• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION:TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS?

    2015-11-21 07:12:21GonzaloALDUNCIN

    Gonzalo ALDUNCIN

    Instituto de Geof′?sica,Universidad Nacional Aut′onoma de M′exico,M′exico,C.P.04510,Mexico

    EVOLUTION FILTRATION PROBLEMS WITH SEAWATER INTRUSION:TWO-PHASE FLOW DUAL MIXED VARIATIONAL ANALYSIS?

    Gonzalo ALDUNCIN

    Instituto de Geof′?sica,Universidad Nacional Aut′onoma de M′exico,M′exico,C.P.04510,Mexico

    Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed.A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization.For analysis and computational purposes,spatial decompositions based on nonoverlapping multidomains,above and below the sea level,are variationally introduced with internal boundary fluxes dualized as weak transmission constraints.Further,parallel augmented and exactly penalized duality algorithms,and proximation semi-implicit time marching schemes,are established and analyzed.

    two-phase flow in coastal aquifers;fractional two-phase flow;dual mixed variational analysis;macro-hybrid variational formulations;augmented exactly penalized duality algorithms;proximation semi-implicit time marching schemes 2010 MR Subject Classification 35A15;47H05;35J50;76S05;35R35

    1 Introduction

    The purpose of this paper is to formulate and analyze variational two-phase flows in open coastal aquifers.For the physical model,we adopt the fractional two-phase dual mixed model of Chen and Ewing[1,2],with an air-fresh water and a fresh water-seawater characterization,assuming the fresh water velocity as the wetting phase velocity.This mixed flow model corresponds to an instantaneous total velocity-global pressure incompressible flow,coupled with an evolution wetting velocity-complementary pressure compressible-like flow.Importantly,such a dual mixed two-phase flow modeling is appropriate for the application of composition duality methods[3,4],in the solvability analysis of the system via duality principles.For analysis and computational purposes,suitable spatial decompositions,based on nonoverlapping multidomains,above and below the sea level,were variationally introduced with internal boundary fluxes dualized as weak transmission macro-hybrid constraints[5-7].We should emphasize that these decomposed reformulations lead to macro-hybrid mixed localized models,which are veryappropriate for internal variational finite dimensional approximations,implementable in terms of non-matching finite element discretizations[8,9].

    ?Received November 11,2013;revised February 14,2015.The work reported here is part of a project partially supported by DGAPA,UNAM:PAPIIT Clave IN100214.

    Further,parallel augmented and exactly penalized duality algorithms,as well as proximation semi-implicit time marching schemes of the Douglas-Rachford and Peaceman-Rachford type,are established and analyzed.

    In a recent study[10],we considered this evolution filtration problem in the sense of a slightly compressible Darcian velocity-pressure mixed single phase flow,which corresponds to a mixed variational approach of the classical variational pressure model presented in[11].Such a classical pressure model was in turn an extension to general domains with seawater intrusion,of evolution filtration problems based on the pioneer Baiochi's transform analysis[12];see[13-17]. In this paper,our interest is to apply a special two-phase approach to the evolution coastal filtration problem,in conjunction with a natural compositional duality macro-hybrid mixed variational analysis.

    2 Physical and Mixed Variational Models

    In this section,we start with a qualitative description of the open coastal aquifer to be considered,and the definition of its two-phase flow model.Corresponding mixed variational formulations are established through composition duality methods,and their solvability analysis is performed via duality principles.

    2.1 The Qualitative Mixed Physical Model

    Let ???3denote the spatial configuration of a coastal aquifer,a bounded connected domain with a Lipschitz continuous boundary??.We shall consider the following partition of boundary??(Figure 1):Hence,assuming immobile seawater phase,our interest is to determine and analyze the evolution of the fresh water flow in the wet set Λ?Q=?×(0,T),for arbitrary and fixed T∈(0,+∞),whose boundary?Λ??Q=??×(0,T),relative to??,has the corresponding partition

    Fig.1 A section of an open coastal aquifer

    For an incompressible flow process through the porous media,let ρfand ρsbe constant parameters denoting the fresh water and seawater mass densities,ρs>ρf>0,and define ρ≡1-ρs/ρf<0.Further,let︿h∈{︿h1,︿h2,···,︿hnr}denote the time-varying fresh water ordinate levels for the nrreservoirs of the hydraulic system,relative to the fixed sea level as the origin(y=0).Also,following[10],in order to guarantee that the seawater intrusion cannot be in contact with the fresh water reservoirs,and that the(possibly empty)impervious flow boundary Σi=?Λ∩??ibe geometrically vertical,we introduce the conditions

    Consequently,the coastal aquifer flow domain is characterized by

    where Λ+=[p=0]≡{(x,y,z,t)∈Q:p(x,y,z,t)=0},Λ=[p>?]≡{(x,y,z,t)∈Q: p(x,y,z,t)>?}and Λ-=[p=(ρ-1)y]≡{(x,y,z,t)∈Q:p(x,y,z,t)=(ρ-1)y},and the following qualitative result can be concluded[10]:any solution system(p,u,Λ)of the evolution filtration problem may be extended to all of Q in pressure and Darcian velocity by

    respectively.Here H0denotes the Heaviside function,and ? is the continuous Q-extension of the obstacle function in(2.3),by zero in Λ+and by(ρ-1)y in Λ-.

    In regard to pressure(hydraulic charge)boundary conditions for this qualitative model,we shall consider

    as well as the impervious boundary condition and seepage flux constraint

    In addition,as prescribed initial conditions,we have

    Taking into account qualitative incompressible Darcian flow properties(2.3)-(2.6)and conditions(2.7)-(2.9),the coastal flow problem was formulated in a classical single-phase primal evolution mixed variational form in our previous work[10],extending the model from the flow domain Λ to the whole domain Q,`a la Baiocchi.Here,our interest is to take a further step:to generate and analyze a general three-dimensional dual evolution mixed variational two-phase flow model,which results indeed to be more suitable for macro-hybridization and parallel variational mixed finite element approximations.

