• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHR¨ODINGER EQUATIONS?

    2015-11-21 07:12:26ZaihuiGAN甘在會

    Zaihui GAN(甘在會)

    Center for Applied Mathematics,Tianjin University,Tianjin 300072,China;College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610068,China

    Boling GUO(郭柏靈)

    Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Xin JIANG(蔣芯)

    College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610068,China

    ORBITAL INSTABILITY OF STANDING WAVES FOR THE GENERALIZED 3D NONLOCAL NONLINEAR SCHR¨ODINGER EQUATIONS?

    Zaihui GAN(甘在會)

    Center for Applied Mathematics,Tianjin University,Tianjin 300072,China;College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610068,China

    E-mail:ganzaihui2008cn@tju.edu.cn;ganzaihui2008cn@hotmail.com

    Boling GUO(郭柏靈)

    Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    E-mail:gbl@iapcm.ac.cn

    Xin JIANG(蔣芯)

    College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610068,China

    E-mail:jiangxin9099@sina.cn

    The existence and orbital instability of standing waves for the generalized threedimensional nonlocal nonlinear Schr¨odinger equations is studied.By defining some suitable functionals and a constrained variational problem,we first establish the existence of standing waves,which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance.We then show the orbital instability of standing waves.The arguments depend upon the conservation laws of the mass and of the energy.

    nonlocal nonlinear Schr¨odinger equations;standing waves;orbital instability 2010 MR Subject Classification 35B35;35J50;35Q55

    1 Introduction

    In this paper,we study the generalized three-dimensional nonlocal nonlinear Schr¨odinger equations:

    along with the initial data

    Here

    F and F-1denote the Fourier transform and the Fourier inverse transform,respectively[15,17-19],η>0 and δ≤0 are two constants,(E1,E2,E3)(t,x)are complex vector-valued functions from R+×R3into C3,Ei(i=1,2,3)denotes the complex conjugate of Ei.Due to rotational invariance of(1.1)-(1.3),let E=(E1,E2,E3)and ξ=(ξ1,ξ2,ξ3),system(1.1)-(1.3)is equivalent to a vetor-valued nonlinear Schr¨odinger equations

    where∧denotes the exterior product of vector-valued functions,and E the complex conjugate of E(indeed,a direct computation implies that equations(1.1)-(1.3)are the componential form of equations(M-S-1)-(M-S-2).To understand the relationship of all the components E1,E2,E3,we adopt the componential form(1.1)-(1.3)in the present paper).

    Equations(M-S-1)-(M-S-2)arise in the infinite ion acoustic speed limit of the self-generated magnetic field in a cold plasma,E denotes a slowly varying complex amplitude of the highfrequency electric field,and B the self-generated magnetic field[6,14,27,28].Due to the gauge invariance Aj(eiωtE1,eiωtE2,eiωtE3)=eiωtAj(E1,E2,E3),j=1,2,3,4,5,6,we can study theso-called standing wave solutions of equations(1.1)-(1.3)in the form Ei(t,x)=eiωtui(x)(i= 1,2,3)with the initial condition(1.4),where ω>0 is a real constant parameter called frequency and ui(x)(i=1,2,3)is a complex-valued function.The search for standing waves of equations(1.1)-(1.3)leads to the following nonlinear elliptic equations(1.5)-(1.7):

    For the nonlinear Schr¨odinger equations without any nonlocal term,there were many works on the stability results of their standing waves.Berestycki and Cazenave[1],Grillakis[10],Jones[13],Shatah and Strauss[20],Weinstein[23]and Zhang[26]investigated the instability of solitons.On the other hand,Cazenave and Lions[4],Weinstein[24],Grillakis,Shatah and Strauss[11]studied the stability of the standing waves.Some other topics for the nonlinear Schr¨odinger equations without any nonlocal term were studied(see for example[5,16,22,25]).

    In the study of equations(1.1)-(1.3),we still concentrate on the existence and orbital instability of the standing waves.For the nonlocal nonlinear Schr¨odinger equations,to our best knowledge,there have been no any works on the existence and instability of the standing waves other than those in our former papers[7-9],where we studied the similar topic for a general Davey-Stewartson system[7]and a simplified version for the nonlocal nonlinear Schr¨odinger equations(1.1)-(1.3)[8,9],in which(E1,E2,E3)=(E1,E2,0),(ξ1,ξ2,ξ3)=(ξ1,ξ2,0).To attain our goal in the present paper,the main difficulty is to deal with the nonlocal terms since the nonlocal terms may violate the space inner-scale invariance,and we are forced tomake some additional arguments for them.Fortunately,by defining some suitable functionals and a constrained variational minimization problem,utilizing the monotonicity argument for some defined auxiliary functions to deal with these terms generated by the nonlocal effects,and applying the inner structure of the corresponding elliptic equations(1.5)-(1.7),we first show the existence of standing waves for equations(1.1)-(1.3).In addition,we establish the orbital instability of the standing waves for the equations under consideration.The arguments of the result rely on the conservation of energy and mass as well as the construction of a suitable invariant manifold of solution flows.However,it should be pointed out that the uniqueness of these ground states for(1.5)-(1.7)is a much different and difficult problem,and we do not intend to discuss it in the present paper.

    This paper arranges as follows.In Section 2,we give some preliminaries and state the main results.The existence of standing waves with ground states will be established in Section 3.At the last section,we will show the orbital instability of standing waves.

    For simplicity,we denote any positive constant by C throughout the present paper.

