• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Spin Transport in Rashba Spin-Orbit-Coupled Graphene Nanoflakes?

    2018-01-22 09:13:15NikoofardLaghaeiandHeidariSemiromi
    Communications in Theoretical Physics 2017年3期

    H.Nikoofard,M.Laghaei,and E.Heidari Semiromi

    Department of Physics,University of Kashan,Kashan,Iran

    1 Introduction

    Study and manufacturing of electronic nanodevices are the main interests of engineers and researchers in fundamental sciences.This is because these systems are fast and have low power dissipation for storage and transport of information.The appearance of the spintronics as a new branch of electronics has opened a wide horizon in this technology,which is the development of spin-based nanodevices to enhance storage capacity and enable encoding and fast processing of the information.[1]Quantum transport,which is the investigation of polarization of the spin of the electrons,has a substantial role in the spintronics and has been studied widely in mesoscopic systems.As an example,the quantum transport has effects in significant phenomena such as quantum Hall effect and it would allow for spin currents to be generated without dissipation.[2]

    The spin polarization in a mesoscopic system is generally achieved by an external magnetic field or by connecting the system to a ferromagnetic material.However,in recent years,the generation and manipulation of the spin currents by full electrical means such as spin-orbit coupling(SOC)have become subjects of interest.If the mirror symmetry is broken,either by a perpendicular electric field via a gate voltage or by interaction with a substrate,a Rashba SOC(RSOC)is revealed.[3]The RSOC as an external electric field causes switching and control on the orientation of the spin of electron.When the electric current flows in a sheet,the spin of the electrons become polarized as a result of the cooperation of the current and the Rashba field that is assured with the presence of the substrate.[4]The tuning of the RSOC strength via the external gates[3,5]is simpler than with a magnetic field,so the two-dimensional electron systems with RSOC have become the most promising devices for spintronic applications.

    Many studies have been performed on the SOC in nanostructures as a possible electrical way,which allow generation and manipulation of the spin current.For example,it is observed experimentally that a spin-polarized current is generated in a semiconductor wire due to a lateral SOC induced by an in-plane electric field.[6]Moreover,the SOC applied on a segment of the quantum wire in the presence of a constriction[7]generates a spin polarization and enhances the spin- filtering up to%95.Other studies show that the SOC can lead to the spin Hall effect in semiconductor systems.[8?11]

    Understanding of the novel features of the graphene such as weak intrinsic SOC and hyper fine couplings[12]has been of interest in recent years. In particular,graphene-based transistors[13]and field-effect transistors(FET)[14]can cause an evolution in the nanoelectronics.The carbon-based devices have a controllable band structure,so it is important to investigate the quantum transport properties of these systems.[15]For example,the spin transport has been measured in suspended highmobility graphene devices that are connected to ferromagnetic leads.[16]

    Several experimental reports have shown that RSOC in graphene can be larger than 200 meV[17]and the quantum spin Hall effect can occur in graphene.[18]Such observations have motivated the scientists to study the effect of the SOC in the graphene-based systems.The effect of SOC on the electronic structure of the graphene opens a small gap in the band energy.This allows the grapheneto convert from a two-dimensional semiconductor to an insulator with a quantized spin Hall conductance.[18?19]

    The spin conductivity as a striking feature of the graphene can be analyzed based on the Kubo and Landauer formulas.[5]The spin-dependent transport of the graphene nanoribbons have been studied in the presence of an electric- field-induced Rashba coupling in the finite region of the system by consideration of some symmetries.[20]Also,the effect of symmetry and defect on transport properties in zigzag graphene nanoribbons are investigated.[21]A perfect spin- filtering effect and a rectifying behavior are observed for edge hydrogenated graphene nanoribbon heterojunctions.[22]The spin polarization and conductance have been calculated in a Y-shape graphene nanoribbon with three terminals in the presence of the RSOC.[23]In the case of a T-shaped conductor,the effects of the RSOC on the spin-dependent transmission probabilities and the spin filtration have been obtained.[24?26]A large spin- filtering is observed in graphene nanoribbons with zigzag edges in the presence of RSOC.[26]A similar work has performed very recently that the spin polarization has been studied using a gate voltage through a Rashba barrier in the graphene.It found that the sign of the spin polarization can switch from positive to negative by adjusting the electric potential at any RSOC.[27]There also exist technological applications of the grephene in spintronic devices.The graphene nanostrips can be used as digital memory devices in which the spin-polarized states can be treated as switchable quantum bits through the applied voltage.[28]

    In this paper,we consider graphene nanodisks with various sizes as channels deposited on a substrate for inducing the RSOC.The channel is connected to semiin finite nanoribbons with armchair edges as the leads.The RSOC is provided by an underneath gate voltage applied to the central region of the device.In our approach,we start with a single-particle Green’s function in the tight binding model to calculate the transmission probability and the spin polarization of the electrons.Moreover,the spin polarization of the device in three directions is obtained by tuning the RSOC strength.We also study the effect of the size of the channel on the spin polarization.