    2.2 The Fractional Two-Phase Dual Mixed Physical Model

    Neglecting the effect of evaporation,and assigning to the atmospheric pressure a zero value,we shall here consider an immiscible two-phase Darcian incompressible flow,without mass transfer,of a wetting phase denoted by α=w and a nonwetting phase by α=n,in the whole space-time domain Q=?×(0,T).Hence,for a coastal aquifer,non-homogeneous and anisotropic,the governing mixed equations are the following:

    here uα,pαand sαare the dependent α-phase variables of velocity,pressure and saturation fields.These are the constitutive and conservation of mass equations of the flow system,where K is the symmetric positive definite absolute permeability tensor,κα,μα,ραand︿qαare the α-phase relative permeability,viscosity,mass density and volumetric flow rate,respectively. Also φ is the porosity of the media and g the gravity acceleration vector.Furthermore,as complementary equations to model(2.10),we have the flow volume balance constraint and the capillary pressure relation

    As mentioned in the introduction,our modeling strategy will be to adopt the dual mixed two-phase fractional flow model treated by Chen and Ewing[1].Thereby,we reformulatephysical two-phase model(2.10)-(2.11)as a fractional flow model,with primary dependent variables the total velocity and global pressure fields

    where fα(sw)=λα/λ,α∈{w,n},define the fractional flow functions,in terms of the phase mobilities λα=κα/μαand total mobility λ=λw+λn.Then the dual mixed fractional flow system is given by(see[1])

    and θ is the complementary pressure defined by[18]

    Regarding θ as a function of the wetting phase saturation sw,from the inverse relation sw=S(θ)the complementary compressibility would be given by ?(θ)=φ?S(θ)/?θ.Lastly,we note that the nonwetting phase velocity is related to θ by

    Notice that the structure of fractional flow model(2.13)turns out to be of an instantaneous incompressible total velocity-global pressure flow,coupled with an evolution wetting velocitycomplementary pressure compressible-like flow.This mixed structure is proper for dual mixed variational formulations,which,importantly,permit the application of duality principles in their solvability analysis,the development of macro-hybrid spatial decompositions,and preconditioned augmented regularizations.These are the basis in turn for instantaneous penaltyduality algorithms as well as complementary proximation semi-implicit time marching schemes.

    The particular natural flow assumption for the open coastal aquifer under consideration,the immobility of the air and seawater phases,will be taken into account,and their modeling consequences will be exhibited,in the next section,where the variational macro-hybridization of the whole system is treated.

    2.3 Instantaneous Total Velocity-Global Pressure Variational Model

    We next proceed to formulate variationally the instantaneous component of the fractional two-phase flow model(2.13).Toward this end we apply the duality procedures of[3,19](also,see[9]).

    Let V(?)and Y(?)be two given Hilbert spaces for the instantaneous total velocity and global pressure ?-fields,with trace spaces of boundary normal velocities and pressures denoted by B(??)and its dual B?(??),respectively.Further,let corresponding linear continuous trace operators be denoted by δ∈L(V(?),B(??))and γ∈L(Y(?),B?(??)).Then as primal and dual operators,we introduce the variational divergence div∈L(V(?),Y?(?))and the variational gradient grad∈L(Y(?),V?(?)),formally defined by?divv,q?Y(?)=R?div v q d?and?grad q,w? V(?)=R

    ?grad q·w d?,for w∈V(?),q∈Y(?),with V?(?)and Y?(?)denoting the topological duals of V(?)and Y(?).

    Applying the duality procedure of[3,19]to the pressure-velocity boundary conditions and constraints of the aquifer system,in accordance with those of the qualitative model,(2.7)and(2.8),they are expressed subdifferentially as variational inclusions as follows:

    with the seepage flux constraint

    here I{0i}denotes the indicator functional of the singleton{0i}?B(??i),and I{≥0a}the indicator functional of the convex subset K≥0a={va∈B(??a):va≥0ain B(??a)}.Then,considering the divergence and normal velocity trace variational operators div∈L(V(?),Y?(?))and δ∈L(V(?),B(??)),with transpose divT∈L(Y(?),V?(?))and δT∈L(B?(??),V?(?)),and utilizing the corresponding variational Green formula

    the variational formulation of the incompressible mixed flow component,of the fractional twophase problem is obtained,via the following compositional duality result[19].

    Lemma 2.1 Under the fundamental trace compatibility property[20]

    the variational essential boundary condition(2.16)1in B?(??i),and the essential boundary constraint(2.17)in B?(??a),are such that

    Indeed,the instantaneous dual mixed variational flow component turns out to be

    here the primal subdifferentialis such that,for a.e.t∈(0,T),

    where?C(·,t):V(?)→V?(?)is the gradient of the differentiable convex potential C(v,t)= 1/2R?(λ(θ(·,t))K)-1v·v d?,v∈V(?).Further,

    with Dirichlet boundary dataB?(??sw)×B?(??a),and?0Ydenotes the zero variational subdifferential in Y(?).For a natural regularity of instantaneous data,we shall assume that

    Hence,we adopt the usual velocity-pressure mixed functional Hilbert framework

    with normal velocity and pressure trace spaces

    for which the classical compatibility condition

    holds true[20].We shall denote the kernel of coupling operator div by N(div)?V(?). Therefore,applying compositional dualization[3](see also[21]),we can conclude the following primal composition duality principle.

    Theorem 2.2 Mixed problem(M)is uniquely solvable if,and only if,its instantaneous variational primal problem

    is uniquely solvable,where u︿q(t)is a div-preimage of function︿q(t).

    Thereby,under regularity condition(2.23),in accordance with Theorem 2.2 and the Lax-Milgram Theorem(see[22],Subsection 2.1),the classical solvability result of problem(M)is achieved.

    Theorem 2.3 Instantaneous dual mixed problem(M)possesses a unique solution,continuously dependent on the data.

