• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    2015-11-21 07:12:39EricOFOEDUCharlesONYI

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    APPROXIMATION OF COMMON FIXED POINT OF FAMILIES OF NONLINEAR MAPPINGS WITH APPLICATIONS?

    Eric U.OFOEDU Charles E.ONYI

    Department of Mathematics,Nnamdi Azikiwe University,Awka,Anambra State,Nigeria

    E-mail:euofoedu@yahoo.com;charles.onyi@gmail.com

    It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly G?ateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm.Demicompactness condition imposed in such results is dispensed with.Furthermore,Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed.Our theorems improve,generalize,unify and extend several recently announced results.

    nonexpansive mappings,reflexive real Banach spaces;fixed point;uniformly G?ateaux differentiable norm

    2010 MR Subject Classification 47H06;47H09;47J05;47J25

    1 Introduction

    Let E be a real normed space E.A mapping T:D(T)?E→ R(T)?E is called nonexpansive if and only if‖Tx-Ty‖≤‖x-y‖?x,y∈D(T),where D(T)and R(T)denote the domain and the range of the mapping T,respectively.In what follows,we shall require that D(T)?R(T)and denote the fixed point set of an operator T:D(T)→R(T)by Fix(T),that is,F(xiàn)ix(T):={x∈D(T):Tx=x}.

    Most published results on nonexpansive mappings centered on existence theorems for fixed points of these mappings and iterative approximation of such fixed points.DeMarr[16]in 1963 studied the problem of existence of common fixed point for a family of nonexpansive mappings. He proved the following theorem:

    Theorem 1.1(DeMarr[16]) Let E be a real Banach space and let K be a nonempty compact convex subset of E.If ? is a nonempty commuting family of nonexpansive mappings of K into itself,then the family ? has a common fixed point in K.

    In 1965,Browder[4]proved the result of DeMarr in a uniformly convex real Banach space E,requiring that K is only bounded,closed,convex and nonempty subset of E.For otherfixed point theorems for families of nonexpansive mappings,the reader may consult any of the following references:Belluce and Kirk[2],Lim[21]and Bruck[6].

    Considerable research efforts were devoted to developing iterative methods for approximating common fixed points of families of several classes of nonlinear mappings(see e.g.[1,7,11-14,17,18,27]and references there in).

    Maing′e[22]studied the Halpern-type scheme for approximation of a common fixed point of a countable infinite family of nonexpansive mappings in real Hilbert space.Let{Ti}i≥1be a countable infinite family of nonexpansive mappings.Define NI:={i∈N:Ti/=I}(I being the identity mapping on a real normed space E).Maing′e proved the following theorems

    Theorem 1.2(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    Theorem 1.3(Maing′e[22])Let K be a nonempty closed convex subset of a real Hilbert space H.Let{Ti}i≥1be a countable family of nonexpansive self-mappings of K,{αn}n≥1and{σi,n}n≥1,i∈N be sequences in(0,1)satisfying the following conditions:

    converges strongly to a unique fixed point of the contraction PFof,where f:K→K is a strict contraction;and PFis the metric projection from H onto F.

    In[9],Chidume et al.proved theorems that extended Theorems 1.2 and 1.3 to ?pspaces,1<p<∞.Furthermore,they proved new convergence theorems which are applicable in Lpspaces,1<p<∞.Moreover,in their more general setting,some of the conditions on the sequences{αn}n≥1and{σi,n}n≥1,imposed in Theorem 1.3 were dispensed with or weakened.

    Chidume and Chidume[10]proved the following theorems which extended the results obtained by Maing′e[22]and Chidume et al.[9]:

    Theorem 1.4(Chidume and Chidume[10])Let E be a uniformly convex real Banach space.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.Letbe a sequence in(0,1)such thatand=0 for all i∈.Define a family of nonexpansive mappings,where I is is an identity map of K and δ∈(0,1)is fixed.Let{ztn}be a sequence satisfying

    Theorem 1.5(Chidume and Chidume[10])Let E be a uniformly convex real Banach space with uniformly G?ateaux differentiable norm.Let K be a closed,convex and nonempty subset of E.Letbe a family of nonexpansive self-mappings of K.For arbitrary fixed δ∈(0,1),define a family of nonexpansive mappingswhere I is is an identity map of K.Assume F:andbe sequences in(0,1)satisfying the following conditions:

    Define a sequence{xn}iteratively by x1,u∈K,

    If at least one of the maps Ti,i=1,2,3,···is demicompact then{xn}converges strongly to an element in F

    Motivated by the results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10],it is our aim in this paper to provide a method of proof which enabled us to obtain the conclusion of Chidume and Chidume[10]in more general reflexive and strictly convex real Banach space with unifromly G?ateaux differentiable norm;and the demicompactness condition imposed in[10]is dispensed with.As applications of our theorems,we obtained strong convergence theorems for approximation of common fixed point of countable infinite family of pseudocontractive mappings in real Hilbert space;in addition,strong convergence theorems for approximation ofcommon solution of countable infinite family of generalized mixed equilibrium problem are also obtained in a real Hilbert space.Our theorems augument,extend,generalize and unify the correponding results of Maing′e[22],Chidume et al.[9],and Chidume and Chidume[10].Our method of proof is of independent interest.