    2 Model and Method

    We consider a graphene nanoflake as a channel in which the number of the plaquettes on each side,denoted byM,introduces the size of the system.The RSOC is applied to the center of the channel,as shown with the red color in the inset of Fig.1.The system is attached to two semi-in finite graphene nanoribbon leads,denoted by leadLand leadR.The total Hamiltonian of the system is

    where,H0describes the kinetic energy of the itinerant electrons in the nanoflake andHRis the Rashba Hamiltonian.In Eq.(1),H0can be expressed in a tight-binding model in terms of the electronic hopping between the nearest neighbor atomic sites;

    where〈n,m〉denotes the summation over the nearest neighbor sites,t=2.66 eV is the nearest-neighbor hopping integral,andc?n,σ(cn,σ)is the creation(annihilation)field operator of an electron at then-th site with the spinσ(↑,↓).In Eq.(1),His given by[26]R

    wheredn,mis a displacement vector between the two nearest-neighbor atoms fromm-th ton-th site,αrepresents the Rashba SOC strength,andais the carboncarbon bond length. The advanced(retarded)singleparticle Green’s function can be written as follows[29]

    whereHCis the Hamiltonian of the channel.The self energy of the leadα(=L,R)is

    wheregαis the surface Green’s function at the interface of the channel and the leadα.HαCis the coupling between the leadαand the channel.We calculateGLσσR′by the Keldysh formalism as the spin-resolved conductance of the electrons with the injected Fermi energyEand the spinσfrom the left lead(L)and detected with the spinσ′from the right lead(R),[20]

    Here,Γ is the coupling matrix for the leadαthat is related to self-energies as follows

    The transmission probability of the electron,Tσσ′,will be generalized to a 2×2 matrix in the spin space with spin-conserving components(diagonal)and spin- flipping components(off-diagonal)[23]

    If the incident current is unpolarized,then the spin polarization of the current detected in the right lead inx,y,andzdirection is calculated by using the Eq.(8)

    and the total spin polarization is defined by

    3 Results and Discussion

    In this section,the transmission probability and the spin polarization are calculated versus the Fermi energy for various strengths of RSOC and several sizes of the system.The direction of the electric field which determines the strength of RSOC is chosen along thezaxis.This is also used as the direction of the spin quantization.According to the experimental data for the strengths of RSOC in the graphene-based nanomaterials,[17]we consider the range(0–0.2)eV forαin the following.

    Fig.1 (Color online)Spin-up and spin-down transmission probabilities as a function of the Fermi energy of the injected electrons for M=10 and two values of α=0 and 0.2 eV.Inset:Schematic representation of the channel for M=10.

    Figure 1 shows the variation of the spin-up and spindown transmission probabilities as functions of the Fermi energy of the injected electrons for two values of the Rashba strength(α=0 and 0.2 eV).The considered channel forM=10 is sketched in the inset.The electrons are injected from the left side of the channel and detected at the right side.The dotted curves are for the situation that the edges of graphene nanoribbon are terminated with hydrogen atoms.In Fig.1,the transmission probabilities are nearly zero aroundE/t=0,but the probabilities grow with the enhancement of the energy.The steps in the curves are irregular because of the backscattering of the electrons that occurs in the channel.This is due to the bending in the region of the channel that RSOC is applied from a straight nanoribbon.In the absence of the RSOC(α=0),the transmission probabilities are even functions with respect to the Fermi energy due to the time reversal symmetry in the system.However,this symmetry breaks down with turning on the Rashba field.By increasing the Rashba strength,the transmission probabilities remain unchanged at small values of the energy(E/t?0.1).Then,the probabilities decrease for the higher energies(E/t?0.1).This is because the RSOC rotates the spin of the electrons and then,the transmission probabilities of the electrons with the initial spin direction decrease.This achievement is in agreement with the result of Ref.[27]in which the transmission probability is larger for lower gate voltages.The mentioned change in the spin orientation by the RSOC is useful in the applications that use a gate voltage for the spin filtration.