    2.4 Evolution Wetting Velocity-Complementary Pressure Mixed Variational Model

    For the variational formulation of the dual evolution mixed component of fractional flow model(2.13),let V(?)×Y(?)be an appropriate mixed Hilbert functional framework,with pressure dual space such that Y(?)?Z(?)?Y?(?),where embeddings are dense and continuous,and pressure pivot space Z(?)=L2(?).Then,we consider the following evolution mixed Hilbert spaces

    with topological duals V?=L2(0,T;V?(?))and Y?=L2(0,T;Y?(?)).Also,for the dual pressure solution space,we consider the corresponding Hilbert space X={y:y∈Y,dy/dt∈Y?}endowed with the operator norm,continuously embedded in the space C([0,T];Z(?))of continuous pivot fields.

    Once again we apply the duality procedure of[3,19]to compressible-like system(2.13)2,in order to incorporate variationally the pressure-velocity boundary conditions and constraints,of normal wetting velocity and complementary pressure fields.Hence,in accordance with the qualitative physical flow model presented in Subsection 2.1,we consider as before conditions(2.7)and(2.8),in their corresponding subdifferential sense(2.16)and(2.17),with evolution trace spaces B=L2((0,T);B(??))and its dual B?=L2((0,T);B?(??)).In this manner,evoking corresponding Green formula(2.18)and Lemma 2.1,the dual mixed variational formulation of evolution subproblem(2.13)2results to be as follows.

    where the primal subdifferential?F:V(?)→2V?(?)is given by(2.21),for a.e.t∈(0,T),and the right-hand side term is defined byhere Dirichlet boundary data︿θD(t)= (︿h(t)-y,ρy-y,0a)in B?(??D)=B?(??fw)× B?(??sw)×B?(??a).Also the dual variational operator A∈L(Y?,Y?)is formally defined bywith a natural coefficient regularity ?(θ)∈L∞(?×(0,T)).

    Therefore,in the sense of[4],a dual duality principle can be established for the analysis of evolution mixed variational problem(M),by dualization of its V?-primal equation and compositional dualization.

    Theorem 2.4 Dual evolution mixed problem(M)possesses a unique solution if,andonly if,its dual evolution nonlinear problem

    possesses a unique solution,whereis a fixed divT-preimage of function

    Thereby,given a specific dual mixed functional Hilbert framework,appropriate variational operator properties and regularity conditions,the well-posedness of problem(M)can be determined.For an existence,uniqueness and regularity analysis of dual evolution problem(D),we refer to Chen's study[2].

    3 Macro-Hybrid Variational Formulations

    Once the fractional two-phase dual mixed flow variational problem(M)-(M)has been established,for the open coastal aquifer under consideration,we next specialize the problem in accordance with the qualitative physical stated assumption of air-and seawater-phase immobilities;i.e.,we take into account that the nonwetting-phase velocity field unequals 0 above the sea level(y>0),and below the sea level(y<0).

    Toward this end,we reformulate the global problem as a macro-hybrid mixed localized model.This type of variational decomposition is,additionally important,when regarding big spatial scales,heterogeneities and anisotropy of the system,as well as internal variational approximations,finite element implementations and parallel computing.Here we shall follow our study[23](see,also[4,8])on macro-hybridization of variational mixed constrained problems in mechanics.

    Let us then introduce nonoverlapping domain decompositions of the aquifer spatial region,and derive corresponding dual variational interface continuity transmission problems for synchronization.Hence,let the domain ? be decomposed in terms of connected disjoint subdomains{?e}by

    assuming Lipschitz internal boundaries and interfaces

    In particular,an appropriate specific decomposition of the open aquifer with seawater intrusion,would be the following,with nonoverlapping subdomains above(A)and below(B)the seawater level(y=0)(Fig.1):

    In this manner,we can implement the phase immobilities of the model,obtaining families of air-fresh water and fresh water-seawater flow subsystems,hydraulically communicated acrosstheir interfaces.Thereby,the imposed continuity transmission conditions of the spatial decomposition will correspond,in this case,to the instantaneous normal fresh water velocity and global pressure fields,and to the evolution normal fresh water velocity and complementary pressure fields.

    3.1 Instantaneous Macro-Hybrid Mixed Variational Formulations

    In this subsection,we treat the macro-hybridization of the instantaneous component of the fractional two-phase flow model,dual mixed problem(M).

    We first note that due to the nonwetting phase immobilities,the total velocity u of the model corresponds to the wetting fresh water velocity field,uw,above and below the sea level.Hence,for the macro-hybridization of problem(M),we consider nonoverlapping domain decompositions of type(3.1)-(3.3),and mixed functional framework(2.24)-(2.25)of wetting fresh water velocity and global pressure fields assumed to be decomposable in the sense

    with corresponding global pressure pivot space

    Hence,imposing the primal transmission condition of(3.4)1,via the subdifferential of the indicator functional IQof transmission subspace Q,the macro-hybridized version of mixed problem(M)is achieved,

    Furthermore,incorporating the internal boundary global pressures as Lagrange multipliers, denoted by,the macro-hybrid variational formulation of mixed problem(M)is obtained once the following dualization result is applied[5].

    Lemma 3.1 Due to compatibility property(C[δΓe]),the corresponding macro-hybrid compositional dualizationholds true.

    Indeed,we have the macro-hybrid problem

    This is the localized instantaneous dual mixed incompressible flow model(M),above and below the sea level,related to the nonoverlapping specific spatial decomposition(3.3)of the open coastal aquifer.Its dependent mixed fields are the local wetting fresh water velocities and the global pressures(with nonwetting pressure,the zero atmospheric pressure;see(2.12)2),synchronized by the internal boundary global pressures.Notice that,under seawater,the seepage constraint term primal subdifferential{?F}must be zero,?(I{≥0a}?δa)=0(see(2.21)).

    3.2 Evolution Dual Macro-Hybrid Mixed Variational Formulations

    Next,proceeding similarly as before,the macro-hybridization of the complementary dual evolution mixed model(M)turns out to be

    where the evolution mixed functional framework V{?e}and Y{?e},of wetting fresh water velocity and complementary pressure fields,corresponds to the decomposed version of evolution mixed spaces(2.26),relative to decomposed mixed framework(3.4)-(3.5)and on the basis of specific decomposition(3.3).Furthermore,introducing the Lagrange multiplier{χ?e}∈?IQ({δΓeue})?B?{Γe}of internal boundary complementary pressures,the macro-hybrid variational formulation of evolution mixed problem(M)is finally obtained by applying macro-hybrid compositional dualization result(3.7)of Lemma 3.1.