    2 Preliminaries

    Let E be a real Banach space with dual E?.We denote by J the normalized duality mapping from E to 2E?defined by

    where<·,·>denotes the generalized duality pairing between members of E and E?.It is well known that if E?is strictly convex then J is single-valued(see,e.g.,[8,28]).In the sequel,we shall denote the single-valued normalized duality mapping by j.

    Let S:={x∈E:‖x‖=1}.The space E is said to have a G?ateaux differentiable norm if and only if the limit

    exists for each x,y∈S,while E is said to have a uniformly G?ateaux differentiable norm if for each y∈S the limit is attained uniformly for x∈S.It is well known that whenever a Banach space has uniformly G?ateaux differentiable norm,then the normalized duality mapping is norm to weak?uniformly continuous on bounded subsets of E.

    Let E be a real normed space.The modulus of convexity of E is the function δE:[0,2]→[0,1]defined by

    The space E is said to be uniformly convex if and only if δE(?)>0??∈(0,2];and the space E is called strictly convex if and only if for all x,y∈E such that‖x‖=‖y‖=1 and for all λ∈(0,1)we have‖λx+(1-λ)y‖<1.It is well known that every uniformly convex real Banach space is strictly convex and reflexive real Banach space,where we know that a real Banach space E is reflexive if and only if every bounded sequence in E has a subsequence which converges weakly.

    A mapping T:D(T)?E→ E is said to be demicompact at h if and only if for any bounded sequence{xn}n≥1in D(T)such that(xn-Txn)→ h as n→ ∞,there exists a subsequence say{xnj}j≥1of{xn}n≥1and x?∈D(T)such that{xnj}j≥1converges strongly to x?and x?-Tx?=h.

    Letμbe a bounded linear functional defined on ?∞satisfying‖μ‖=1=μ(1,1,···,1,···). It is known thatμis a mean on N if and only if

    for every a= (a1,a2,a3,···)∈ ?∞.In the sequel,we shall use the notationμn(an)instead ofμ(a).A meanμon N is called a Banach limit ifμn(an)= μn(an+1)for every a=(a1,a2,a3,···)∈?∞.It is well known that ifμis a Banach limit,then

    In what follows,we shall need the following lemmas.

    Lemma 2.1 Let E be a real normed space,then

    for all x,y∈E and for all j(x+y)∈J(x+y).

    Lemma 2.2(Lemma 3 of Bruck[5]) Let K be a nonempty closed convex subset of a strictly convex real Banach space E.Letbe a sequence of nonexpansive mappings from K to E such thatLetbe a sequence of positive numbers such that,then a mapping T on K defined by Txfor all x∈K is well defined, nonexpansive and Fix(T

    Lemma 2.3(Xu[27])Let{an}be a sequence of nonnegative real numbers satisfying the following relation:

    (ii)limsupσn≤0.

    Then,an→0 as n→∞.

    Lemma 2.5(Kikkawa and Takahashi[19])Let Let K be a nonempty closed convex subset of a Banach spaces E with a uniformly G?ateaux differentiable norm,let{xn}be a bounded sequence of E and letμbe a mean on N.Let z∈K.Then

    3 Implicit Iterative Method for Countable Infnity Family of Nonexpansive Mappings

    We begin with the following lemma:

    Lemma 3.1(Chidume and Chidume[10])Let E be a real Banach space.Let Ti:E→E, i=1,2,···,be a countable infinite family of nonexpansive mappings.Leti=1,2,···be sequences in(0,1)such that.Fix a δ∈(0,1)and define afamily of mappings Si:E→E by Six=(1-δ)x+δTix?x∈E,i=1,2,···.For fixed u∈E and for all n∈N,define a map Φn:E→E by Φnx=αnu+σi,nSix,?x∈E,then Φnis a strict contraction on E.Hence,for all n∈N,there is a unique z∈E satisfying

    n

    Hence,Ψx∈??x∈?,that is,? is invariant under Ψ.Let x?∈Fix(Ψ),then since every closed convex nonempty subset of a reflexive and strictly convex Banach space is a Chebyshev set(see e.g.,[23],Corollary 5.1.19),there exists a unique u?∈? such that

    But x?=Ψx?and Ψu?∈?.Thus,

    So,Ψu?=u?.Hence,F(xiàn)ix(Ψ)∩?/=?.This completes the proof. □

    In particular,we have that

    Now,using(3.1),we have that

    So,

    Again,taking Banach limit,we obtain

    We now show that u?=z?.Suppose for contradiction that u?/=z?,then

    But using(3.1),we have that

    Thus,

    Similarly,we also obtain that≤0 or rather

    Adding(3.4)and(3.5),we have that‖z?-u?‖≤0,a contradiction.Thus,z?=u?.Hence,converges strongly toThis completes the proof.