    If we consider the graphene nanorribbon with hydrogen-terminated edges,the length of the C-C bond in the edge shortens.So,this kind of geometric deformation causes increasing of the hopping parameter between two neighboring carbon atoms on the graphene nanoribbon edge.[30]By attention to dotted curves in Fig.1 we see that the transmission probability decreases slightly for the most of the values of the Fermi-energy.This decrease is a result of backscattering of the electrons waves from hydrogen atoms that act as defects on the edges.Besides,the energy interval that the transmission probability is zero decreases.Also the fluctuations of the transmission probability become more in the presence of the hydrogenterminated edges.This is due to the quantum interference of the electrons waves.By comparison of Figs.1(a)and 1(b),one observes that the behavior of the spin-up and spin-down transmission probabilities are similar to each other.This indicates the presence of a kind of symmetry in the system with respect to the orientation of the spin of the electrons. Also for an arbitrary energy in the presence of RSOC(α=0.2 eV),one observes thatT↑↑(E)=T↓↓(?E).

    Fig.2 (Color online)Spin-up and spin-down transmission probabilities as a function of the Rashba strength for M=10 and two values of the Fermi energy.The solid and dotted lines show T↑↑ for E/t=0.29 and E/t=?0.29,respectively.The dashed line represents T↓↓ for E/t= ?0.29.The solid and dashed lines fall on each other.Inset:Schematic representation of the channel for M=10.

    Figure 2 shows the variation of the transmission probabilities with the Rashba strength for two values of the Fermi energyE/t=0.29 and?0.29 in the channel withM=10.In the absence of the RSOC(α=0),we haveT↑↑(E)=T↑↑(?E)=T↓↓(?E).By switching on the Rashba field and increasingα,an overall decreasing occurs and the above relation changes toT↑↑(E)=T↓↓(?E)/=T↑↑(?E).These results are in agreement with Fig.1.

    The effects of the RSOC on the components of the spin polarization are shown in Fig.3.In this figure,Px,PyandPzare plotted with respect to the Fermi energy for several values ofα.In Figs.3(a)–3(c),an antisymmetry exists with respect toEfor all values ofα.Also,in these figures,there is a region around the zero Fermi energy where the spin polarizations become zero,which is due to the gap in the energy levels.[20]However,outside this interval,a sudden increase is seen in the spin polarizations for specific energies.The sudden increase in the spin polarizations allows one to choose energies corresponding to strong spin filtrations.In Figs.3(a)–3(c),the components of the spin polarization oscillate by the enhancement of the energy,and the heights of the peaks suppress and decay to the zero.The origin of these oscillations is multiple reflections of the spin waves and their resonance in the channel.By increasingα,more oscillations are observed inPx,PyandPz.All components of the spin polarization have zero value in the absence of the Rashba field,but they increase with enhancement the Rashba strength.Also,in Figs.3(a)and 3(c)a change in the sign is observed in the plots ofPxandPzwith increasing the energy at all Rashba strengths.These results indicate that the sign and the magnitude of the spin polarizationPxandPzcan be controlled by tuning the gate voltage.Also,the spin polarization in thez-direction(Pz),which is obtained through the difference between the transmission probabilities according to Eq.(9),becomes lower when the energy increases.It has the maximum value atE/t=0.215,which is in agreement with Fig.1.

    In Fig.3(d),three components of the spin polarization are compared with each other for the value ofα=0.2 eV.The value of the maximum ofPyis larger than those of the other components in 0.1<E/t<0.5.This shows that the channel has a good filtration behavior for theycomponent of the spin polarization in this range of the energy.Also in this figure,Pxis zero inE/t~0.287 andPzis zero inE/t~0.3,which indicate that one can have a control on the spin filtration by variation of the Fermi energy.In Fig.4,the total spin polarization is plotted with respect to the Fermi energy for several Rashba strengths.The total spin polarization is an even function of the Fermi energy.

    The spin-up transmission probability and the total spin polarization are shown in Fig.5 for several sizes of the system and forα=0.2 eV.In Fig.5(a),the transmission probability is an increasing function with enhancement of the size of the system at a fixed Fermi energy.Besides,the energy interval that the transmission probability is zero decreases with the size of the system.This is because for the larger sizes of the system,the number of accessible energy levels for the injected electrons is higher.The similar effects are observed for total spin polarization in the range 0.1<E/t<0.5 in Fig.5(b).Also,the fluctuations of the spin polarization increase with the size of the system.

    Fig.3 (Color online)Components of the spin polarization as a function of the Fermi energy for M=10 and various values of the Rashba strength in Figs.3(a)–3(c).These components are shown particularly for α =0.2 eV in panel(d).Schematics of the channel for M=10 is shown in the right bottom of the figure.

    Fig.4 (Color online)Total spin polarization versus the Fermi energy for M=10 and various values of the Rashba strength.Inset:Schematic representation of the channel for M=10.

    Fig.5 (Color online)Spin-up transmission probability and total spin polarization with respect to the Fermi energy for several sizes of the system at α=0.2 eV.