    As noted in the previous subsection for the instantaneous component of the fractional two-phase flow model,under seawater the seepage constraint term of the primal subdifferential{?F}must be zero(see(2.21)).

    4 Parallel Proximation Algorithms

    In this final section,we state proximation algorithms for the fractional two-phase flow macro-hybrid mixed variational models of the theory.These algorithms have proved to be very efficient in the treatment of mixed variational inclusions[3,4].We should further emphasize that all of these schemes are indeed implementable in terms of local internal variational finite element approximations,as we comment below,which in general may correspond to non-matching spatial discretizations.

    For the instantaneous macro-hybrid dual mixed incompressible model(MH),preconditioned augmented variational formulations are constructed in the sense of two-and three-field variational versions[3].On the other hand,for the complementary coupled dual evolution macro-hybrid mixed compressible-like model(MH),corresponding proximal-point algorithms are semi-implicit time marching schemes of the Douglas-Rachford and Peaceman-Rachford type,with proximation characterizations[4].

    Remark 4.1 For semi-discrete spatial approximations of the instantaneous macro-hybrid dual mixed variational component,(MH),of the coastal filtration flow model,we observe that a natural approach is the introduction of finite dimensional internal variational frameworks[24],implementable in terms of finite element interpolating basis.That is,the distributed local fresh water velocity and global pressure mixed framework may be approximated in terms of given families of finite dimensional subspacesand,such that

    We refer to[4](Sect.4)for further details,as well as for related semi-discrete solvability composition duality principles.For numerical implementation and experimentation,we refer to the works[25,26],where proximation iterative algorithms,as the ones to be presented in this section,are applied and discussed.Importantly,we should notice that corresponding macrohybrid mixed finite element implementations,in general,turn out to be globally nonconforming,allowing their generation via non-matching geometrical meshes,a fundamental strategy in parallel computing.Of course,similar comments on finite element approximations for the dual evolution component of the coastal filtration flow model,(MH),are in order,concerning the macro-hybrid mixed frameworks of the distributed local fresh water velocity and complementary pressure fields,as well as internal boundary complementary pressure fields.

    4.1 Parallel Proximal-Point Algorithms

    Following the resolvent or proximation methodology treated in[3,4,8],for the construction of preconditioned augmented two-and three-field parallel proximal-point algorithms of variational inclusions,we shall consider instantaneous macro-hybrid dual mixed model(MH)expressed in the classical mixed subdifferential form

    Hence,we shall have the primal and dual field identifications

    and the operator relations

    here A:V → 2V?is a primal maximal monotone operator with domain D(A)?{{ve}∈V({?e}):{δieve}= {0ie}},Λ ∈L(V,Y)is a linear continuous coupling operator with transpose ΛT∈L(Y?,V?),and?G?:Y?→2Yis a dual maximal monotone subdifferential operator with effective domain D(G?)?{({qe},{μ?e})∈Y({?e})×B?({Γe}):{μ?e}∈Q?}.

    Next,we shall proceed to state parallel proximal-point algorithms for the abstract general mixed variational problem(S),making precise in the sequel the sense in which the algorithmic results apply to the macro-hybrid dual mixed incompressible flow model of the theory,(MH).

    4.1.1 Two-Field Instantaneous Algorithms

    Following[3],problem(S)is first reformulated as a two-field augmented proximation problem,in terms of a real fixed parameter r>0,and a given linear and symmetric preconditioningoperator M?:Y?→Y,m?-bounded below,with inverse denoted by M-?:Y→Y?.

    In the construction of proximation augmented version(Sr),we should observe that the dual equation of mixed problem(S)is equivalently expressed in its augmented preconditioned form M?p?+rΛu∈(M?+r?G?)(p?),which upon the introduction of the M?-resolvent operator of the dual subdifferential?G?:Y?→2Y,defined by(a single valued 1/m?-firm contraction),takes the final formThen problem(Sr)is completed utilizing the resolvent-proximation relationProxM?,rG?=IY?-M-?ProxM-?,rG?(1/r)IY?M?(see[3]).

    Thereby,mixed augmented problem(Sr)that in fact corresponds to an exact r-penalization of original problem(S)(see[25]for a concrete case),turns out to be well conditioned.Then it becomes natural to associate Uzawa type algorithms for its resolution[27-29],as the following one.

    Algorithm IGiven u0∈D(A),p?0∈D(G?),known um,p?m,m≥0,find um+1,and p?m+1:

    In the convergence analysis of Algorithm I,taking into account the above stated resolventproximation relation,a resolvent dual characterization of the algorithm is given by

    that corresponds to a characterization of the implicit mixed Euler scheme

    related to the dynamical system associated to augmented problem(Sr).Here the dual operator A?Λ:Y?→ 2Yis defined by A?Λ=-ΛA-1(-ΛT(·)),with A-1:V?→2Vthe inverse(graph)of primal operator A:V→2V?.Then the convergence of the algorithm is concluded[30].

    Theorem 4.2 The convergence of Algorithm I is guaranteed whenever the dual operator conditionis fulfilled.

    ·Model(MH) In the case of the macro-hybrid dual mixed incompressible flow model of the paper,the parallel implementation of this two-field proximal-point algorithm,with vector and operator relations(4.3)and(4.4)in force,follows by observing that corresponding primal superpotential G of dual subdifferential(4.4)4is given byand that corresponding proximation operator(4.5)turns out to behere Proj[H-?e],Qstands for the[H-?e]-projection on Q,with the inverse preconditioning operator identification

    In this manner,for the wetting fresh water velocity-global pressure flow component of the two-phase coastal filtration model,Algorithm I takes the explicit local and parallel form

    Algorithm IMHGivenknown

    Moreover,in this case,convergence conditionof Theorem 4.2 is satisfied.