    4 Explicit Iterative Method for Countable Infinite Family of Nonexpansive Mappings

    For the rest of this paper,{αn}∞n=1and{σi,n}∞n=1are sequences in(0,1)satisfying the following additional conditions:

    Then,

    for some M>0.Thus,

    From(4.1),we have that

    Using Lemma 2.1,we have that

    This implies that

    and hence,

    Also,since j is norm-to-weak?uniformly continuous on bounded subsets of E,we have that

    Moreover,we have that

    Using(4.3),(4.4)and(4.5),we obtain from(4.6)that

    Finally,using Lemma 2.1 we obtain from(4.1)that

    Using(4.7)and Lemma 2.3 in(4.8),we get thatconverges strongly to common fixed point of the familyof nonexpansive mappings. □

    5 Application to Approximation of Common Fixed Points of Counably Infnite Family of Continuous Pseudocontractive Mappings

    The most important generalization of the class of nonexpansive mappings is,perhaps,the class of pseudocontractive mappings.These mappings are intimately connected with the important class of nonlinear accretive operators.This connection will be made precise in what follows.

    A mapping T′with domain D(T′),and range R(T′),in E is called pseudocontractive if and only if for all x,y∈D(T′),the following inequality holds:

    for all r>0.As a consequence of a result of Kato[20],the pseudocontractive mappings can also be defined in terms of the normalized duality mappings as follows:the mapping T′is calledpseudocontractive if and only if for all x,y∈D(T′),there exists j(x-y)∈J(x-y)such that

    It now follows trivially from(5.2)that every nonexpansive mapping is pseudocontractive.We note immediately that the class of pseudocontractive mappings is larger than that of nonexpansive mappings.For examples of pseudocontractive mappings which are not nonexpansive,the reader may see[8].

    To see the connection between the pseudocontractive mappings and the accretive mappings,we introduce the following definition:a mapping A with domain,D(A),and range,R(A),in E is called accretive if and only if for all x,y∈D(A),the following inequality is satisfied:

    for all r>0.Again,as a consequence of Kato[20],it follows that A is accretive if and only if for all x,y∈D(A),there exists j(x-y)∈J(x-y)such that

    It is easy to see from inequalities(5.1)and(5.3)that an operator A is accretive if and only if the mapping T′:=(I-A)is pseudocontractive.Consequently,the fixed point theory for pseudocontractive mappings is intimately connected with the mapping theory of accretive operators.For the importance of accretive operators and their connections with evolution equations,the reader may consult any of the references[8,24].

    Due to the above connection,fixed point theory of pseudocontractive mappings became a flourishing area of intensive research for several authors.It is of interest to note that if E=H is a Hilbert space,accretive operators coincide with the monotone operators,where an operator A with domain,D(A),and range,R(A),in H is called monotone if and only if for all x,y∈D(A),we have that

    Recently,Zegeye[30]established the following lemmas.

    Lemma 5.1(Zegeye[30]) Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→H be a continuous pseudocontractive mapping,then for all r>0 and x∈H,there exists z∈K such that

    Lemma 5.2(Zegeye[30])Let K be a nonempty closed convex subset of a real Hilbert space H.Let T′:K→K be a continuous pseudocontractive mapping,then for all r>0 and x∈H,define a mapping Fr:H→K by

    then the following hold:

    (1)Fris single-valued;

    (2)Fris firmly nonexpansive type mapping,i.e.,for all x,y∈H,

    (3)Fix(Fr)is closed and convex;and Fix(Fr)=Fix(T′)for all r>0.

    Remark 5.3 We observe that Lemmas 5.1 and 5.2 hold in particular for r=1.Thus,ifis a family of continuous pseudocontractive mappings and we define

    Theorem 5.4 Let H be a real Hilbert space.Let T′

    where Six=(1-δ)x+δF(i)1x?x∈H,i=1,2,···.Letbe a sequence in(0,1)such thatand-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,thenconverges strongly to an element of

    6 Application to Approximation of Common Solution of Countably Infinite Generalized Mixed Equilibrium Problems

    Let K be a closed convex nonempty subset of a real Hilbert space H with inner product ?·,·?and norm‖·‖.Let f:K×K → R be a bifunction and Φ:K → R∪{+∞}be a proper extended real valued function,where R denotes the set of real numbers.Let Θ:K→H be a nonlinear monotone mapping.The generalized mixed equilibrium problem(abbreviated GMEP)for f,Φ and Θ is to find u?∈K such that

    The set of solutions for GMEP(6.1)is denoted by

    If Φ≡0≡Θ in(6.1),then(6.1)reduces to the classical equilibrium problem(abbreviated EP),that is,the problem of finding u?∈K such that

    and GMEP(f,0,0)is denoted by EP(f),where

    If f≡0≡Φ in(6.1),then GMEP(6.1)reduces to the classical variational inequality problem and GMEP(0,0,Θ)is denoted by VI(Θ,K),where