    Figure 6 shows the effect of the size of the channel on the components of the spin polarization with respect to the Fermi energy forα=0.2 eV.In all panels of this figure,the fluctuations of the spin polarization become more with size of the system.The heights of the largest peaks in the plots grow with increasing the size of the system.So,the ability to perform spin filtration enhances with the size of the channel.In Fig.6,as the size increases,the maximum amplitudes of the plots occur in lower energies.This is because the number of available energy levels for the electrons increases with the size of the system as mentioned before.In the range 0<E/t<0.5,one can have a control on the type of the spin filtration,by variation of the Fermi energy.For example,Pxhas a zero value forM=10 atE/t=0.284,butPyandPzare nonzero in these parameters of the system.Moreover,the spin filtration can be controlled by changing the size of the system,e.g.all of the components of the spin polarization are nonzero forM=13 atE/t=0.284,butPxhas a zero value forM=4 and 10 at this energy.

    Fig.6(Color online)Three components of the spin polarization with respect to the Fermi energy for several sizes of the system at α=0.2 eV.

    Fig.7 Transmission probability in the absence(solid curves)and presence of defect(dashed curves)as a function of the Fermi energy of the injected electrons for M=10 and α=0.2 eV.Inset:Schematic representation of the channel with defect for M=10.

    We have introduced a single defect as vacancy into this system and the result is plotted in Fig.7.In this figure,the transmission probability is shown for spin-up and spindown(in the presence and in the absence of defect)forM=10 andα=0.2 eV.The transmission probabilities are reduced although the overall behavior remains almost unchanged in comparison with the system without defect.This reduction is due to the effect of the backscattering of the electrons waves from the defect in this system Also,the difference between the spin-up and the spin-down transmission coefficients increases with introducing the defect to system.

    4 Conclusion

    In this paper,the transmission probabilities and the spin polarization are investigated in the presence of RSOC via a gate voltage in the graphene nanoflake systems.The variation of the transmission probability is studied with respect to the Fermi energy of the electrons.This shows that out of the region of the zero energy,the transmission probability is growing by enhancement of the energy.Besides,the spin polarization increases with the enhancement of the Rashba strength and oscillates by variation of the energy.Also,the amplitudes of the peaks of the spin polarization decay to zero for all values of the Rashba strength.This indicates that the sign and the magnitude of the spin polarization can be controlled by tuning the gate voltage.Moreover,the effects of the size of the system on the transmission probability and the spin polarization is investigated.This shows that there is a control and manipulation of the spin filtration by means of the variation of the Rashba strength and the size of the system.The obtained results are applicable for electrical control on the spin transport in graphene-based nanodevices.

    [1]I.Zutic,J.Fabian,and S.D.Sarma,Rev.Mod.Phys.76(2004)323.

    [2]S.Murakami,N.Nagaosa,and S.C.Zhang,Phys.Rev.Lett.93(2004)156804.

    [3]Y.A.Bychkov and E.I.Rashba,J.Phys.C 17(1984)6039.

    [4]A.Dyrdal and J.Barnas,Phys.Rev.B 92(2015)165404.

    [5]M.I.Katsnelson,Eur.J.Phys.B 51(2006)157.

    [6]P.Debray,et al.,Nat.Nanotechnol.4(2009)759.

    [7]J.F.Liu,Z.C.Zhong,L.Chen,D.Li,C.Zhang,and Z.Ma,Phys.Rev.B 76(2007)195304.

    [8]S.Murakami,N.Nagaosa,and S.C.Zhang,Science 301(2003)1348.

    [9]J.Sinova,et al.,Phys.Rev.Lett.92(2004)126603.

    [10]Y.K.Kato,et al.,Science 306(2004)1910.

    [11]J.Wunderlich,B.Kaestner,J.Sinova,and T.Jungwirth,Phys.Rev.Lett.94(2005)047204.

    [12]D.Huertas-Hernando,F.Guinea,and A.Brataas,Phys.Rev.B 74(2006)155426.

    [13]J.B.Oostinga,H.B.Heersche,X.Liu,A.F.Morpurgo,and L.M.K.Vandersypen,Nat.Mater.7(2007)151.

    [14]F.Schwierz,Nat.Nanotechnol.5(2010)487.

    [15]Z.Wang,N.Hao,and P.Zhang,Phys.Rev.B 80(2009)115420.

    [16]M.H.D.Guimaraes,et al.,Nano Lett.12(2012)3512.

    [17]Y.S.Dedkov,M.Fonin,U.Rudiger,and C.Laubschat,Phys.Rev.Lett.100(2008)107602.

    [18]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)226801.

    [19]N.A.Sinitsyn,J.E.Hill,H.Min,J.Sinova,and A.H.Mac-Donald,Phys.Rev.Lett.97(2006)106804.

    [20]L.Chico,A.Latge,and L.Brey,Phys.Chem.Chem.Phys.17(2015)16469.