    4.1.2 Three-Field Instantaneous Algorithms

    A second proximal-point algorithm for mixed problem (S)corresponds to a three-field extended formulation,for which the intermediate primal field

    is introduced,and the dual equation is inverted or dualized,to obtain the three-field variational abstract problem

    Then,proceeding as for the original two-field mixed problem(S),a further augmented formulation turns out to be the following,

    Notice that at this instance the proximation operator of the formulation vanishes,in contrast with that of augmented problem(Sr).

    Therefore,for augmented three-field mixed problem(Sr),an alternative Uzawa type proximalpoint algorithm reads as follows.

    Algorithm II Given p?0∈D(G?),known p?m,m≥0,find um+1,τm+1and p?m+1:

    Once again,this algorithm can be interpreted as an implicit Euler scheme,

    with a resolvent dual characterization,

    Then,due to the 1/m?-firm contraction property of the resolvent operator,the convergence of the algorithm is given as follows[30].

    Theorem 4.3 Algorithm II converges,if its dual operator is such that

    It is important to recognize that Algorithm II constitutes an extension of the classical penalty-duality algorithm ALG1 studied in[29-32],with further alternating-direction variants ALG2 and ALG3.

    ·Model(MH) For the macro-hybrid dual mixed incompressible flow model component of the paper,with relations(4.3)and(4.4)in force,intermediate field τ=Λu ∈Y,(4.11),is given by

    the negative divergence of local wetting fresh water velocities and the internal boundary normal wetting fresh water velocities;a subgradient of dual subdifferential(4.4)4.Then Algorithm II for instantaneous macro-hybrid dual mixed model(MH),in terms of preconditioning operator(4.10),takes the local and parallel implementable form

    Algorithm IIMHGivenknownm≥0,find

    Moreover,condition(CA?Λ,?G)of Theorem 4.3 is satisfied and Algorithm IIMHis convergent.

    4.2 Proximation Semi-Implicit Time Marching Schemes

    Next,we proceed to apply time discretization schemes to the dual evolution macro-hybrid mixed variational component of the coastal fractional flow model,(MH).We shall consider semi-implicit time marching schemes that are implementable as proximation local parallel algorithms.In particular,we apply the Douglas-Rachford and Peaceman-Rechford time marching procedures.Also,based on our previous work[8]on proximal-point algorithms for variational constrained problems,corresponding stationary convergence results are stated.

    4.2.1 The Operator Splitting Douglas-Rachford Scheme

    For dual evolution macro-hybrid mixed variational problem(MH),with identifications(4.3)and(4.4)in force,and denoting by r>0 and m≥0 the time marching step and step number,the Douglas-Rachford time marching procedure is given as follows(see[4,8]).

    For a proximal realization of this scheme,we introduce the intermediate macro-hybrid vector{κe}∈B{Γe},such that

    Then the Douglas-Rachford procedure has as a parallel proximal realization the following.

    Algorithm IMHGiven,knownsatisfying the primal synchronizing condition

    4.2.2 The Operator Splitting Peaceman-Rachford Scheme

    As an alternative operator splitting scheme for dual evolution macro-hybrid mixed variational problem(MH),we consider the following.

    Similarly,as for the previous time marching scheme,we introduce an intermediate macrohybrid vector{κe}∈B{Γe},but now such thatand a parallel proximation realization of Peaceman-Rachford scheme is then concluded.

    Algorithm IIMHGivenknown,findsatisfying the primal synchronizing condition

    4.3 Convergence of the Operator Splitting Schemes

    Thereby,defining the auxiliary dual supervectorsuch thatthe macro-hybrid dual problem of the Douglas-Rachford scheme,at the m+1≥1 time step,can be expressed by

    On the other hand,for the Peaceman-Rachford scheme,its macro-hybrid dual problem can be similarly expressed as follows,where the dual subdifferential is given by?G?=({0?e},?IQ?).Therefore,we can conclude the following convergence results[4].

    Theorem 4.4 Let the dual operatorsbe maximal monotone.Then, for time-independent dataoperator splitting algorithms

    Algorithm IMHand Algorithm IIMHevolve,as m → ∞,to aand astationary state of the dual evolution macro-hybrid mixed filtration coastal problem(MH),respectively.

    [1]Chen Z,Ewing R.Mathematical analysis of reservoir models.SIAM J Math Anal,1999,30:431-453

    [2]Chen Z.Degenerate two-phase incompressible flow I,existence,uniqueness and regularity of a weak solution. J Differ Equ,2001,171:203-232

    [3]Alduncin G.Composition duality methods for mixed variational inclusions.Appl Math Opt,2005,52: 311-348

    [4]Alduncin G.Composition duality methods for evolution mixed variational inclusions.Nonlinear Analysis: Hybrid Syst,2007,1:336-363

    [5]Alduncin G.Macro-hybrid variational formulations of constrained boundary value problems.Numerical Funct Anal Opt,2007,28:751-774

    [6]Alduncin G.Analysis of evolution macro-hybrid mixed variational problems.Int J Math Anal,2008,2: 663-708

    [7]Alduncin G.Primal and dual evolution macro-hybrid mixed variational inclusions.Int J Math Anal,2011,5:1631-1664

    [8]Alduncin G.Parallel proximal-point algorithms for constrained problems in mechanics//Yang L T,Paprzycki M.Practical Applications of Parallel Computing.New York:Nova Science,2003:69-88

    [9]Alduncin G.Analysis of augmented three-field macro-hybrid mixed finite element schemes.Analysis in Theory and Applications,2009,25:254-282

    [10]Alduncin G.Evolution filtration problems with seawater intrusion:Macro-hybrid primal mixed variational analysis.Front Eng Mech Research,2013,2:22-27

    [11]Esquivel-Avila J,Alduncin G.Qualitativeanalysisofevolution filtration freeboundary problems//Proceedings of the Second World Congress on Computational Mechanics.Stuttgart:University of Stuttgart,1990:658-661

    [12]Baiocchi C,Comincioli V,Magenes E,et al.Free boundary problems in the theory of fluid flow through porous media:existence and uniqueness theorems.Ann Mat Pura Appl,1973,4:1-82

    [13]Torelli A.Su un proplema a frontiera libera di evoluzione.Bolletino U M I,1975,11(4):559-570