    If f≡0≡Θ,then GMEP(6.1)reduces to the following minimization problem:

    and GMEP(0,Φ,0)is denoted by Argmin(Φ),where

    If Θ≡0,then(6.1)becomes the mixed equilibrium problem(abbreviated MEP)and GMEP(f,Φ,0)is denoted by MEP(f,Φ),where

    If Φ≡0,then(6.1)reduces to the generalized equilibrium problem(abbreviated,GEP)and GMEP(f,0,Θ)is denoted by GEP(f,Θ),where

    If f≡0,then GMEP(6.1)reduces to the generalized variational inequality problem(abbreviated GVIP)and GMEP(0,Φ,Θ)is denoted by GVI(Φ,Θ,K),where

    The generalized mixed equilibrium problem(GMEP)includes as special cases the monotone inclusion problems,saddle point problems,variational inequality problems,minimization problems,optimization problems,vector equilibrium problems,Nash equilibria in noncooperative games.Furthermore,there are several other problems,for example,the complementarity problems and fixed point problems,which can also be written in the form of the generalized mixed equilibrium problem.In other words,the generalized mixed equilibrium problem is a unifying model for several problems arising from engineering,physics,statistics,computer science,optimization theory,operations research,economics and countless other fields.For the past 20 years or so,many existence results have been published for various equilibrium problems(see e.g.[3,25,29]).

    In the sequel,we shall require that the bifunction f:K×K→R satisfies the following conditions:

    (A1)f(x,x)=0?x∈K;

    (A2)f is monotone,in the sense that f(x,y)+f(y,x)≤0 for all x,y∈K;

    t→0

    (A4)the function y→f(x,y)is convex and lower semicontinuous for all x∈K.

    Lemma 6.1(Compare with Lemma 2.4 of[25])Let C be a closed convex nonempty subset of a real Hilbert space H.Let f:K×K → R be a bifunction satisfying conditions(A1)-(A4);Θ:K→H a continuous monotone mapping and Φ:K→R∪{+∞}a proper lower semicontinuous convex function.Then,for all r>0 and x∈H there exists u∈K such that

    Moreover,if for all x∈H we define a mapping Gr:H→2Kby

    then the following hold:

    (1)Gris single-valued for all r>0;

    (2)Gris firmly nonexpansive,that is,for all x,z∈H,

    (3)Fix(Gr)=GMEP(f,Φ,Θ)for all r>0;

    (4)GMEP(f,Φ,Θ)is closed and convex.

    Remark 6.2 We observe that Lemmas 6.1 holds in particular for r=1.Thus,if we define

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 andLet Ψ:=(1-δ)I+δT,where T:,then{zn}converges strongly to an element of

    where Six=(1-δ)x+?x∈H,i=1,2,···.Letbe a sequence in(0,1)such that=1 and-λi|=0.Let Ψ:=(1-δ)I+δT,where T:=,then{xn}converges strongly to an element ofGMEP(fi,Φi,Θi).

    Remark 6.5 Prototypes for our iteration parameters are:

    Remark 6.6 It is well known that every real Hilbert is a reflexive and strictly convex real Banach space with uniformly G?ateaux differentiable norm;thus Theorems 5.4,5.5,6.3 and 6.4 hold.

    Remark 6.7 The addition of bounded error terms in any of our recursion formulas leads to no further generalization.

    Remark 6.8 If f:K → K is a contraction map and we replace u by f(xn)in the recursion formulas of our theorems,we obtain what some authors now call viscosity iteration process.We observe that all our theorems in this paper carry over trivially to the so-called viscosity process.One simply replaces u by f(xn),repeats the argument of this paper,using the fact that f is a contraction map.Furthermore,we must note that method of proof of Theorems 3.4 and 4.1 easily carries over to the so-called nonself nonexpansive mappings.

    [1]Bauschke H H.The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space.J Math Anal Appl,1996,202:150-159

    [2]Belluce L P,Kirk W A.Fixed point theorem for families of contraction mappings.Pacific J Math,1996,18:213-217

    [3]Blum E,Oettli W.From optimization and variational inequalities to equilibrum problems.The Mathematics Student,1994,63(1/4):123-145

    [4]Browder F E.Nonexpansive nonlinear operators in Banach space.Proc Nat Acad Sci USA,1965,54(4): 1041-1044

    [5]Bruck R E.Properties of fixed-point sets of nonexpansive mappings in Banach spaces.Trans Amer Math Soc,1973,179:251-262

    [6]Bruck R E,Jr.A common fixed point theorem for a commuting family of nonexpansive mappings.Pacific J Math,1974,53:59-71

    [7]Chang S S,Tan K K,Lee H W Joseph,Chan C K.On the convergnce of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings.J Math Anal Appl,2006,313:273-283

