 只有这里有精品99| 国产精品人妻久久久影院| 丝袜美足系列| 一二三四在线观看免费中文在| 亚洲国产成人一精品久久久| 新久久久久国产一级毛片| 91字幕亚洲| 国产在线观看jvid| 国产欧美日韩精品亚洲av| 国产有黄有色有爽视频| 国产极品粉嫩免费观看在线| 国产视频首页在线观看| 欧美国产精品va在线观看不卡| 性色av一级| 精品亚洲成国产av| 男女床上黄色一级片免费看| 最黄视频免费看| 两人在一起打扑克的视频| 午夜91福利影院| 侵犯人妻中文字幕一二三四区| 黄色 视频免费看| 国产又色又爽无遮挡免| 国产成人精品久久二区二区91| 最黄视频免费看| 午夜久久久在线观看| 啦啦啦在线免费观看视频4| 黄色视频在线播放观看不卡| 亚洲精品第二区| 婷婷色av中文字幕| 久久天堂一区二区三区四区| 男女免费视频国产| 性少妇av在线| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 国产一区有黄有色的免费视频| 亚洲精品一二三| 国产免费现黄频在线看| 亚洲天堂av无毛| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 九色亚洲精品在线播放| 无遮挡黄片免费观看| 宅男免费午夜| 亚洲九九香蕉| 日本av免费视频播放| 18禁裸乳无遮挡动漫免费视频| 成人18禁高潮啪啪吃奶动态图| av电影中文网址| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 91精品三级在线观看| 国产福利在线免费观看视频| 最新在线观看一区二区三区 | 国产免费视频播放在线视频| av在线app专区| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 男人添女人高潮全过程视频| 老司机影院毛片| 色婷婷av一区二区三区视频| 黑人欧美特级aaaaaa片| 又紧又爽又黄一区二区| 国产成人系列免费观看| 叶爱在线成人免费视频播放| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 国产日韩欧美视频二区| 日韩电影二区| 久久精品国产亚洲av高清一级| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 午夜两性在线视频| 18禁国产床啪视频网站| 1024视频免费在线观看| 首页视频小说图片口味搜索 | 热re99久久精品国产66热6| av视频免费观看在线观看| 色网站视频免费| 国产精品一国产av| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 宅男免费午夜| 美女大奶头黄色视频| 首页视频小说图片口味搜索 | 在线观看人妻少妇| 99精国产麻豆久久婷婷| 亚洲美女黄色视频免费看| 免费在线观看日本一区| 蜜桃国产av成人99| 中文字幕人妻丝袜一区二区| 日韩av不卡免费在线播放| 国产人伦9x9x在线观看| 国产精品国产三级国产专区5o| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线进入| 午夜av观看不卡| 日韩av免费高清视频| 国产成人精品久久二区二区免费| 亚洲 国产 在线| 十八禁网站网址无遮挡| 国产精品.久久久| 免费看十八禁软件| 欧美中文综合在线视频| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 成人黄色视频免费在线看| svipshipincom国产片| 免费av中文字幕在线| 超碰97精品在线观看| av视频免费观看在线观看| 男女免费视频国产| 亚洲欧洲日产国产| 手机成人av网站| 亚洲国产欧美日韩在线播放| 深夜精品福利| 午夜av观看不卡| 各种免费的搞黄视频| 天堂8中文在线网| 国产精品99久久99久久久不卡| 在线观看人妻少妇| 亚洲av日韩在线播放| 七月丁香在线播放| 亚洲伊人色综图| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 亚洲图色成人| 无遮挡黄片免费观看| 日本欧美视频一区| 国产又爽黄色视频| 久久久久久人人人人人| 婷婷成人精品国产| 中文字幕制服av| 国产高清视频在线播放一区 | 中文乱码字字幕精品一区二区三区| 国产亚洲av高清不卡| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 久久久久视频综合| 亚洲精品第二区| 久久久欧美国产精品| 亚洲国产精品一区二区三区在线| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区久久| 亚洲图色成人| 成人亚洲欧美一区二区av| 69精品国产乱码久久久| 日日摸夜夜添夜夜爱| 国产无遮挡羞羞视频在线观看| 国产一卡二卡三卡精品| 男女下面插进去视频免费观看| 国产成人欧美在线观看 | 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 99热网站在线观看| 99久久综合免费| 嫩草影视91久久| 成人亚洲精品一区在线观看| e午夜精品久久久久久久| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 亚洲av国产av综合av卡| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲国产成人精品v| 国产成人av教育| 亚洲成人手机| av在线老鸭窝| 成人亚洲欧美一区二区av| 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 美女扒开内裤让男人捅视频| 丰满饥渴人妻一区二区三| 日韩制服丝袜自拍偷拍| 国产精品九九99| 美女主播在线视频| 高清不卡的av网站| 国产精品麻豆人妻色哟哟久久| 91精品三级在线观看| 日本午夜av视频| 中文字幕av电影在线播放| 久久久久久人人人人人| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 