    [14]Torelli A.On a free boundary value problem connected with a non steady phenomenon.Ann Sc Norm Super Pisa Cl Sci,1977,IV:33-58

    [15]Friedman A,Torelli A.A free boundary problem connected with non-steady filtration in porous media. Num Anal,TMA,1977,1:503-545

    [16]Gilardi G.A new approach to evolution free boundary problem.Commun Partial Differ Equ,1979,4: 1099-1122

    [17]DiBenedetto E,F(xiàn)riedman A.Periodic behaviour for the evolutionary dam and related free boundary problems.Commun Partial Differ Equ,1986,11:1297-1377

    [18]Arbogast T.The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow.Nonlinear Analysis,1992,19:1009-1031

    [19]Alduncin G.Variational formulations of nonlinear constrained boundary value problems.Nonlinear Analysis,2010,72:2639-2644

    [20]Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations.Berlin:Springer-Verlag,1986

    [21]Alduncin G.Composition duality principles for mixed variational inequalities.Math Comput Model,2005,41:639-654

    [22]Alduncin G.Mixed variational modeling of multiphase flow and transport in the subsurface.Far East J Appl Math,2012,71:1-42

    [23]Alduncin G.Numerical resolvent methods for macro-hybrid mixed variational inequalities.Num Funct Anal Opt,1998,19:667-696

    [24]Temam R.Analyse Num′erique.Paris:Presses Universitaires de France,1970

    [25]Alduncin G,Vera-Guzm′an N.Parallel proximal-point algorithms for mixed finite element models of flow in the subsurface.Commun Numer Methods Eng,2004,20:83-104

    [26]Alduncin G,Esquivel-′Avila J,Vera-Guzm′an N.Steady filtration problems with seawater intrusion:macro-Hybrid penalized finite element approximations.Int J Num Methods in Fluids,2005,49:935-957

    [27]Brezzi F,F(xiàn)ortin M.Mixed and Hybrid Finite Element Methods.New York:Springer-Verlag,1991

    [28]Roberts J E,Thomas J-M.Mixed and hybrid methods//Ciarlet P G,Lions J L.Handbook of Numerical Analysis,Vol II.Amsterdam:North-Holland,1991:523-639

    [29]Fortin M,Glowinski R(eds).M′ethodes de Lagrangien Augment′e:Applications`a la R′esolution Num′erique de Probl`emes aux Limites.Paris:Dunod-Bordas,1982

    [30]Gabay D.Application de la m′ethode des multiplicateurs aux in′equations variationnelles//Fortin M,Glowinski R.M′ethodes de Lagrangien Augment′e.Paris:Dunod-Bordas,1982:279-307

    [31]Glowinski R.Numerical Methods for Nonlinear Variational Problems.New York:Springer-Verlag,1984

    [32]Glowinski R,Le Tallec P.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Philadelphia:SIAM,1989