    [8]Chidume C E.Geometric Properties of Banach Spaces and Nonlinear Iterations.Lecture Notes in Mathematics,Vol 1965.Springer-Verlag,2009

    [9]Chidume C E,Chidume C O,Nwogbaga A P.Approximation methods for common fixed points of a countable family of nonself nonexpansive mappings.Nonlinear Analysis,2009,71(12,15):164-175

    [10]Chidume C E,Chidume C O.Iterative methods for common fixed points for a countable family of nonexpansive mappings in uniformly convex spaces.Nonlinear Anal,2009,71(10):4346-4356

    [11]Chidume C E,Ofoedu E U.A new iteration process for finite families of generalized Lipschitz pseudocontractive and generalized Lipschitz accretive mappings.Nonlinear Analysis;TMA,2008,69(4):1200-1207

    [12]Chidume C E,Ofoedu E U.Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings.J Math Anal Appl,2007,333(1):128-141

    [13]Chidume C E,Zegeye H,Prempeh E.Strong convergence theorems for a common fixed point of a finite family of nonexpansive mappings.Comm Appl Nonlinear Anal,2004,11(2):25-32

    [14]Chidume C E,Zegeye H,Shahzad N.Convergence theorems for a common fixed point of finite family of nonself nonexpansive mappings.Fixed Point Theory Appl,2005,(2):233-241

    [15]Cioranescu I.Geometry of Banach Spaces,Duality Mappings and Nonlinear Problems.Dordrecht:Kluwer Academic,1990

    [16]DeMarr R.Common fixed points for commuting contraction mappings.Pacific J Math,1963,13:1139-1141

    [17]Jung J S.Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces.J Math Anal Appl,2005,302:509-520

    [18]Jung J S,Cho Y J,Agarwal R P.Iterative schemes with some control conditions for family of finite nonexpansive mappings in Banach spaces.Fixed Point Theory Appl,2005,2:125-135

    [19]Kikkawa M,Takahashi W.Strong convergence theorems by viscocity approximation methods for a countable family of nonexpansive mappings.Taiwa J Math,2008,12(3):583-598

    [20]Kato T.Nonlinear semi-groups and evolution equations.J Math Soc Japan,1967,19:508-520

    [21]Lim T C.A fixed point theorem for families of nonexpansive mappings.Pacific J Math,1974,53:487-493[22]Maing′e P.Approximation methods for common fixed points of nonexpansive mappings in Hilbert space.J Math Anal Appl,2007,325:469-479

    [23]Megginson R E.An Introduction to Banach Space Theory.New York:Springer-Verlag,1998

    [24]Ofoedu E U,Zegeye H.Further investigation on iteration processes for pseudocontractive mappings with application.Nonlinear Anal TMA,2012,75:153162

    [25]Katchang P,Jitpeera T,Kumam P.Strong convergence theorems for solving generalized mixed equilibrum problems and general system of variational inequalities by the hybrid method.Nonlinear Analysis:Hybrid Systems,2010,4(4):838-852

    [26]Suzuki T.Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals.J Math Anal Appl,2005,305:227-239

    [27]Xu H K.Iterative algorithm for nonlinear operators.J London Math Soc,2002,66(2):1-17

    [28]Xu Z B,Roach G F.Characteristic inequalities of uniformly smooth Banach spaces.J Math Anal Appl,1991,157:189-210

    [29]Zegeye H,Ofoedu E U,Shahzad N.Convergence theorems for equilibrum problem,variational inequality problem and countably infinite relatively quasi-nonexpansive mappings.Appl Math Comput,2010,216: 3439-3449

    [30]Zegeye H.An iterativee approximation method for a common fixed point of two pseudo-contractive mappings.ISRN Math Anal,2011,14(2011):Article ID621901

    ?Received February 20,2013;revised March 13,2015.