    [21]Y.Ren and K.Q.Chen,J.Appl.Phys.107(2010)044514.[22]J.Zeng,K.Q Chen,J.He,X.J.Zhang,and C.Q.Sun,J.Phys.Chem.C 115(2011)25072.

    [23]J.F.Liu and K.S.Chan,J.Phys.Soc.Jpn.82(2013)074711.

    [24]M.Yamamoto,T.Ohtsuki,and B.Krame,Phys.Rev.B 72(2005)115321.

    [25]A.A.Kiselev and K.W.Kim,Appl.Phys.Lett.78(2001)775.

    [26]J.F.Liu,K.S.Chan,and J.Wang,Nanotechnology 23(2012)095201.

    [27]X.Wu,J.Phys.D:Appl.Phys.49(2016)105305.

    [28]D.Gunlycke,D.A.Areshkin,J.Li,J.W.Mintmire,and C.T.White,Nano Lett.7(2007)3608.

    [29]S.Datta,Electronic Transport in Mesoscopic Systems,Cambridge University Press,Cambridge(2002).

    [30]Z.F.Wang,Q.Li,H.Zheng,H.Ren,H.Su,Q.W.Shi,and J.Chen,Phys.Rev.B 75(2007)113406.

    国产精品麻豆人妻色哟哟久久| 在线观看www视频免费| 精品人妻1区二区| 久久国产精品人妻蜜桃| 一级,二级,三级黄色视频| 国产xxxxx性猛交| 亚洲熟女毛片儿| 欧美另类亚洲清纯唯美| 天堂中文最新版在线下载| 99国产极品粉嫩在线观看| 大片免费播放器 马上看| 午夜激情久久久久久久| 欧美乱妇无乱码| 视频在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 午夜两性在线视频| 色播在线永久视频| 国产精品久久电影中文字幕 | 久久国产亚洲av麻豆专区| 亚洲熟女精品中文字幕| 国内毛片毛片毛片毛片毛片| 国产av一区二区精品久久| 老熟妇仑乱视频hdxx| 高清欧美精品videossex| 可以免费在线观看a视频的电影网站| 欧美精品一区二区大全| 日韩三级视频一区二区三区| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 十八禁网站免费在线| 精品亚洲乱码少妇综合久久| 久久久久网色| 精品高清国产在线一区| 欧美中文综合在线视频| 久久香蕉激情| 丝袜美腿诱惑在线| 精品乱码久久久久久99久播| 少妇精品久久久久久久| 亚洲精品中文字幕在线视频| 欧美日韩精品网址| 亚洲专区字幕在线| 亚洲色图av天堂| 日韩大片免费观看网站| 久久精品亚洲av国产电影网| 18禁美女被吸乳视频| av有码第一页| 宅男免费午夜| 久久狼人影院| 免费黄频网站在线观看国产| 中文字幕制服av| 亚洲精品国产区一区二| 亚洲欧美一区二区三区久久| xxxhd国产人妻xxx| 91大片在线观看| www.精华液| 在线av久久热| 国产精品美女特级片免费视频播放器 | 狠狠婷婷综合久久久久久88av| 亚洲男人天堂网一区| 久久精品熟女亚洲av麻豆精品| 国产深夜福利视频在线观看| 激情视频va一区二区三区| 精品国产国语对白av| 久久人妻av系列| 一级毛片电影观看| 日韩中文字幕视频在线看片| 午夜老司机福利片| 一本色道久久久久久精品综合| 亚洲人成伊人成综合网2020| 成人国语在线视频| 一进一出抽搐动态| 波多野结衣一区麻豆| 超色免费av| 久久精品成人免费网站| 纵有疾风起免费观看全集完整版| 女人久久www免费人成看片| 久久天堂一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 久久婷婷成人综合色麻豆| 国产亚洲av高清不卡| 久久精品国产综合久久久| 久久午夜综合久久蜜桃| 午夜激情久久久久久久| 99热网站在线观看| 操出白浆在线播放| 国产精品 国内视频| 久久中文字幕一级| 成年人免费黄色播放视频| 午夜福利一区二区在线看| 丁香欧美五月| 黄色 视频免费看| 一边摸一边抽搐一进一出视频| 日日夜夜操网爽| 法律面前人人平等表现在哪些方面| 99国产极品粉嫩在线观看| 午夜激情av网站| 91九色精品人成在线观看| 午夜福利视频精品| 丁香六月欧美| 国产高清国产精品国产三级| 亚洲伊人久久精品综合| 国产成人av教育| 在线观看免费日韩欧美大片| 中国美女看黄片| 天堂中文最新版在线下载| 人人妻人人爽人人添夜夜欢视频| 国产主播在线观看一区二区| tube8黄色片| 亚洲 国产 在线| 蜜桃国产av成人99| 一级黄色大片毛片| 成人18禁在线播放| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲高清精品| 亚洲熟女毛片儿| 午夜视频精品福利| 在线观看www视频免费| 精品国产超薄肉色丝袜足j| 