    [33]Mosco U.Dual variational inequalities.J Math Anal Appl,1972,40:202-206

    E-mail:alduncin@geofisica.unam.mx

    亚洲欧美激情综合另类| 亚洲成人久久性| 男女午夜视频在线观看| 欧美激情极品国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| www国产在线视频色| 我的亚洲天堂| 悠悠久久av| 18禁国产床啪视频网站| 亚洲狠狠婷婷综合久久图片| 在线看三级毛片| 可以在线观看毛片的网站| 欧美日韩精品网址| 国内揄拍国产精品人妻在线 | 香蕉国产在线看| 99热这里只有精品一区 | 国内精品久久久久久久电影| 国产1区2区3区精品| 黄网站色视频无遮挡免费观看| 国产高清激情床上av| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 国产乱人伦免费视频| www日本黄色视频网| 久久久精品欧美日韩精品| 久久久久国内视频| 中文字幕最新亚洲高清| 中文亚洲av片在线观看爽| 午夜福利一区二区在线看| av视频在线观看入口| 欧美黄色淫秽网站| 亚洲专区字幕在线| 国产又爽黄色视频| 黄频高清免费视频| 精品久久久久久成人av| 国产视频一区二区在线看| 日韩精品免费视频一区二区三区| 视频在线观看一区二区三区| 久久人妻av系列| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 国产成人精品无人区| 国产单亲对白刺激| 国产黄片美女视频| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 啦啦啦韩国在线观看视频| 不卡一级毛片| 久久久久久大精品| 很黄的视频免费| 男男h啪啪无遮挡| 欧美一区二区精品小视频在线| 一二三四社区在线视频社区8| 国产精华一区二区三区| 男女那种视频在线观看| 午夜福利高清视频| 丝袜美腿诱惑在线| 国产亚洲欧美98| 久久精品国产综合久久久| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 天堂√8在线中文| tocl精华| 午夜日韩欧美国产| 亚洲精品一区av在线观看| 嫩草影院精品99| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 在线看三级毛片| 国产亚洲精品一区二区www| 国产亚洲精品第一综合不卡| 欧美zozozo另类| 熟女少妇亚洲综合色aaa.| 亚洲av五月六月丁香网| 亚洲av美国av| 热99re8久久精品国产| 亚洲av成人一区二区三| 精品人妻1区二区| 久久中文字幕人妻熟女| xxxwww97欧美| 国产精品98久久久久久宅男小说| 日本精品一区二区三区蜜桃| bbb黄色大片| 中文字幕高清在线视频| 美女午夜性视频免费| 色播亚洲综合网| 久久伊人香网站| 美女国产高潮福利片在线看| 两个人免费观看高清视频| a级毛片在线看网站| 级片在线观看| 日本免费一区二区三区高清不卡| 国产精品av久久久久免费| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 精品久久久久久,| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 在线观看66精品国产| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 国产亚洲精品av在线| 无遮挡黄片免费观看| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全电影3 | 免费人成视频x8x8入口观看| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 制服丝袜大香蕉在线| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 宅男免费午夜| 日韩高清综合在线| 亚洲avbb在线观看| 欧美乱妇无乱码| 女性生殖器流出的白浆| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 午夜久久久在线观看| 波多野结衣巨乳人妻| 亚洲国产欧美日韩在线播放| 欧美午夜高清在线| 51午夜福利影视在线观看| 一级作爱视频免费观看| 欧美色欧美亚洲另类二区| 亚洲人成网站高清观看| 久久香蕉精品热| 天堂动漫精品| or卡值多少钱| 好男人在线观看高清免费视频 | 亚洲av成人不卡在线观看播放网| 国产高清激情床上av| 亚洲欧美日韩无卡精品| 老汉色av国产亚洲站长工具| 露出奶头的视频| 嫁个100分男人电影在线观看| 欧美一级毛片孕妇| 波多野结衣巨乳人妻| 亚洲国产高清在线一区二区三 | 色播亚洲综合网| 国产成人一区二区三区免费视频网站| www.熟女人妻精品国产| 一本综合久久免费| 日韩免费av在线播放| 日韩欧美一区二区三区在线观看| 精品免费久久久久久久清纯| 午夜老司机福利片| 黑人欧美特级aaaaaa片| 精品少妇一区二区三区视频日本电影| 久久精品影院6| 亚洲免费av在线视频| 岛国在线观看网站| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 免费在线观看视频国产中文字幕亚洲| 免费看a级黄色片| or卡值多少钱| 在线观看免费午夜福利视频| 级片在线观看| 国产精品1区2区在线观看.| 久久久国产欧美日韩av| 18禁国产床啪视频网站| 日韩三级视频一区二区三区| 国产精品 国内视频| а√天堂www在线а√下载| 亚洲成人久久爱视频| 国内精品久久久久精免费| 欧美不卡视频在线免费观看 | 18禁黄网站禁片免费观看直播| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美在线二视频| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 欧美黑人欧美精品刺激| 给我免费播放毛片高清在线观看| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 国产免费av片在线观看野外av| 制服诱惑二区| 国产精品98久久久久久宅男小说| 叶爱在线成人免费视频播放| 成人一区二区视频在线观看| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www| 久久天堂一区二区三区四区| 国产单亲对白刺激| 亚洲 国产 在线| 欧美在线一区亚洲| 日韩大尺度精品在线看网址| 国产主播在线观看一区二区| 人人妻人人澡人人看| 亚洲一区中文字幕在线| 免费高清视频大片| 久久伊人香网站| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 999久久久精品免费观看国产| 美女高潮到喷水免费观看| 女人被狂操c到高潮| 亚洲中文字幕日韩| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 搡老岳熟女国产| 后天国语完整版免费观看| 中文字幕精品免费在线观看视频| 国产av不卡久久| 中出人妻视频一区二区| 18禁观看日本| 18禁裸乳无遮挡免费网站照片 | 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 久久 成人 亚洲| 欧美在线黄色| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女| 男女之事视频高清在线观看| 波多野结衣巨乳人妻| 久久99热这里只有精品18| 国内精品久久久久久久电影| 午夜视频精品福利| 日韩高清综合在线| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 亚洲第一青青草原| 亚洲国产中文字幕在线视频| 91成人精品电影| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 国产野战对白在线观看| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 叶爱在线成人免费视频播放| 中文字幕高清在线视频| 国产av不卡久久| www.精华液| 欧美一区二区精品小视频在线| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 国内揄拍国产精品人妻在线 | 国产精品综合久久久久久久免费| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲无线在线观看| 亚洲 欧美一区二区三区| 欧美黑人精品巨大| 午夜福利成人在线免费观看| 搡老岳熟女国产| 日本一区二区免费在线视频| 久久婷婷成人综合色麻豆| 亚洲精华国产精华精| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 99精品在免费线老司机午夜| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| 国产精品影院久久| 在线观看免费午夜福利视频| 丝袜在线中文字幕| 欧美成人一区二区免费高清观看 | 色播在线永久视频| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 亚洲成国产人片在线观看| 男人舔女人的私密视频| 欧美日韩一级在线毛片| 欧美日韩黄片免| 国产精品 国内视频| 亚洲专区字幕在线| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 久久99热这里只有精品18| 国产单亲对白刺激| 在线视频色国产色| 女人被狂操c到高潮| 久久精品人妻少妇| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 久久久久久久久久黄片| 两个人看的免费小视频| 