    亚洲精品456在线播放app| 2022亚洲国产成人精品| 久久国产精品大桥未久av | 99久国产av精品国产电影| 高清不卡的av网站| 亚洲真实伦在线观看| 国产欧美日韩精品一区二区| 国产精品熟女久久久久浪| 亚洲怡红院男人天堂| 午夜福利高清视频| av.在线天堂| 九草在线视频观看| 国产欧美亚洲国产| 国产欧美亚洲国产| 欧美日韩综合久久久久久| 插逼视频在线观看| 成年美女黄网站色视频大全免费 | 在线观看免费高清a一片| 欧美zozozo另类| 王馨瑶露胸无遮挡在线观看| 久久韩国三级中文字幕| 高清不卡的av网站| 大片免费播放器 马上看| 日韩免费高清中文字幕av| 欧美精品亚洲一区二区| 啦啦啦啦在线视频资源| 亚洲精品国产av蜜桃| av黄色大香蕉| 精品久久久噜噜| 国产日韩欧美在线精品| 亚洲三级黄色毛片| 欧美老熟妇乱子伦牲交| www.av在线官网国产| 少妇高潮的动态图| 国产精品一区二区三区四区免费观看| 亚洲欧美日韩东京热| 人妻一区二区av| 黄色一级大片看看| 亚洲av二区三区四区| 波野结衣二区三区在线| .国产精品久久| 纵有疾风起免费观看全集完整版| 亚洲精品亚洲一区二区| 街头女战士在线观看网站| 日本午夜av视频| 亚洲欧洲国产日韩| 色婷婷av一区二区三区视频| 国产成人免费观看mmmm| 国产男人的电影天堂91| 黑人高潮一二区| 国产亚洲午夜精品一区二区久久| 国产精品福利在线免费观看| 一区二区三区精品91| 国产欧美亚洲国产| 你懂的网址亚洲精品在线观看| 久久久久久九九精品二区国产| 亚洲精品乱码久久久久久按摩| 国产黄频视频在线观看| 亚洲成人中文字幕在线播放| 国产成人91sexporn| 男女边吃奶边做爰视频| 欧美国产精品一级二级三级 | 激情 狠狠 欧美| av国产精品久久久久影院| 国产有黄有色有爽视频| 精品熟女少妇av免费看| 插逼视频在线观看| 国产免费一级a男人的天堂| 街头女战士在线观看网站| 久久99热这里只有精品18| 大片电影免费在线观看免费| 多毛熟女@视频| 一级毛片久久久久久久久女| 丰满迷人的少妇在线观看| 久久久久人妻精品一区果冻| 免费观看无遮挡的男女| 嫩草影院入口| 欧美日韩国产mv在线观看视频 | 欧美日韩综合久久久久久| 欧美三级亚洲精品| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| 黑人猛操日本美女一级片| 中国国产av一级| 天美传媒精品一区二区| 欧美成人一区二区免费高清观看| 丰满少妇做爰视频| 亚洲欧美日韩另类电影网站 | 岛国毛片在线播放| 老司机影院毛片| 亚洲av国产av综合av卡| 亚洲伊人久久精品综合| 欧美另类一区| 少妇猛男粗大的猛烈进出视频| 五月天丁香电影| 下体分泌物呈黄色| 免费看日本二区| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 日韩视频在线欧美| 97在线人人人人妻| 亚洲av在线观看美女高潮| 欧美日韩亚洲高清精品| 尤物成人国产欧美一区二区三区| 80岁老熟妇乱子伦牲交| 成人高潮视频无遮挡免费网站| 免费av不卡在线播放| 亚洲精品自拍成人| 精品人妻视频免费看| 九九久久精品国产亚洲av麻豆| 一级毛片 在线播放| 一级毛片电影观看| 91精品伊人久久大香线蕉| 我要看黄色一级片免费的| 国产精品一二三区在线看| 蜜桃亚洲精品一区二区三区| 精品亚洲乱码少妇综合久久| 国产成人午夜福利电影在线观看| 成人亚洲精品一区在线观看 | 色吧在线观看| 青春草亚洲视频在线观看| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区国产| 丝瓜视频免费看黄片| 国产成人午夜福利电影在线观看| 亚洲色图av天堂| 交换朋友夫妻互换小说| 欧美bdsm另类| 国产亚洲91精品色在线| av在线播放精品| 午夜福利影视在线免费观看| 国产亚洲一区二区精品| 国产色爽女视频免费观看| 日韩,欧美,国产一区二区三区| 欧美精品一区二区大全| 亚洲av.av天堂| 91在线精品国自产拍蜜月| 精品一区二区三区视频在线| 午夜精品国产一区二区电影| 精品一区二区三卡| 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| av在线观看视频网站免费| 99热网站在线观看| 国产亚洲最大av| 国产精品熟女久久久久浪| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲日产国产| 久久 成人 亚洲| 国产 精品1| 亚洲精品国产av蜜桃| 午夜免费观看性视频| 波野结衣二区三区在线| 久久久午夜欧美精品| 亚洲av.av天堂| 丰满迷人的少妇在线观看| 国产精品嫩草影院av在线观看| 韩国高清视频一区二区三区| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 高清午夜精品一区二区三区| 免费人妻精品一区二区三区视频| 国产伦精品一区二区三区视频9| 欧美国产精品一级二级三级 | 亚洲国产最新在线播放| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 中文字幕久久专区| 久久久久久久久久久免费av| 蜜臀久久99精品久久宅男| 亚洲精品中文字幕在线视频 | 一级毛片我不卡| 亚洲国产精品国产精品| 国产精品一区二区三区四区免费观看| 免费高清在线观看视频在线观看| 美女主播在线视频| 少妇裸体淫交视频免费看高清| 国产人妻一区二区三区在| 在线观看人妻少妇| 国产探花极品一区二区| 成人毛片a级毛片在线播放| 国产精品一及| 亚洲高清免费不卡视频| 香蕉精品网在线| 欧美变态另类bdsm刘玥| 日本黄大片高清| 精品久久久久久电影网| 久久97久久精品| 美女视频免费永久观看网站| 亚洲精品一二三| 大话2 男鬼变身卡| 一区二区av电影网| 在线观看国产h片| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| 精品酒店卫生间| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 色视频在线一区二区三区| 大香蕉97超碰在线| 天堂俺去俺来也www色官网| 美女中出高潮动态图| 国产精品.