亚洲欧美激情在线| 9热在线视频观看99| 久久青草综合色| 欧美久久黑人一区二区| 黄色a级毛片大全视频| av一本久久久久| 日韩中文字幕视频在线看片| 男人操女人黄网站| 午夜福利免费观看在线| 国产深夜福利视频在线观看| 久久久久精品国产欧美久久久| 亚洲国产av新网站| bbb黄色大片| 欧美成狂野欧美在线观看| 51午夜福利影视在线观看| 天天操日日干夜夜撸| 人人妻人人澡人人爽人人夜夜| 日本黄色日本黄色录像| 亚洲成av片中文字幕在线观看| 少妇被粗大的猛进出69影院| 日本欧美视频一区| 新久久久久国产一级毛片| 在线亚洲精品国产二区图片欧美| 欧美成人午夜精品| 日韩中文字幕欧美一区二区| 激情在线观看视频在线高清 | 一本色道久久久久久精品综合| 精品久久久精品久久久| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 欧美日韩黄片免| 少妇粗大呻吟视频| 天天躁夜夜躁狠狠躁躁| 日本欧美视频一区| 日本撒尿小便嘘嘘汇集6| 精品久久久久久电影网| 777米奇影视久久| 高清av免费在线| 久久久久精品国产欧美久久久| 久久99热这里只频精品6学生| 亚洲精品av麻豆狂野| 777米奇影视久久| 91麻豆精品激情在线观看国产 | 91麻豆av在线| 汤姆久久久久久久影院中文字幕| 男人舔女人的私密视频| 夜夜骑夜夜射夜夜干| 黑人猛操日本美女一级片| 91麻豆av在线| 中文字幕另类日韩欧美亚洲嫩草| 欧美老熟妇乱子伦牲交| 国产高清视频在线播放一区| 曰老女人黄片| 精品国产乱码久久久久久小说| 啦啦啦 在线观看视频| 久久狼人影院| 国产高清视频在线播放一区| 国产精品免费视频内射| 99热网站在线观看| 欧美精品高潮呻吟av久久| 亚洲国产成人一精品久久久| 美女国产高潮福利片在线看| 国产99久久九九免费精品| 一级片'在线观看视频| 精品国产乱码久久久久久小说| 汤姆久久久久久久影院中文字幕| 亚洲久久久国产精品| 乱人伦中国视频| 中文字幕最新亚洲高清| 国产单亲对白刺激| 欧美精品人与动牲交sv欧美| 亚洲七黄色美女视频| 国产在线视频一区二区| 99re在线观看精品视频| 午夜91福利影院| 99精品久久久久人妻精品| 久久久国产精品麻豆| 欧美精品高潮呻吟av久久| 亚洲全国av大片| 在线观看www视频免费| 岛国在线观看网站| 精品高清国产在线一区| 久久国产亚洲av麻豆专区| 咕卡用的链子| 日韩中文字幕视频在线看片| 日韩大码丰满熟妇| 国产男女超爽视频在线观看| 国产三级黄色录像| 巨乳人妻的诱惑在线观看| 国产在线一区二区三区精| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 丰满人妻熟妇乱又伦精品不卡| av福利片在线| 久久久久久久久久久久大奶| 中文字幕另类日韩欧美亚洲嫩草| 久久中文字幕人妻熟女| 亚洲成av片中文字幕在线观看| 1024香蕉在线观看| 国产野战对白在线观看| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 精品一区二区三卡| 久久精品国产a三级三级三级| 妹子高潮喷水视频| 日本黄色视频三级网站网址 | 男女午夜视频在线观看| 12—13女人毛片做爰片一| 黄网站色视频无遮挡免费观看| 国产精品 欧美亚洲| 亚洲av电影在线进入| av在线播放免费不卡| 午夜福利视频在线观看免费| 久久精品国产a三级三级三级| 三上悠亚av全集在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产精品久久久不卡| 欧美+亚洲+日韩+国产| 悠悠久久av| www日本在线高清视频| 又黄又粗又硬又大视频| 色视频在线一区二区三区| 久久精品成人免费网站| 久久国产精品大桥未久av| 国产一区二区激情短视频| 亚洲专区中文字幕在线| 久久久久久久大尺度免费视频| 黄色视频在线播放观看不卡| 99久久人妻综合| 久久久精品区二区三区| 欧美人与性动交α欧美软件| netflix在线观看网站| 高清在线国产一区| 国产成人欧美在线观看 | 国产亚洲一区二区精品| 欧美精品啪啪一区二区三区| 国产精品欧美亚洲77777| 一本—道久久a久久精品蜜桃钙片| 国产成人影院久久av| 久久亚洲真实| a级毛片在线看网站| 亚洲九九香蕉| 国产有黄有色有爽视频| 老司机影院毛片| 国产在线免费精品| 亚洲av美国av| 在线观看免费视频网站a站| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 免费黄频网站在线观看国产| 日韩成人在线观看一区二区三区| 国产精品99久久99久久久不卡| 又紧又爽又黄一区二区| 国产精品一区二区在线不卡| 伦理电影免费视频| 欧美一级毛片孕妇| 日韩有码中文字幕| 精品国产乱码久久久久久小说| 国产精品国产av在线观看| 国产精品久久久久久精品古装| 手机成人av网站| 免费在线观看视频国产中文字幕亚洲| 99国产精品一区二区三区| 国产成人av激情在线播放| 91老司机精品| 久久青草综合色| 久久99热这里只频精品6学生| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av日韩在线播放| 