    2 Preliminaries and Main Results

    In this section,we first establish the conservation laws of the total mass and of the total energy.Then we define some functionals,a set and a constrained variational minimization problem.At the end of this section we state the main results of this paper.

    2.1 Conservation Laws of the Mass and of the Energy

    According to the inner structure of equations(1.1)-(1.3),making some estimates on the nonlocal terms and using the standard contraction mapping theorem,we can establish the local well-posedness in the energy space H1(R3)×H1(R3)×H1(R3),the conservation laws of the total mass and of the total energy for the Cauchy problem(1.1)-(1.4).

    Lemma 2.1 The Cauchy problem(1.1)-(1.4),for η>0,δ≤0 and

    has a unique solution

    for some T∈(0,+∞)with T=+∞or T<+∞and

    In addition,the total mass and total energy are conserved:

    To attain the conservation identities(2.1)and(2.2),besides using the standard arguments on the nonlinear Schr¨odinger equations without any nonlocal terms,we must give some extra discussions on the nonlocal terms,in which we will employ the Parseval identity,some properties of Fourier transform,suitable groupings and potential coupled arguments for these nonlocal terms.In Lemma 2.1 of[12],we established the detail of the proof for(2.1)and(2.2).

    2.2 Variational Structures

    For(u1,u2,u3)∈H1r(R3)×H1r(R3)×H1r(R3)(ui(x)(i=1,2,3)is a complex-valued function),we define the following functionals:

    where

    A natural attempt to find nontrivial solutions to(1.5)-(1.7)is to solve the constrained minimization problem

    where the set M is defined by

    From(u1,u2,u3)∈H1r(R3)×H1r(R3)×H1r(R3),η>0,δ≤0,the Sobolev's embedding theorem and the properties of Fourier transform,it follows that functionals S(u1,u2,u3)and R(u1,u2,u3)are both well defined.

    Remark 2.1 We note that for all θ≥1,j,k,l,m=1,2,3,

    We also note that if(u1,u2,u3)is a critical point of S(u1,u2,u3)and hence a solution of(1.5)-(1.7),then(E1,E2,E3)=(eiωtu1,eiωtu2,eiωtu3)is a standing wave solution of(1.1)-(1.3).

    2.3 Main Results

    Here,we state the main results of this paper.

    Theorem 2.1 For η>0 and δ≤0,there exists(Q1,Q2,Q3)∈M such that

    (2)(Q1,Q2,Q3)is a ground state solution to(1.5)-(1.7).

    (3)(Q1,Q2,Q3)are functions of|x|alone and decay exponentially at infinity.

    From the physical viewpoint,an important role is played by the ground state solution of(1.5)-(1.7).A solution(Q1,Q2,Q3)to(1.5)-(1.7)is termed as a ground state if it has some minimal action among all solutions to(1.5)-(1.7).Here,the action of solution(u1,u2,u3)is defined by S(u1,u2,u3).

    Concerning the dynamics of the ground state solution(Q1,Q2,Q3),we have the following orbital instability result.Here,we assume that the ground state solution(Q1,Q2,Q3)of(1.5)-(1.7)is unique.

    Theorem 2.2 For η>0 and δ≤0,let(Q1,Q2,Q3)∈M be given by Theorem 2.1.For arbitrary ε>0,there exists(E10,E20,E30)∈H1r(R3)×H1r(R3)×H1r(R3)withsuch that the solution(E1,E2,E3)of equations(1.1)-(1.3)with the initial data(1.4)has the following property:For some finite time T<∞,(E1,E2,E3)exists on[0,T),(E1,E2,E3)∈C([0,T);H1r(R3)×H1r(R3)×H1r(R3))and

    3 Existence of Standing Waves

    In this section,we prove Theorem 2.1,which concerns the existence of minimal energy standing waves of system(1.1)-(1.3).For that purpose,we first give some key propositions and lemmas.

    Remark 3.1 For η>0,δ≤0,θ=1,2,j,k,l,m=1,2,3,since

    by Theorem 2.1,(2.3),(2.4)and(2.5),one has

    We continue to give some key facts.

    Lemma 3.1[21,23]For 2<σ<6,the embedding H1r(R3)→Lσr(R3)is compact,where

    Proposition 3.1 Let η>0 and δ≤0.Then the non-trivial solution to(1.5)-(1.7)belongs to M.

    Proof Let(u1,u2,u3)be a non-trivial solution to(1.5)-(1.7).Multiplying(1.5)bythen integrating with respect to x on R3,we obtain

    We further attain the following identity:

    here A and B are defined by(II-1)and(II-2)in Section 2,respectively.Identity(3.5)is obtained by multiplying(1.5)bythen integrating with respect to x in R3and taking the real parts for the resulting equations,finally using the following estimates:Combining(3.4)with(3.5),one can easily verifies that R(u1,u2,u3)=0,and hence(u1,u2,u3)∈M. □

    Proposition 3.2 The functional S is bounded from below on M for η>0 and δ≤0.

    Proof Let A and B are defined by(II-1)and(II-2)in Section 2,respectively.According to(2.3),(2.4)and(2.6),for(u1,u2,u3)∈M one gets

    Noting that η>0,δ≤0 and the inequality 2Re(ab)≤a2+b2,making some suitable rearrangements,we obtain

    (indeed,recall that

    Since

    through regrouping and applying some properties of Fourier transform,we conclude that for η>0,and δ≤0,

    Hence(3.7)is valid).