日韩欧美三级三区| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| svipshipincom国产片| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 中文字幕av电影在线播放| 亚洲精品色激情综合| 国产高清videossex| 亚洲第一av免费看| 少妇的丰满在线观看| av天堂在线播放| 欧美日韩一级在线毛片| 亚洲精品国产区一区二| 午夜精品在线福利| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说| 一边摸一边做爽爽视频免费| 十八禁人妻一区二区| 欧美日韩精品网址| 大型av网站在线播放| 欧美乱码精品一区二区三区| 日韩视频一区二区在线观看| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 国产精品 欧美亚洲| 在线视频色国产色| 99在线视频只有这里精品首页| 香蕉久久夜色| 美女国产高潮福利片在线看| 成人一区二区视频在线观看| 国产亚洲精品综合一区在线观看 | 动漫黄色视频在线观看| 亚洲av电影在线进入| 国产久久久一区二区三区| 一区二区三区高清视频在线| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 丁香欧美五月| 在线观看午夜福利视频| 久久国产亚洲av麻豆专区| 久久99热这里只有精品18| 很黄的视频免费| 午夜两性在线视频| 日韩欧美免费精品| 黄片播放在线免费| 国产精品久久久av美女十八| 最近在线观看免费完整版| 亚洲自偷自拍图片 自拍| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 美女高潮到喷水免费观看| 成熟少妇高潮喷水视频| 999精品在线视频| 免费看美女性在线毛片视频| 久久午夜综合久久蜜桃| 欧美又色又爽又黄视频| 中文字幕精品亚洲无线码一区 | www.www免费av| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 999久久久精品免费观看国产| 给我免费播放毛片高清在线观看| 日韩欧美 国产精品| 1024手机看黄色片| 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| www.自偷自拍.com| av片东京热男人的天堂| 18禁黄网站禁片免费观看直播| 精品欧美一区二区三区在线| 久久狼人影院| 丰满人妻熟妇乱又伦精品不卡| 久久99热这里只有精品18| 伦理电影免费视频| 日韩欧美三级三区| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 国产高清有码在线观看视频 | 午夜视频精品福利| 亚洲欧美激情综合另类| 精华霜和精华液先用哪个| 国产亚洲欧美精品永久| 欧美午夜高清在线| 中文字幕久久专区| 亚洲av日韩精品久久久久久密| 午夜日韩欧美国产| 日本a在线网址| 色老头精品视频在线观看| 国产成人精品久久二区二区91| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 免费在线观看影片大全网站| 免费在线观看成人毛片| 国产又爽黄色视频| 亚洲国产精品久久男人天堂| 深夜精品福利| 在线国产一区二区在线| 欧美日韩乱码在线| 国产精品野战在线观看| www日本黄色视频网| 麻豆av在线久日| 国产精品 国内视频| 欧美久久黑人一区二区| 欧美午夜高清在线| 久久伊人香网站| 国产又爽黄色视频| 午夜老司机福利片| 国产精品一区二区精品视频观看| 听说在线观看完整版免费高清| 啦啦啦观看免费观看视频高清| av欧美777| e午夜精品久久久久久久| 午夜视频精品福利| 大香蕉久久成人网| 欧美不卡视频在线免费观看 | 俄罗斯特黄特色一大片| 成人欧美大片| 岛国视频午夜一区免费看| 日本三级黄在线观看| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| a级毛片在线看网站| 天天一区二区日本电影三级| 亚洲狠狠婷婷综合久久图片| 国产精品av久久久久免费| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 白带黄色成豆腐渣| 丝袜美腿诱惑在线| 人人澡人人妻人| 丰满的人妻完整版| www国产在线视频色| 久久久久亚洲av毛片大全| 99精品久久久久人妻精品| 亚洲电影在线观看av| 男女视频在线观看网站免费 | 亚洲精品国产区一区二| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 欧美日本视频| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3 | 久久久国产成人免费| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片 | 亚洲av成人av| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看| 精品日产1卡2卡| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 久久久久久九九精品二区国产 | 国产亚洲欧美98| 欧美又色又爽又黄视频| 国产麻豆成人av免费视频| 午夜视频精品福利| 99在线视频只有这里精品首页| 妹子高潮喷水视频| 久久精品成人免费网站| 亚洲专区国产一区二区| 大型av网站在线播放| 欧美精品啪啪一区二区三区| 天天添夜夜摸| 怎么达到女性高潮| 久久久久久久久久黄片| 91大片在线观看| 国产又色又爽无遮挡免费看| 久久久久国产一级毛片高清牌| 人人妻人人澡欧美一区二区| 黄色片一级片一级黄色片| 亚洲成人久久性| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 一区二区三区精品91| 夜夜看夜夜爽夜夜摸| 亚洲五月婷婷丁香| 亚洲人成网站在线播放欧美日韩| 国产成人精品无人区| 岛国在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 精品国产亚洲在线| 亚洲成av人片免费观看| 999久久久精品免费观看国产| 午夜福利视频1000在线观看| 精品国产亚洲在线| 亚洲成av人片免费观看| 亚洲精品中文字幕在线视频| 精品欧美国产一区二区三| 丝袜在线中文字幕| 在线观看日韩欧美| 大型黄色视频在线免费观看| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 操出白浆在线播放| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 2021天堂中文幕一二区在线观 | 最近在线观看免费完整版| 国产成人欧美| 精品熟女少妇八av免费久了| 18禁观看日本| 99热6这里只有精品| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 欧美丝袜亚洲另类 | 国产单亲对白刺激| www日本黄色视频网| 亚洲男人的天堂狠狠| 久热这里只有精品99| 久久伊人香网站| 亚洲成人国产一区在线观看| 人人澡人人妻人| 国产av不卡久久| 亚洲av中文字字幕乱码综合 | 无限看片的www在线观看| а√天堂www在线а√下载| 欧美不卡视频在线免费观看 | 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 国产单亲对白刺激| av欧美777| 国产又黄又爽又无遮挡在线| 欧美黄色片欧美黄色片| 欧美最黄视频在线播放免费| 久久久国产精品麻豆| 国产熟女xx| 欧美成人性av电影在线观看| 国产精品一区二区精品视频观看| 高清毛片免费观看视频网站| 国产成人欧美| 无人区码免费观看不卡| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜 | 亚洲国产欧美日韩在线播放| 无人区码免费观看不卡| 久久国产乱子伦精品免费另类| 色av中文字幕| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 啦啦啦 在线观看视频| 中文资源天堂在线| 日本a在线网址| 亚洲av五月六月丁香网| 一本久久中文字幕| 日韩欧美 国产精品| 欧美色欧美亚洲另类二区| 久久国产精品男人的天堂亚洲| 国产精品久久电影中文字幕| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 欧美不卡视频在线免费观看 | 国产区一区二久久| 丁香欧美五月| 高清在线国产一区| АⅤ资源中文在线天堂| 久久精品国产综合久久久| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| 宅男免费午夜| 看片在线看免费视频| 免费看美女性在线毛片视频| 国产黄片美女视频| 后天国语完整版免费观看| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 香蕉av资源在线| 国产精品野战在线观看| 国产伦人伦偷精品视频| 久久国产精品影院| 欧美日韩一级在线毛片| 日韩成人在线观看一区二区三区| 色尼玛亚洲综合影院| 波多野结衣高清作品| 午夜日韩欧美国产| 色播亚洲综合网| 色哟哟哟哟哟哟| 国产区一区二久久| 色综合亚洲欧美另类图片| 精品国产乱子伦一区二区三区| 淫秽高清视频在线观看| 曰老女人黄片| 男人操女人黄网站| 午夜福利18| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 日本熟妇午夜| 国产亚洲av嫩草精品影院| 午夜免费成人在线视频| 亚洲国产中文字幕在线视频| 宅男免费午夜| 中文字幕高清在线视频| 久久久久久久精品吃奶| 日本黄色视频三级网站网址| 18禁黄网站禁片午夜丰满| 啦啦啦免费观看视频1| 九色国产91popny在线|