欧美变态另类bdsm刘玥| 国产精品久久久人人做人人爽| 日韩欧美一区二区三区在线观看 | 日韩人妻精品一区2区三区| 热re99久久精品国产66热6| 精品少妇久久久久久888优播| 亚洲一区二区三区欧美精品| 日韩制服丝袜自拍偷拍| 国产亚洲欧美精品永久| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 免费观看人在逋| 国产成人av激情在线播放| 国产熟女午夜一区二区三区| 色综合欧美亚洲国产小说| 亚洲天堂av无毛| 大型av网站在线播放| 国产在线视频一区二区| 无遮挡黄片免费观看| 久久99热这里只频精品6学生| 久久久精品国产亚洲av高清涩受| 国产精品 国内视频| 国产精品自产拍在线观看55亚洲 | 五月天丁香电影| 水蜜桃什么品种好| 亚洲综合色网址| 国产亚洲欧美精品永久| av一本久久久久| 国产片内射在线| 欧美日韩国产mv在线观看视频| 亚洲 国产 在线| 不卡一级毛片| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 免费在线观看日本一区| 操出白浆在线播放| 99国产精品一区二区蜜桃av | 日本wwww免费看| 丝袜人妻中文字幕| 久久久久精品人妻al黑| 国产精品影院久久| 老熟女久久久| 亚洲精品在线观看二区| 久久久久久免费高清国产稀缺| 一区二区三区乱码不卡18| 午夜福利视频精品| 亚洲少妇的诱惑av| 国产又色又爽无遮挡免费看| 亚洲男人天堂网一区| 一二三四社区在线视频社区8| av天堂在线播放| 久久精品国产亚洲av香蕉五月 | 日韩欧美三级三区| 精品熟女少妇八av免费久了| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 国产精品成人在线| 午夜91福利影院| h视频一区二区三区| 亚洲人成77777在线视频| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频 | 国产淫语在线视频| 人成视频在线观看免费观看| 怎么达到女性高潮| 久久久国产欧美日韩av| 免费看十八禁软件| 久久精品国产综合久久久| 精品一区二区三卡| 99精品久久久久人妻精品| 亚洲欧美一区二区三区久久| 自线自在国产av| 久久久水蜜桃国产精品网| 色婷婷av一区二区三区视频| 五月天丁香电影| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 国产在线精品亚洲第一网站| 国产亚洲精品第一综合不卡| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 国产野战对白在线观看| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕| 免费av中文字幕在线| 下体分泌物呈黄色| 黄色视频,在线免费观看| 精品国产一区二区久久| av免费在线观看网站| 国产在线免费精品| 夫妻午夜视频| 激情视频va一区二区三区| 黄频高清免费视频| 欧美久久黑人一区二区| 天天影视国产精品| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 色精品久久人妻99蜜桃| 国产av国产精品国产| 亚洲精品美女久久久久99蜜臀| 欧美成人免费av一区二区三区 | 久久国产精品影院| 成年人免费黄色播放视频| 脱女人内裤的视频| 热99久久久久精品小说推荐| av片东京热男人的天堂| 极品少妇高潮喷水抽搐| 制服诱惑二区| 欧美日韩精品网址| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 丁香六月欧美| 欧美老熟妇乱子伦牲交| 婷婷丁香在线五月| 999精品在线视频| 日本av免费视频播放| 99国产精品一区二区三区| 亚洲久久久国产精品| 正在播放国产对白刺激| tube8黄色片| 日本av免费视频播放| 欧美激情久久久久久爽电影 | 一进一出抽搐动态| 曰老女人黄片| 久久久久久免费高清国产稀缺| 国产精品免费一区二区三区在线 | 国产亚洲精品一区二区www | 丰满饥渴人妻一区二区三| 三上悠亚av全集在线观看| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 欧美av亚洲av综合av国产av| 美女主播在线视频| 成年版毛片免费区| 欧美黑人欧美精品刺激| av网站在线播放免费| 亚洲全国av大片| 一夜夜www| 一级毛片精品| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 亚洲av日韩在线播放| 亚洲 欧美一区二区三区| 午夜福利欧美成人| 久久这里只有精品19| 又黄又粗又硬又大视频| 久久亚洲精品不卡| 免费观看人在逋| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区 | 久久精品国产a三级三级三级| 国产三级黄色录像| 中文欧美无线码| av国产精品久久久久影院| 久久久久久久大尺度免费视频| 97在线人人人人妻| 国产免费福利视频在线观看| 国产单亲对白刺激| 