国产成人a∨麻豆精品| 男女午夜视频在线观看| 男女之事视频高清在线观看 | av片东京热男人的天堂| 久久午夜综合久久蜜桃| 中文字幕制服av| 久久国产精品大桥未久av| 日本vs欧美在线观看视频| 午夜91福利影院| 涩涩av久久男人的天堂| 高清黄色对白视频在线免费看| 国产一区亚洲一区在线观看| 久久 成人 亚洲| 蜜桃国产av成人99| 看免费成人av毛片| 99精品久久久久人妻精品| xxxhd国产人妻xxx| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 老司机影院成人| 午夜福利乱码中文字幕| 一区二区三区精品91| 久久国产精品人妻蜜桃| 另类精品久久| 在线天堂中文资源库| 日本av免费视频播放| 啦啦啦视频在线资源免费观看| 国产爽快片一区二区三区| 波野结衣二区三区在线| 国产精品亚洲av一区麻豆| 男人爽女人下面视频在线观看| 另类亚洲欧美激情| 亚洲精品日韩在线中文字幕| 2018国产大陆天天弄谢| 亚洲成人免费电影在线观看 | 一本色道久久久久久精品综合| 精品福利观看| 国产不卡av网站在线观看| 国产精品成人在线| 久久99热这里只频精品6学生| 18禁观看日本| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9 | 欧美精品啪啪一区二区三区 | 精品第一国产精品| 亚洲av成人不卡在线观看播放网 | 交换朋友夫妻互换小说| 久久影院123| 啦啦啦啦在线视频资源| 国产三级黄色录像| 国产黄频视频在线观看| av国产久精品久网站免费入址| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 日日爽夜夜爽网站| 日本91视频免费播放| 伊人亚洲综合成人网| 久久影院123| 少妇粗大呻吟视频| 色94色欧美一区二区| 国产成人免费观看mmmm| 水蜜桃什么品种好| 久久久国产精品麻豆| 午夜av观看不卡| 99久久99久久久精品蜜桃| 波多野结衣av一区二区av| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 丝袜在线中文字幕| 大型av网站在线播放| 亚洲色图综合在线观看| 波多野结衣av一区二区av| 日韩一本色道免费dvd| 亚洲自偷自拍图片 自拍| 国产在线视频一区二区| 少妇的丰满在线观看| 一级黄片播放器| 久久鲁丝午夜福利片| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 在线看a的网站| 亚洲情色 制服丝袜| av线在线观看网站| 日韩av不卡免费在线播放| 国产av国产精品国产| av天堂在线播放| 大型av网站在线播放| 色视频在线一区二区三区| av线在线观看网站| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 国产1区2区3区精品| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 王馨瑶露胸无遮挡在线观看| 国产xxxxx性猛交| 只有这里有精品99| 亚洲精品国产av成人精品| 女人被躁到高潮嗷嗷叫费观| 国产av精品麻豆| 免费av中文字幕在线| 亚洲专区中文字幕在线| 国产福利在线免费观看视频| 久久 成人 亚洲| 亚洲第一av免费看| 国产精品成人在线| 在线 av 中文字幕| 一区福利在线观看| 男女下面插进去视频免费观看| 久久热在线av| 亚洲欧美日韩另类电影网站| 久久女婷五月综合色啪小说| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 成人影院久久| 人人妻,人人澡人人爽秒播 | 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 国产欧美日韩综合在线一区二区| 老司机影院成人| 人妻一区二区av| 各种免费的搞黄视频| 精品久久久精品久久久| av欧美777| 观看av在线不卡| 免费日韩欧美在线观看| 熟女av电影| 女人精品久久久久毛片| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 国产日韩欧美视频二区| 青春草视频在线免费观看| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 嫁个100分男人电影在线观看 | videos熟女内射| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 午夜免费成人在线视频| 又大又爽又粗| 热re99久久国产66热| 男人舔女人的私密视频| 精品一品国产午夜福利视频| 中文欧美无线码| 午夜日韩欧美国产| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 精品第一国产精品| 国产av一区二区精品久久| 高清av免费在线| tube8黄色片| 婷婷丁香在线五月| 赤兔流量卡办理| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 热re99久久国产66热| av欧美777| 亚洲精品国产色婷婷电影| av线在线观看网站| 男女免费视频国产| 免费一级毛片在线播放高清视频 | 国产日韩欧美在线精品| 欧美黄色淫秽网站| 午夜免费观看性视频| 精品久久蜜臀av无| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 一区二区三区乱码不卡18| 男女之事视频高清在线观看 | 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 电影成人av| 日韩一区二区三区影片| 波多野结衣一区麻豆| 成年av动漫网址| 日本色播在线视频| 免费在线观看影片大全网站 | 亚洲av综合色区一区| 亚洲一区二区三区欧美精品| 免费在线观看影片大全网站 | 欧美日韩黄片免| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| 国产男女内射视频| 久久av网站| 中文字幕av电影在线播放| 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 中文欧美无线码| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 一级a爱视频在线免费观看| 蜜桃在线观看..