    Therefore,(3.6)and(3.7)imply that on M,

    This completes the proof of Proposition 3.2. □

    Proposition 3.3 For η>0 and δ≤0,let(u1,u2,u3)∈H1r(R3)×H1r(R3)×H1r(R3){(0,0,0)}.For λ>0,we make the following scale transform:

    then there exists a uniqueμ> 0(relying on(u1,u2,u3))such that R(u1μ,u2μ,u3μ)=0. Furthermore,the following three estimates will occur:

    Proof According to(2.3)and(2.4),S(u1λ,u2λ,u3λ)and R(u1λ,u2λ,u3λ)are of the following expressions:

    Making a preliminary estimate,we can verify that((3.11)can be easily obtained by utilizing the method of verifying(3.7)).

    First of all,we show that there existsμ>0 such that R(u1μ,u2μ,u3μ)=0,and we divide the proof into two cases:

    Case 1 R(u1,u2,u3)>0;

    Case 2 R(u1,u2,u3)<0.

    If Case 2 occurs,and if there exists λ such that R(u1λ,u2λ,u3λ)=0,then λ∈(0,1).Indeed,we consider functional R?(u1λ,u2λ,u3λ)defined by(3.10).Note that R?(u1λ,u2λ,u3λ)→R(u1,u2,u3)<0 as λ→1,and R?(u1λ,u2λ,u3λ)=RR3(|?u1|2+|?u2|2+|?u3|2)dx>0 as λ→0,one can verifies that there existsμ∈(0,1)such that R?(u1μ,u2μ,u3μ)=0.The latter implies thatμ2R?(u1μ,u2μ,u3μ)=R(u1μ,u2μ,u3μ)=0.

    In both cases as above,there always existsμ>0 such that R(u1μ,u2μ,u3μ)=0.

    Furthermore,we can easily check that

    By a direct calculation,we achive for j,k=1,2,3,

    which together with(3.9)and(3.10)yield that

    By R(u1μ,u2μ,u3μ)=0,(3.12)and(3.13)imply that

    This completes the proof of Proposition 3.3.

    Now,we begin to prove Theorem 2.1.

    Step 1 Proof of(1).

    Let{(Q1n,Q2n,Q3n),n∈N}?M be a minimizing sequence for(2.5).There then has

    and

    In view of η> 0,δ≤ 0 and Young's inequality,combining(3.6)with(3.14)yields that‖Q1n‖H1r(R3),‖Q2n‖H1r(R3),‖Q3n‖H1r(R3)are all bounded for all n∈N.Thus there exists a subsequence

    such that as k→∞,

    and

    For simplicity,we still denote{(Q1nk,Q2nk,Q3nk),k∈N}by{(Q1n,Q2n,Q3n),n∈N}.From Lemma 3.1,(3.16)-(3.18),it follows that

    Since

    the boundedness of{(Q1n,Q2n,Q3n),n∈N}in H1r(R3)×H1r(R3)×H1r(R3)and the Gagliardo-Nirenberg inequality

    imply in particular that

    Here and henceforth,C>0 denotes various positive constants.Via(3.20),η>0,δ≤0 and

    where j,k=1,2,3,we thus obtain

    Thus,(3.21)implies that as n→∞,

    where R1λ(Q1n,Q2n,Q3n)is defined by(3.10)with replacing(u1,u2,u3)by(Q1n,Q2n,Q3n). In view of R(Q1n,Q2n,Q3n)=0,one would then conclude that as n→∞,

    Z

    which contradicts to(3.22).Thus(Q1∞,Q2∞,Q3∞)/=(0,0,0).

    Let Q1=(Q1∞)μ,Q2=(Q2∞)μ,Q3=(Q3∞)μwithμ>0 uniquely determined by the condition R(Q1,Q2,Q3)=R[(Q1∞)μ,(Q2∞)μ,(Q3∞)μ]=0,where(Q1∞)μ,(Q2∞)μand(Q3∞)μare defined by Proposition 3.3.Thus Lemma 3.1 yields that,as n→∞,

    whereas R(Q1n,Q2n,Q3n)=0 and Proposition 3.3 imply

    Hence,from(3.25)and(3.26)one concludes

    which together with R(Q1,Q2,Q3)=0 yields that(Q1,Q2,Q3)∈M.Therefore,(Q1,Q2,Q3)solves the minimization problem

    This completes the proof of(1)of Theorem 2.1.

    Step 2 Proofs of(2)and(3)of Theorem 2.1

    We first prove(2).Since(Q1,Q2,Q3)is a solution of the minimization problem(3.28),there exists a Lagrange multiplier Λ such thathere δ′u1T(u1,u2,u3)denotes the variation of T(u1,u2,u3)with respect to u1.By the formulaand by takingandwe obtain from(3.29)that

    where

    Multiplying B1(Q1,Q2,Q3)=0 by Q1,B2(Q1,Q2,Q3)=0 by Q2and B3(Q1,Q2,Q3)=0 bythen integrating the resulting equations with respect to x on R3,we get

    where

    On the other hand,multiplyingbythen integrating the resulting equations with respect to x on R3and taking the real part,one obtains

    where

    here A(Q1,Q2,Q3)and B(Q1,Q2,Q3)are defined by(3.37)and(3.38),respectively.Thus by(3.34),we obtain