久久久| 哪个播放器可以免费观看大片| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 国产欧美日韩精品一区二区| 大话2 男鬼变身卡| 一本—道久久a久久精品蜜桃钙片| 一二三四中文在线观看免费高清| 中文字幕免费在线视频6| 大香蕉久久网| 日韩伦理黄色片| 色视频在线一区二区三区| 亚洲av综合色区一区| 熟女av电影| 久久99蜜桃精品久久| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 久久婷婷青草| 交换朋友夫妻互换小说| 在线观看三级黄色| 久久国内精品自在自线图片| 亚洲av在线观看美女高潮| 国产黄片美女视频| 少妇丰满av| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 色5月婷婷丁香| 国产黄频视频在线观看| 久久久久人妻精品一区果冻| 国产成人aa在线观看| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 一边亲一边摸免费视频| 18禁裸乳无遮挡免费网站照片| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| 欧美日韩在线观看h| 国产av国产精品国产| 女的被弄到高潮叫床怎么办| 久久女婷五月综合色啪小说| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 亚洲国产av新网站| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 人人妻人人澡人人爽人人夜夜| 99久久精品热视频| 18禁在线无遮挡免费观看视频| 久久久久久人妻| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 18禁在线无遮挡免费观看视频| 老师上课跳d突然被开到最大视频| 国产白丝娇喘喷水9色精品| 日本vs欧美在线观看视频 | 欧美成人一区二区免费高清观看| 在线观看人妻少妇| 成年美女黄网站色视频大全免费 | 国产精品99久久久久久久久| 国产真实伦视频高清在线观看| 综合色丁香网| 美女视频免费永久观看网站| 亚洲成色77777| 亚洲国产精品专区欧美| 超碰av人人做人人爽久久| 国产无遮挡羞羞视频在线观看| 熟女av电影| 欧美日韩在线观看h| 欧美zozozo另类| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频| 精品午夜福利在线看| 国产精品久久久久久精品电影小说 | 在线观看国产h片| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 观看av在线不卡| 久久青草综合色| 亚洲不卡免费看| 亚洲电影在线观看av| 色哟哟·www| 秋霞在线观看毛片| 91狼人影院| 亚洲美女视频黄频| 我要看黄色一级片免费的| 午夜视频国产福利| 街头女战士在线观看网站| 久久青草综合色| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 中文天堂在线官网| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 国产在线视频一区二区| 各种免费的搞黄视频| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 久久国内精品自在自线图片| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 免费观看无遮挡的男女| 99久久人妻综合| 男女免费视频国产| 国产高清国产精品国产三级 | 亚洲精品久久久久久婷婷小说| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 亚州av有码| a级毛色黄片| 女性生殖器流出的白浆| 爱豆传媒免费全集在线观看| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 久久99热这里只有精品18| 女性被躁到高潮视频| 99热这里只有是精品50| 久久久亚洲精品成人影院| 国产精品女同一区二区软件| 欧美日韩亚洲高清精品| 精品国产一区二区三区久久久樱花 | 精品国产乱码久久久久久小说| 插阴视频在线观看视频| 成人午夜精彩视频在线观看| 只有这里有精品99| 国产免费视频播放在线视频| 国产成人精品一,二区| 国产精品偷伦视频观看了| 亚洲成人手机| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 男男h啪啪无遮挡| 99热这里只有是精品50| 国产亚洲5aaaaa淫片| av卡一久久| 久久精品熟女亚洲av麻豆精品| av播播在线观看一区| 好男人视频免费观看在线| 免费人成在线观看视频色| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 在线观看一区二区三区| 黄色视频在线播放观看不卡| 亚洲,欧美,日韩| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 在线天堂最新版资源| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 赤兔流量卡办理| 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 岛国毛片在线播放| 免费av中文字幕在线| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 成人高潮视频无遮挡免费网站| 欧美精品国产亚洲| 美女视频免费永久观看网站| 国产免费福利视频在线观看| 欧美日韩视频高清一区二区三区二| 老师上课跳d突然被开到最大视频| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 中文字幕久久专区| 街头女战士在线观看网站| 99久久精品国产国产毛片| 亚洲最大成人中文| 久久久国产一区二区| 在线亚洲精品国产二区图片欧美 | 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 久久综合国产亚洲精品| 免费少妇av软件| 最黄视频免费看| 国产精品嫩草影院av在线观看| www.av在线官网国产| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 免费大片黄手机在线观看| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 国产乱人视频| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 各种免费的搞黄视频| 亚洲精品456在线播放app| 夜夜看夜夜爽夜夜摸| 午夜免费鲁丝| 日本欧美视频一区| 最新中文字幕久久久久| 国产美女午夜福利| 国产欧美亚洲国产| 一边亲一边摸免费视频| 国产爽快片一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 