久久人人爽av亚洲精品天堂| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 一区在线观看完整版| 国产精品电影一区二区三区 | 国产亚洲av高清不卡| 在线天堂中文资源库| 一区二区三区国产精品乱码| av线在线观看网站| 国产亚洲欧美精品永久| 丁香六月天网| 桃红色精品国产亚洲av| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 亚洲精品一二三| 国产激情久久老熟女| 日韩制服丝袜自拍偷拍| 欧美一级毛片孕妇| 亚洲美女黄片视频| 中文字幕人妻熟女乱码| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 日本黄色视频三级网站网址 | 亚洲国产看品久久| 无人区码免费观看不卡 | 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 午夜福利乱码中文字幕| 91老司机精品| 国产欧美日韩一区二区三| 一本色道久久久久久精品综合| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 成人av一区二区三区在线看| 精品国产一区二区久久| 999久久久国产精品视频| 成人黄色视频免费在线看| 曰老女人黄片| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| a级片在线免费高清观看视频| 久久影院123| 亚洲欧美色中文字幕在线| 成人手机av| 久久久久视频综合| 日韩大片免费观看网站| 国产亚洲一区二区精品| videosex国产| 高清在线国产一区| 99久久人妻综合| 1024视频免费在线观看| 欧美国产精品一级二级三级| 另类精品久久| 日本av免费视频播放| 亚洲色图av天堂| www.999成人在线观看| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 亚洲国产欧美在线一区| 国产精品一区二区精品视频观看| 日本黄色日本黄色录像| 精品午夜福利视频在线观看一区 | 水蜜桃什么品种好| 91精品三级在线观看| 精品久久蜜臀av无| 激情视频va一区二区三区| 国产精品自产拍在线观看55亚洲 | 少妇精品久久久久久久| cao死你这个sao货| 国产成人免费无遮挡视频| 丝袜喷水一区| 精品乱码久久久久久99久播| 波多野结衣一区麻豆| 亚洲中文日韩欧美视频| 午夜福利,免费看| 91老司机精品| 久久久水蜜桃国产精品网| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 丝袜美足系列| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 极品教师在线免费播放| 国产成人精品久久二区二区免费| 99国产综合亚洲精品| 一级毛片电影观看| 亚洲精品美女久久av网站| 一级毛片精品| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 国产免费av片在线观看野外av| 大片免费播放器 马上看| 露出奶头的视频| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 欧美成人免费av一区二区三区 | 国产男女内射视频| 亚洲全国av大片| 操出白浆在线播放| 少妇粗大呻吟视频| 波多野结衣一区麻豆| 飞空精品影院首页| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 日韩制服丝袜自拍偷拍| 性少妇av在线| 午夜福利视频在线观看免费| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免费看| 高清在线国产一区| 亚洲成人国产一区在线观看| 一级毛片女人18水好多| 国产精品九九99| 热re99久久国产66热| 亚洲成人国产一区在线观看| 91老司机精品| 成人免费观看视频高清| 香蕉久久夜色| 久久久久精品人妻al黑| 久久久精品94久久精品| 国产精品九九99| 欧美乱码精品一区二区三区| 亚洲av日韩在线播放| 97人妻天天添夜夜摸| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女 | 成在线人永久免费视频| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 男女床上黄色一级片免费看| 精品国内亚洲2022精品成人 | 久久热在线av| 亚洲av美国av| 欧美久久黑人一区二区| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 国产精品自产拍在线观看55亚洲 | 日本wwww免费看| a级片在线免费高清观看视频| 久久国产亚洲av麻豆专区| 国产黄色免费在线视频| 亚洲精品在线美女| 国产精品免费大片| kizo精华| 人人澡人人妻人| cao死你这个sao货| 国产亚洲一区二区精品| 别揉我奶头~嗯~啊~动态视频| 丝袜美足系列| 大香蕉久久网| 国产精品一区二区免费欧美| 免费黄频网站在线观看国产|