    Noting that

    in view of(3.39),(3.42),(3.43),one can verify that

    (3.44)is equivalent to

    where

    Noting the expressions of A(Q1,Q2,Q3)and B(Q1,Q2,Q3)in(3.37)and(3.38),applying the Young's inequality,we have

    Then,in view of(Q1,Q2,Q3)/=(0,0,0),R(Q1,Q2,Q3)=0,η>0 and δ≤0,there holds

    which implies that K5(Q1,Q2,Q3)/=0 and thus Λ=0 by(3.45).Hence,from(3.30),(3.31),(3.32)and(3.33),it follows that(Q1,Q2,Q3)solves the following equations:

    That is,(Q1,Q2,Q3)solves equations(1.5)-(1.7).As(1.5)-(1.7)are the Euler-Lagrange equations of the functional S(Q1,Q2,Q3),applying Proposition 3.1,we conclude(Q1,Q2,Q3)is a ground state solution of(1.5)-(1.7).Furthermore,it is obvious that(Q1,Q2,Q3)are functions of|x|alone.Motivated by the works[2,3],we can obtain that(Q1,Q2,Q3)has exponential decay at infinity,which will be shown in the Appendix A for convenience.

    This completes the proof of Theorem 2.1.

    4 Orbital Instability of Standing Waves in R3

    In this section,we show the instability of standing waves of(1.1)-(1.3)in R3obtained in Theorem 2.1(Theorem 2.2).We first give a key proposition to show Theorem 2.2.

    Proposition 4.1 Let δ≤0,η>0 and u1λ(x)=λ32u1(λx),u2λ(x)=λ32u2(λx),u3λ(x)= λ32u3(λx)for λ>0.Suppose that(u1,u2,u3)∈H1r(R3)×H1r(R3)×H1r(R3){(0,0,0)}and(u1,u2,u3)∈K,where

    Then there exists 0<μ<1 such that R(u1μ,u2μ,u3μ)=0 and

    Here,S(u1,u2,u3)and R(u1,u2,u3)are defined by(2.3)and(2.4),respectively.

    Proof By a direct calculation,we can easily show estimate(4.2).

    Now,we begin to show Theorem 2.2.

    Proof of Theorem 2.2 Let(E1,E2,E3)∈H1r(R3)×H1r(R3)×H1r(R3)be a solution to equations(1.1)-(1.3)with(1.4)on[0,T).By the conservation laws of the total mass and of the total energy(2.1)and(2.2),we get

    Let

    By a direct calculation,one achieves

    We further need to show,for some initial data,that the right-hand side of(4.5)is strictly negative(that is,R(E1,E2,E3)<0).One first notices that

    Let(E10,E20,E30)∈K such that

    We shall see later that such(E10,E20,E30)exists.We claim that there is a finite time T such that

    Indeed,for such(E10,E20,E30)∈K,one has

    and

    The latter is true,for otherwise,by continuity,there would exist a t1>0 such that 0<t1<T,and

    which implies that(E1(t1),E2(t1),E3(t1))∈M.This contradicts Theorem 2.1 and(4.9).

    Next,for a fixed t∈[0,T),(E1,E2,E3)=(E1(t),E2(t),E3(t)),and let 0<μ<1 be such that

    Proposition 3.3).Since

    in view of Proposition 4.1,we have

    (4.5)and(4.13)then yield that

    which implies that T must be finite and that

    In order to complete the proof of Theorem 2.2,we need to show(E10,E20,E30)∈K with(4.7). Let

    By Proposition 3.3,the functions E10(x),E20(x),E30(x)verify

    In addition,by Theorem 2.1,one sees that(Q1(x),Q2(x),Q3(x))have exponential decays at infinity,and hence

    As λ→1,

    can be made arbitrarily small.We thus complete the proof of Theorem 2.2.

    [1]Berestycki H,Cazenave T.Instabilit′e des′etats stationnaires dans les′equations de Schr¨odinger et de Klein-Gordon non lin′eairees.C R Acad Sci Paris,1981,293:489-492

    [2]Berestycki H,Lions P L.Nonlinear scalar field equations,I.Existence of a ground state.Arch Rat Mech Anal,1983,82:313-345

    [3]Berestycki H,Lions P L.Nonlinear scalar field equations,II.Existence of infinitely many solutions.Arch Rat Mech Anal,1983,82:347-375

    [4]Cazenave T,Lions P L.Orbital stability of standing waves for some nonlinear Schr¨odinger equations. Commun Math Phys,1982,85:549-561

    [5]Dai J J,He Q H.Nodal bound states with clustered spikes for nonlinear Schr¨odinger equations.Acta Math Sci,2014,34B(6):1892-1906

    [6]Dendy R O.Plasma Dynamics.Oxford:Oxford University Press,1990

    [7]Gan Z H,Zhang J.Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System.Commun Math Phys,2008,283:93-125

    [8]Gan Z H,Zhang J.Blow-up,global existence and standing waves for the magnetic nonlinear Schr¨odinger equations.Dis Cont Dyn Syst,2012,32(3):827-846

    [9]Gan Z H,Zhang J.Nonlocal nonlinear Schr¨odinger equations in R3.Arch Rational Mech Anal,2013,209: 1-39

    [10]Grillakis M.Linearized instability for nonlinear Schr¨odinger and Klein-Gordon equations.Comm Pure Appl Math,1988,41:747-774

    [11]Grillakis M,Shatah J,Strauss W.Stability theory of solitary waves in the presence of symmetry,I*.J Funct Anal,1987,74:160-197