99re6热这里在线精品视频| 亚洲精品乱久久久久久| 国产69精品久久久久777片| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 国产精品一二三区在线看| 午夜福利在线观看免费完整高清在| 女人十人毛片免费观看3o分钟| a级一级毛片免费在线观看| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 91午夜精品亚洲一区二区三区| 亚洲四区av| 黑丝袜美女国产一区| 搡老乐熟女国产| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 欧美精品亚洲一区二区| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 国产欧美日韩精品一区二区| 免费播放大片免费观看视频在线观看| 韩国av在线不卡| 欧美xxⅹ黑人| 亚洲怡红院男人天堂| 免费高清在线观看视频在线观看| 国产高清有码在线观看视频| 赤兔流量卡办理| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区国产| .国产精品久久| 高清欧美精品videossex| 免费看光身美女| 97在线视频观看| 妹子高潮喷水视频| 一本久久精品| 高清视频免费观看一区二区| 又粗又硬又长又爽又黄的视频| 免费黄网站久久成人精品| av在线观看视频网站免费| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 国产精品秋霞免费鲁丝片| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 久久精品久久精品一区二区三区| 久久婷婷青草| 久久热精品热| 欧美一区二区亚洲| 国产免费又黄又爽又色| 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 欧美亚洲 丝袜 人妻 在线| 精品人妻熟女av久视频| 在线天堂最新版资源| 国产精品久久久久久av不卡| 久久毛片免费看一区二区三区| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 一区在线观看完整版| a级毛色黄片| 亚洲av中文av极速乱| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| 亚洲成人手机| 成人亚洲精品一区在线观看 | 在线免费十八禁| 欧美xxⅹ黑人| 日韩欧美精品免费久久| 国产精品.久久久| 亚洲精品久久午夜乱码| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美在线一区| 最近最新中文字幕大全电影3| 成人国产麻豆网| 蜜桃亚洲精品一区二区三区| 在线观看免费日韩欧美大片 | 亚洲天堂av无毛| 国产精品一二三区在线看| 国产免费福利视频在线观看| 婷婷色综合www| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 亚洲性久久影院| 舔av片在线| 在线播放无遮挡| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| 搡女人真爽免费视频火全软件| 欧美成人精品欧美一级黄| 中文欧美无线码| 韩国高清视频一区二区三区| 久久热精品热| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 成人亚洲精品一区在线观看 | 熟妇人妻不卡中文字幕| 观看av在线不卡| 热re99久久精品国产66热6| 亚洲欧美精品专区久久| 国产视频内射| 午夜福利在线在线| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 人人妻人人澡人人爽人人夜夜| 欧美zozozo另类| 女性生殖器流出的白浆| 天堂8中文在线网| 久久久久久久久久成人| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 色视频在线一区二区三区| 国产伦在线观看视频一区| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 欧美国产精品一级二级三级 | 午夜视频国产福利| 91久久精品国产一区二区三区| 另类亚洲欧美激情| 成人影院久久| 中文资源天堂在线| 免费大片18禁| 内射极品少妇av片p| 最近中文字幕高清免费大全6| 亚洲久久久国产精品| 日本av手机在线免费观看| 国产探花极品一区二区| av在线播放精品| www.av在线官网国产| 91精品伊人久久大香线蕉| 亚洲成色77777| 一本久久精品| 成年美女黄网站色视频大全免费 | 日日啪夜夜撸| 性色av一级| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 欧美bdsm另类| 熟妇人妻不卡中文字幕| 日本wwww免费看| 久久久a久久爽久久v久久| 大码成人一级视频| 成年女人在线观看亚洲视频| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| av国产精品久久久久影院| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 春色校园在线视频观看| 国产免费一级a男人的天堂| 免费观看的影片在线观看| 人妻夜夜爽99麻豆av| 免费黄色在线免费观看| 国产精品成人在线| 男人狂女人下面高潮的视频| 男女下面进入的视频免费午夜| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 男女国产视频网站| 91狼人影院| 91精品国产国语对白视频| 成人免费观看视频高清| 18禁裸乳无遮挡免费网站照片| 国产免费一级a男人的天堂| 日韩 亚洲 欧美在线| 亚洲欧美精品专区久久| 纯流量卡能插随身wifi吗| 亚洲国产精品专区欧美| 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 国产欧美日韩精品一区二区| 噜噜噜噜噜久久久久久91| 国产在线视频一区二区| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 五月天丁香电影| 免费高清在线观看视频在线观看| 国产一级毛片在线| 99久久精品热视频| 中文字幕久久专区| 美女xxoo啪啪120秒动态图| 免费看光身美女| 一本久久精品| 天堂中文最新版在线下载| av女优亚洲男人天堂| 男的添女的下面高潮视频| 建设人人有责人人尽责人人享有的 | 全区人妻精品视频|