| 少妇人妻 视频| 丝袜脚勾引网站| 亚洲成人国产一区在线观看 | 亚洲欧美清纯卡通| 久久国产亚洲av麻豆专区| 久久人人97超碰香蕉20202| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频 | www.自偷自拍.com| 美女脱内裤让男人舔精品视频| 午夜激情久久久久久久| 97人妻天天添夜夜摸| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 伦理电影免费视频| 国产精品久久久av美女十八| 男女边摸边吃奶| 久久热在线av| 亚洲精品国产av蜜桃| 精品免费久久久久久久清纯 | 别揉我奶头~嗯~啊~动态视频 | 欧美av亚洲av综合av国产av| 少妇人妻久久综合中文| 午夜福利乱码中文字幕| 又粗又硬又长又爽又黄的视频| 91麻豆精品激情在线观看国产 | 日韩制服骚丝袜av| 丰满少妇做爰视频| 色网站视频免费| 国产色视频综合| 午夜福利视频精品| 久久久久精品人妻al黑| 久久久久国产一级毛片高清牌| 国产日韩欧美视频二区| 黄色视频不卡| 国产97色在线日韩免费| 国产精品99久久99久久久不卡| 深夜精品福利| 后天国语完整版免费观看| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 美女大奶头黄色视频| 久久久久久久久免费视频了| 乱人伦中国视频| 久久久久久久久久久久大奶| 免费一级毛片在线播放高清视频 | 在线观看www视频免费| 欧美激情极品国产一区二区三区| 国产极品粉嫩免费观看在线| 老司机深夜福利视频在线观看 | √禁漫天堂资源中文www| 免费看av在线观看网站| 香蕉丝袜av| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 亚洲,一卡二卡三卡| 国产淫语在线视频| 国产色视频综合| 精品一区在线观看国产| 嫩草影视91久久| 男的添女的下面高潮视频| 热99国产精品久久久久久7| 99国产综合亚洲精品| 亚洲国产最新在线播放| 国产伦人伦偷精品视频| 在现免费观看毛片| 免费看十八禁软件| 亚洲精品中文字幕在线视频| 黄频高清免费视频| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 久9热在线精品视频| 中文乱码字字幕精品一区二区三区| 精品少妇黑人巨大在线播放| 国产成人欧美在线观看 | 美女午夜性视频免费| 一区二区三区精品91| 一级毛片我不卡| 久久av网站| 久久久久视频综合| 国产精品一区二区精品视频观看| 国产日韩欧美在线精品| 麻豆av在线久日| 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 婷婷色综合www| 亚洲,欧美精品.| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 人人妻人人澡人人爽人人夜夜| 免费久久久久久久精品成人欧美视频| 久久精品久久久久久久性| 波野结衣二区三区在线| 大片电影免费在线观看免费| 国产一级毛片在线| 中文字幕人妻丝袜制服| 日本av手机在线免费观看| 欧美97在线视频| 一区在线观看完整版| 纯流量卡能插随身wifi吗| bbb黄色大片| 午夜影院在线不卡| svipshipincom国产片| kizo精华| 青青草视频在线视频观看| 青春草视频在线免费观看| 99热网站在线观看| 欧美精品高潮呻吟av久久| 亚洲成国产人片在线观看| av在线老鸭窝| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 亚洲人成电影观看| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 一区二区三区激情视频| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 日本一区二区免费在线视频| 人人妻,人人澡人人爽秒播 | 熟女少妇亚洲综合色aaa.| 在线亚洲精品国产二区图片欧美| 国产精品欧美亚洲77777| 国产又爽黄色视频| 久久久久久久精品精品| 成人免费观看视频高清| 看免费av毛片| 成人免费观看视频高清| 欧美日韩精品网址| 久久九九热精品免费| 中文字幕亚洲精品专区| 日本一区二区免费在线视频| 两个人免费观看高清视频| 男女国产视频网站| 91精品三级在线观看| 9191精品国产免费久久| 亚洲人成77777在线视频| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| 国产视频一区二区在线看| 青草久久国产| 午夜视频精品福利| av在线播放精品| 水蜜桃什么品种好| 国产成人影院久久av| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 老熟女久久久| 2018国产大陆天天弄谢| 深夜精品福利| 无限看片的www在线观看| 99精品久久久久人妻精品| 国产精品久久久人人做人人爽| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 人妻 亚洲 视频| 亚洲精品国产av成人精品| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| av不卡在线播放| 国产成人av教育| 1024香蕉在线观看| 色婷婷久久久亚洲欧美| 国产麻豆69| 亚洲国产精品999| 曰老女人黄片| 最新在线观看一区二区三区 | 国产97色在线日韩免费| 黄色一级大片看看| 亚洲成人免费电影在线观看 | 久久久久精品人妻al黑| 久久久久国产精品人妻一区二区|