    [12]Jiang X,Gan Z H.Collapse for the generalized three-dimensional nonlocal nonlinear Schr¨odinger equations. Adv Nonlinear Stud,2014,14:777-790

    [13]Jones C.An instability mechanism for radically symmetric standing waves of a nonlinear Schr¨odinger equation.J Differential Equations,1988,71:34-62

    [14]Kono M,Skoric M M,Ter Haar D.Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma.J Plasma Phys,1981,26:123-146

    [15]Laurey C.The Cauchy problem for a generalized Zakharov system.Diff Integral Equ,1995,8(1):105-130[16]Liu Z X.On a class of inhomogeneous energy-critical focusing nonlinear Schr¨odinger equations.Acta Math Sci,2013,33B(6):1522-1530

    [17]Miao C X.Harmonic Analysis and Applications to Partial Differential Equations.Monographs on Modern Pure Mathematics No 89.2nd ed.Beijing:Science Press,2004

    [18]Miao C X.The Modern Method of Nonlinear Wave Equations.Lectures in Contemporary Mathematics,No 2.Beijing:Science Press,2005

    [19]Miao C X,Zhang B.Harmonic Analysis Method of Partial Differential Equations.Monographs on Modern Pure Mathematics,No 117.2nd ed.Beijing:Science Press,2008

    [20]Shatah J,Strauss W.Instability of nonlinear bound states.Commun Math Phys,1985,100:173-190

    [21]Strauss W A.Existence of solitary waves in high dimensions.Commun Math Phys,1977,55:149-162

    [22]Wan L L,Tang C L.Existence of solutions for non-periodic superlinear Schr¨odinger equations without(AR)condition.Acta Math Sci,2012,32B(4):1559-1570

    [23]Weinstein M I.Nonlinear Schr¨odinger equations and sharp interpolation estimates.Commun Math Phys,1983,87:567-576

    [24]Weinstein M I.Lyapunov stability of ground states of nonlinear dispersive evolution equations.Commun Pure Appl Math,1986,39:51-68

    [25]Xu J,F(xiàn)an E G.A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schr¨odinger equations.Acta Math Sci,2014,34B(4):973-994

    [26]Zhang J.Sharp threshold for blowup and global existence in nonlinear Schr¨odinger equations under a harmonic potentia.Commun PDE,2005,30:1429-1443

    [27]Zakharov V E.The collapse of Langmuir waves.Soviet Phys,JETP,1972,35:908-914

    [28]Zakharov V E,Musher S L,Rubenchik A M.Hamiltonian approach to the description of nonlinear plasma phenomena.Physics Reports,1985,129(5):285-366

    Appendix A

    In this Appendix,we will show the exponential decay at infinity of the solution(Q1,Q2,Q3)to equations(3.48)-(3.50).

    Consider equations(3.48)-(3.50):

    Let

    Then equations(3.48)-(3.50)reduce to the following system:

    By the expressions of gi(Q1,Q2,Q3)(i=1,2,3),for η>0 and δ≤0,we conclude the following properties:

    Furthermore,motivated by Lemma 1 and Radial Lemma A.II in[2,3],we can establish the following two lemmas.

    Lemma A1 Under the properties(A-7)-(A-8),if(Q1,Q2,Q3)is a spherically symmetric solution of(A-4)-(A-6)then(Q1,Q2,Q3)∈C2(R3)×C2(R3)×C2(R3).

    Lemma A2 Let N=3.The radial function Qi∈H1(R3)(i=1,2,3)is almost everywhere equal to a function Ui(x),continuous for x/=0 and such that

    where C3and α3are two constants depend only on the dimension N(N=3).

    We now begin to prove the exponential decay at infinity of the solution(Q1,Q2,Q3)to(A-4)-(A-6).That is,we need to show the following proposition.

    Proposition A1 Under the properties(A-7)-(A-8),if(Q1,Q2,Q3)is a spherically symmetric solution of(A-4)-(A-6)then

    for some C,β>0 and for|α|≤2.

    Proof By Lemma A1,Qi(i=1,2,3)is of class C2(R3),and it satisfies the equations below:

    where i=1,2,3.Let Pi=rQi(i=1,2,3),then Pisatisfies

    For r large enough,say r≥r0,one gets-gi(Q1,Q2,Q3)/Qi≥ω/ε for any ε≥1.

    Indeed,Lemma A2 yields that Qi(r)→0 as r→+∞.

    Next,let Wi=P2i(i=1,2,3),then Wisolves

    Thus for r≥r0one hasand Wi≥0.

    Further,let

    Direct calculation yields that

    This implies that Ziis nondecreasing on(r0,+∞).

    We now claim that

    Otherwise,if there exists r1>r0such that Zi(r1)>0,then Zi(r)≥Zi(r1)>0 for all r≥r1. In view of(A-12),

    (A-14)then implies that

    Next,we show the exponential decay of(i=1,2,3)at infinity.

    Applying(A-7)and the exponential decay of Qi,it is easily verified that for r large enough,say r≥r0,one has

    where ω2≥ω1≥0.Hence integrating(A-18)on(r,R),using(A-17)and letting r,R→+∞ shows that r2has a limit as r→+∞.This limit can only be zero by(A-17).

    Now,integrating(A-18)on(r,+∞)then yields thathas exponential decay.

    Finally,the exponential decay of(and thus|DαQi(x)|for|α|≤2)follows immediately from equations(A-11).

    The proof of the exponential decay of Qiat infinity is completed.

    ?Received September 29,2013;revised December 26,2014.This paper is supported by National Natural Science Foundation of China(11171241),Program for New Century Excellent Talents in University(NCET-12-1058).

    国产一级毛片七仙女欲春2| 欧美成人精品欧美一级黄| 亚洲三级黄色毛片| 最近中文字幕2019免费版| 免费观看a级毛片全部| 亚洲国产欧美人成| 久热久热在线精品观看| 国产午夜精品一二区理论片| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 欧美3d第一页| 内射极品少妇av片p| 男的添女的下面高潮视频| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 中文字幕亚洲精品专区| .国产精品久久| 少妇丰满av| 嫩草影院新地址| 精品一区二区三区视频在线| 国产伦精品一区二区三区四那| av.在线天堂| 日日撸夜夜添| 天天躁日日操中文字幕| av线在线观看网站| 国产白丝娇喘喷水9色精品| 国产 一区精品| 青春草亚洲视频在线观看| 国产精品一区www在线观看| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 九色成人免费人妻av| videossex国产| 久久精品国产亚洲av天美| 天天一区二区日本电影三级| 久久这里只有精品中国| 日本一二三区视频观看| 国产淫语在线视频| 国产免费福利视频在线观看| 日日撸夜夜添| 1024手机看黄色片| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 国产黄色小视频在线观看| 免费在线观看成人毛片| 不卡视频在线观看欧美| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久久久久| 黄色日韩在线| 国产精品人妻久久久影院| 久久午夜福利片| 别揉我奶头 嗯啊视频| 国产精品乱码一区二三区的特点| 久久精品久久久久久噜噜老黄 | 色综合色国产| av免费观看日本| 日本爱情动作片www.在线观看| 美女高潮的动态| 欧美日韩国产亚洲二区| 免费观看a级毛片全部| 久久99热这里只频精品6学生 | 国产一级毛片七仙女欲春2| 美女黄网站色视频| 乱系列少妇在线播放| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 黑人高潮一二区| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 免费av观看视频| av播播在线观看一区| 免费大片18禁| 色视频www国产| 国产精品99久久久久久久久| 国产不卡一卡二| 一区二区三区四区激情视频| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 久久久久九九精品影院| 免费观看精品视频网站| 国产一区二区三区av在线| 午夜亚洲福利在线播放| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 国产精品av视频在线免费观看| 亚洲婷婷狠狠爱综合网| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 我要搜黄色片| 成人亚洲精品av一区二区| 久久鲁丝午夜福利片| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 国产又黄又爽又无遮挡在线| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 国产精品久久电影中文字幕| 午夜福利在线观看免费完整高清在| 五月玫瑰六月丁香| 成年免费大片在线观看| 一个人看的www免费观看视频| 久久久久久久久大av| 最后的刺客免费高清国语| 国产精品麻豆人妻色哟哟久久 | 国产精品日韩av在线免费观看| 国产成人aa在线观看| 在线播放无遮挡| 少妇人妻一区二区三区视频| 日日干狠狠操夜夜爽| 成年av动漫网址| 国产高清不卡午夜福利| АⅤ资源中文在线天堂| 亚洲精品456在线播放app| 精品酒店卫生间| 日本wwww免费看| 国产亚洲av嫩草精品影院| 精品国内亚洲2022精品成人| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 美女被艹到高潮喷水动态| ponron亚洲| 99九九线精品视频在线观看视频| 色尼玛亚洲综合影院| 美女脱内裤让男人舔精品视频| 免费电影在线观看免费观看| 免费黄色在线免费观看| 一个人看的www免费观看视频| 黑人高潮一二区| 国产美女午夜福利| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 久久久午夜欧美精品| 禁无遮挡网站| 国产在线男女| 午夜a级毛片| 禁无遮挡网站| 精品少妇黑人巨大在线播放 | 日韩一区二区视频免费看| 久久99精品国语久久久| 欧美xxxx黑人xx丫x性爽| 高清在线视频一区二区三区 | 久久午夜福利片| 中文字幕久久专区| 五月伊人婷婷丁香| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 搡女人真爽免费视频火全软件| 97热精品久久久久久| 天堂网av新在线| 亚洲精品久久久久久婷婷小说 | 日韩成人伦理影院| 村上凉子中文字幕在线| 2021少妇久久久久久久久久久| 少妇的逼水好多| 亚洲精品成人久久久久久| 男女视频在线观看网站免费| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 69av精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站 | 亚洲欧洲国产日韩| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱| 久久久久久久久大av| 午夜爱爱视频在线播放| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 干丝袜人妻中文字幕| 夫妻性生交免费视频一级片| or卡值多少钱| 亚洲在线观看片| 国产三级在线视频| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| 久久久成人免费电影| 国产精品久久久久久精品电影小说 | 日韩三级伦理在线观看| 久热久热在线精品观看| 久久热精品热| 午夜老司机福利剧场| 国产精品电影一区二区三区| 男女下面进入的视频免费午夜| 一本一本综合久久| 不卡视频在线观看欧美| 国产男人的电影天堂91| 成年av动漫网址| 麻豆久久精品国产亚洲av| 久久综合国产亚洲精品| 国产成人a区在线观看| 亚洲乱码一区二区免费版| av国产久精品久网站免费入址| 国产激情偷乱视频一区二区| 日日撸夜夜添| 国产乱来视频区| 三级男女做爰猛烈吃奶摸视频| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 精品国产露脸久久av麻豆 | 亚洲五月天丁香| 免费观看精品视频网站| 菩萨蛮人人尽说江南好唐韦庄 | 国产老妇女一区| 综合色av麻豆| 亚洲在线自拍视频| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 在线天堂最新版资源| 激情 狠狠 欧美| 九九爱精品视频在线观看| ponron亚洲| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 免费观看a级毛片全部| 老司机影院成人| 亚洲,欧美,日韩| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 亚洲性久久影院| 亚州av有码| 成人二区视频| 神马国产精品三级电影在线观看| 毛片女人毛片| av天堂中文字幕网| 国产高清有码在线观看视频| 亚洲无线观看免费| 久久久久久久久久黄片| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o | 午夜激情欧美在线| 日本黄大片高清| 欧美zozozo另类| 欧美潮喷喷水| 色吧在线观看| 99久国产av精品| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 99热精品在线国产| 亚州av有码| 18禁动态无遮挡网站| 午夜福利高清视频| 国产精品熟女久久久久浪| 国产精品国产高清国产av| 国国产精品蜜臀av免费| av在线老鸭窝| 亚洲伊人久久精品综合 | 在线观看av片永久免费下载| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 国产黄片视频在线免费观看| 亚洲性久久影院| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕 | 韩国高清视频一区二区三区| 中文字幕av成人在线电影| 成人无遮挡网站| 中文资源天堂在线| АⅤ资源中文在线天堂| 国产高清三级在线| 久久久久久久久大av| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 毛片女人毛片| 高清午夜精品一区二区三区| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 视频中文字幕在线观看| 国产精品不卡视频一区二区| 狂野欧美激情性xxxx在线观看| 一级爰片在线观看| 亚洲美女视频黄频| 久久久久久久国产电影| 精品人妻视频免费看| 2021少妇久久久久久久久久久| 欧美激情久久久久久爽电影| 狠狠狠狠99中文字幕| 日韩欧美在线乱码| 一级毛片电影观看 | 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 97人妻精品一区二区三区麻豆| 午夜爱爱视频在线播放| 成人毛片60女人毛片免费| av国产久精品久网站免费入址| 免费看光身美女| 综合色av麻豆| 日韩欧美在线乱码| 亚洲欧洲日产国产| 可以在线观看毛片的网站| www.色视频.com| 人妻系列 视频| 日本-黄色视频高清免费观看| 国产高清有码在线观看视频| 午夜免费男女啪啪视频观看| 有码 亚洲区| 国产精品麻豆人妻色哟哟久久 | 97热精品久久久久久| 联通29元200g的流量卡| av免费在线看不卡| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| 免费在线观看成人毛片| av在线观看视频网站免费| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 最后的刺客免费高清国语| 伦理电影大哥的女人| 嫩草影院新地址| 在线播放无遮挡| 久久久久久国产a免费观看| 国产成人精品一,二区| www.色视频.com| 精品久久久久久成人av| 欧美日韩在线观看h| 水蜜桃什么品种好| 一区二区三区高清视频在线| 成人av在线播放网站| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 看黄色毛片网站| 床上黄色一级片| 久久人妻av系列| 国产精品久久久久久精品电影| 九九爱精品视频在线观看| 日本色播在线视频| 晚上一个人看的免费电影| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 边亲边吃奶的免费视频| 18禁裸乳无遮挡免费网站照片| 久久这里有精品视频免费| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| 少妇熟女aⅴ在线视频| 国产精品三级大全| 欧美变态另类bdsm刘玥| 欧美性猛交╳xxx乱大交人| 久久久欧美国产精品| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| www.色视频.com| 99久久人妻综合| 日韩精品青青久久久久久| 春色校园在线视频观看| 全区人妻精品视频| 国产精华一区二区三区| 欧美三级亚洲精品| 国内精品宾馆在线| 国产爱豆传媒在线观看| 午夜激情福利司机影院| 日日啪夜夜撸| 精品无人区乱码1区二区| 永久网站在线| 午夜福利视频1000在线观看| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 国产精品久久久久久久电影| 日韩亚洲欧美综合| ponron亚洲| 国产精品美女特级片免费视频播放器| 日日啪夜夜撸| 男人狂女人下面高潮的视频| 少妇被粗大猛烈的视频| 久久精品国产亚洲av天美| 久久99热这里只有精品18| 直男gayav资源| 精品一区二区免费观看| 久久人妻av系列| 黑人高潮一二区| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 秋霞伦理黄片| 狂野欧美激情性xxxx在线观看| 人人妻人人看人人澡| 综合色av麻豆| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 国产免费视频播放在线视频 | 搡女人真爽免费视频火全软件| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 国内揄拍国产精品人妻在线| 级片在线观看| 欧美精品国产亚洲| 欧美变态另类bdsm刘玥| 观看美女的网站| 看免费成人av毛片| 免费观看性生交大片5| 国产精品国产高清国产av| 天天躁日日操中文字幕| 你懂的网址亚洲精品在线观看 | 亚洲真实伦在线观看| 韩国高清视频一区二区三区| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区久久| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 麻豆成人av视频| 最近中文字幕高清免费大全6| 国产精品.久久久| 一边摸一边抽搐一进一小说| 高清午夜精品一区二区三区| 成人av在线播放网站| 91午夜精品亚洲一区二区三区| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 最近的中文字幕免费完整| 只有这里有精品99| 国产91av在线免费观看| 99热网站在线观看| 国产色婷婷99| 男女国产视频网站| 日本熟妇午夜| 一级毛片我不卡| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 亚洲精品久久久久久婷婷小说 | 婷婷色麻豆天堂久久 | 免费电影在线观看免费观看| 欧美潮喷喷水| 在线观看美女被高潮喷水网站| 亚洲国产精品合色在线| 一区二区三区乱码不卡18| 永久免费av网站大全| 国产成人aa在线观看| 亚洲精品,欧美精品| 99久国产av精品| www.色视频.com| 天堂网av新在线| a级毛片免费高清观看在线播放| 国产成人一区二区在线| 精品久久久久久久末码| 国产极品精品免费视频能看的| 亚洲成人久久爱视频| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 亚洲国产精品专区欧美| 国产精品麻豆人妻色哟哟久久 | 午夜精品在线福利| 日韩人妻高清精品专区| 男女边吃奶边做爰视频| 久久久精品大字幕| 我要看日韩黄色一级片| 伦理电影大哥的女人| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久久久久| 久久久久网色| 91久久精品电影网| 青春草国产在线视频| 日韩精品有码人妻一区| 黄色欧美视频在线观看| 国产又黄又爽又无遮挡在线| 久久久久久久午夜电影| 岛国毛片在线播放| 国内精品宾馆在线| 国产亚洲5aaaaa淫片| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 精品久久久久久久人妻蜜臀av| 一级二级三级毛片免费看| 色综合色国产| 99久久精品国产国产毛片| ponron亚洲| 久久精品国产99精品国产亚洲性色| 九九久久精品国产亚洲av麻豆| 午夜精品一区二区三区免费看| 97在线视频观看| 天天一区二区日本电影三级| 亚洲精品国产av成人精品| 日韩av在线免费看完整版不卡| 久久草成人影院| 国产精品一及| 看黄色毛片网站| 99国产精品一区二区蜜桃av| 麻豆久久精品国产亚洲av| 国产精品一二三区在线看| 久久精品国产自在天天线| 又黄又爽又刺激的免费视频.| a级毛片免费高清观看在线播放| 欧美激情久久久久久爽电影| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 韩国高清视频一区二区三区| 七月丁香在线播放| 国产成人午夜福利电影在线观看| 91精品伊人久久大香线蕉| 精品一区二区三区人妻视频| 成人二区视频| 亚洲av免费在线观看| 18+在线观看网站| 久久韩国三级中文字幕| av在线蜜桃| 超碰97精品在线观看| 久久久久久伊人网av| 麻豆一二三区av精品| 天美传媒精品一区二区| av.在线天堂| 国产视频内射| 国产私拍福利视频在线观看| 尾随美女入室| 18禁在线无遮挡免费观看视频| ponron亚洲| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 婷婷色麻豆天堂久久 | 婷婷六月久久综合丁香| 联通29元200g的流量卡| av在线播放精品| 精品熟女少妇av免费看| 麻豆av噜噜一区二区三区| 99久久精品热视频| 人人妻人人看人人澡| 一区二区三区免费毛片| 亚洲av中文av极速乱| av线在线观看网站| 九九热线精品视视频播放| www.av在线官网国产| 精品一区二区三区视频在线| 看非洲黑人一级黄片| 亚洲在线自拍视频| 校园人妻丝袜中文字幕| 我的老师免费观看完整版| 欧美成人精品欧美一级黄| 国产成人精品婷婷| 欧美激情久久久久久爽电影| 精品人妻熟女av久视频| 亚洲av成人精品一二三区| 看片在线看免费视频| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区 | 国产免费又黄又爽又色| 偷拍熟女少妇极品色| 亚洲中文字幕日韩| 成人鲁丝片一二三区免费| 国产成年人精品一区二区| 日日摸夜夜添夜夜添av毛片| 春色校园在线视频观看| 少妇人妻一区二区三区视频| 夜夜爽夜夜爽视频| 免费搜索国产男女视频| 神马国产精品三级电影在线观看| 亚洲av电影不卡..在线观看| 久久久精品94久久精品| 波野结衣二区三区在线| 一级黄片播放器| 在线免费观看的www视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品熟女久久久久浪| 日韩中字成人| 少妇的逼水好多| 18禁裸乳无遮挡免费网站照片| 欧美日韩在线观看h| 亚洲人成网站高清观看| 亚洲欧美日韩卡通动漫| 日韩精品青青久久久久久| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人手机在线| 少妇丰满av| kizo精华| 男人和女人高潮做爰伦理| 亚洲成人中文字幕在线播放| 亚洲av中文字字幕乱码综合| 插阴视频在线观看视频| av免费观看日本| 精品久久久久久久人妻蜜臀av| 丰满少妇做爰视频| 国产 一区精品| 免费一级毛片在线播放高清视频| 亚洲精品影视一区二区三区av| 亚洲av中文av极速乱| av在线老鸭窝| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久 | 免费大片18禁| 日韩欧美 国产精品| 99久久成人亚洲精品观看| 午夜亚洲福利在线播放| 精品人妻偷拍中文字幕| 国产av一区在线观看免费| 一个人免费在线观看电影| 天天躁夜夜躁狠狠久久av| 老女人水多毛片| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久 | 免费观看人在逋| 国产精品久久久久久久电影| 亚洲国产成人一精品久久久| 激情 狠狠 欧美| 麻豆久久精品国产亚洲av| 久久久久久久久久久丰满| 嫩草影院精品99|