• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS?

    2015-11-21 07:11:39YuehongFENG馮躍紅
    關(guān)鍵詞:李新保障機(jī)制管理體制

    Yuehong FENG(馮躍紅)

    College of Applied Sciences,Beijing University of Technology,Beijing 100022,China Laboratoire de Math′ematiques,Universit′e Blaise Pascal,Clermont-Ferrand,63000,F(xiàn)rance

    Shu WANG(王術(shù))

    College of Applied Sciences,Beijing University of Technology,Beijing 100022,China

    Xin LI(李新)

    Department of Mathematics and Computer Science,Xinyang Vocational and Technical College,

    Xinyang 464000,China

    ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS?

    Yuehong FENG(馮躍紅)

    College of Applied Sciences,Beijing University of Technology,Beijing 100022,China Laboratoire de Math′ematiques,Universit′e Blaise Pascal,Clermont-Ferrand,63000,F(xiàn)rance

    E-mail:fengyuehong001@163.com

    Shu WANG(王術(shù))

    College of Applied Sciences,Beijing University of Technology,Beijing 100022,China

    E-mail:wangshu@bjut.edu.cn

    Xin LI(李新)

    Department of Mathematics and Computer Science,Xinyang Vocational and Technical College,

    Xinyang 464000,China

    E-mail:lixin91600@163.com

    This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas.We investigated,by means of the techniques of symmetrizer and elaborate energy method,the Cauchy problem in R3.Under the assumption that the initial values are close to a equilibrium solutions,we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity.It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm‖·‖Hs-1,while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than‖·‖Hs-1.This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.

    bipolar compressible Navier-Stokes-Maxwell system;plasmas;global smooth solutions;energy estimates;large-time behavior

    2010 MR Subject Classification 35L45;35L60;35Q60

    1 Introduction

    The Navier-Stokes-Maxwell system is used to simulate the transport of viscosity charged particles in plasmas[1,5,10,16,23].Usually,it takes the form of compressible Navier-Stokesequations forced by the electromagnetic fields,which is governed by the self-consistent Maxwell equations.In this paper,we consider the Cauchy problem for the bipolar compressible Navier-Stokes-Maxwell system:

    for ν=e,i.Here qe=-1(qi=1)is the charge of electrons(ions).The unknowns are the density nν>0,the velocity uν=(uν1,uν2,uν3),the pressure function pνwith p′ν(nν)>0 for ν=e,i,the electric field E=(E1,E2,E3)and the magnetic field B=(B1,B2,B3).Moreover,the constants mν> 0,ην>0,λ>0,1γ=c= (ε0μ0)-1/2,ε0andμ0are the mass,the viscosity coefficient,the scaled Debye length,the speed of light,the vacuum permittivity and permeability,respectively.Throughout this paper,we set mν=ην=λ=γ=1 without loss of generality.This is not an essential restriction in the investigation of global existence of smooth solutions for system(1.1).

    For smooth solutions with nν>0,the second equation of(1.1)is equivalent to

    where hνis the enthalpy function defined by h′ν(nν)=1nνp′ν(nν).Since pνis strictly increasing on(0,∞),so is hν.

    Then system(1.1)is equivalent to

    Initial conditions are given as

    which satisfy the compatibility conditions:

    The bipolar compressible Navier-Stokes-Maxwellsystem(1.2)is a symmetrizable hyperbolic parabolic system for nν>0.Then,according to the result of Kato[11]and the pioneering work of Matsumura-Nishida[14,15],the Cauchy problem(1.2)-(1.3)has a unique local smooth solution when the initial data are smooth.Here we are concerned with stabilities of global smooth solutions to(1.2)-(1.3)around a constant state being a particular solution of(1.2).It is easy to see that this constant state is necessarily given by

    Proposition 1.1(Local existence of smooth solutions,see[11,13-15])Assume(1.4)holds.Let s≥4 be an integer andˉn≥const.>0.Suppose(nν0-ˉn,uν0,E0,B0)∈Hs?R3?with nν0≥2κ for some given constant κ>0.Then there exists T>0 such that problem(1.2)-(1.3)has a unique smooth solution satisfying nν≥κ in[0,T]×R3and

    There are some mathematical investigations on the equations arising from plasmas.For one-dimensional isentropic Euler-Maxwell equations,Chen-Jerome-Wang[2]proved the global existence of weak solutions by using the compensated compactness method.For the threedimensional Euler-Maxwell equations,the existence of global smooth solutions with small amplitude to the periodic problem in the torus and to the Cauchy problem in R3is established by Ueda-Wang-Kawashima[26],Peng-Wang-Gu[22],Peng[18]and Xu[29],respectively.The decay rate of the smooth solution when time goes to infinity is discussed by Duan[4],Duan-Liu-Zhu[6],F(xiàn)eng-Wang-Kawashima[8],Wang-Feng-Li[27,28]and Ueda-Kawashima[25].For asymptotic limits with parameters,see[19-21,30]and references therein.For numerical analysis,see[3].In the case without damping,an additional relation B=?×u was made in[9]to establish such a global existence result.Indeed,the variable B-?×u is time invariant and the reduced linearized Euler-Maxwell system is of Klein-Gordon type,then its solution has a time decay of rate O(t-3/2).

    For unipolar compressible Navier-Stokes-Maxwell system,by using the Green's function argument,Duan[5]proved the global existence and asymptotic behavior of smooth solutions around a steady state.For non-isentropic Navier-Stokes-Maxwell system,F(xiàn)eng-Peng-Wang[7]established the global existence and asymptotic behavior of smooth solutions,recently.To the authors'best knowledge,there are few analysis on the asymptotics and global existence for the bipolar Navier-Stokes-Maxwell system yet.The objective of this paper is to establish such a result.

    The main results can be stated as follows.

    Theorem 1.2(Global existence of smooth solutions) Let s≥4 be an integer.Assume(1.4)holds andˉn≥const.>0.Then there exist constants δ0>0 small enough,independent of any given time t>0,such that if

    the Cauchy problem(1.2)-(1.3)has a unique global solution

    Theorem 1.3(Large-time behavior of smooth solutions)Under the assumptions of Theorem 1.2,the global smooth solution satisfies

    and

    Remark 1.4 It should be emphasized that the velocity viscosity term of the bipolar Navier-Stokes-Maxwell system(1.2)plays a key role in the proof of Theorem 1.2.

    Remark 1.5 Similarly,we may establish estimates(1.8)and(1.9)for the smooth solutions of the unipolar Navier-Stokes-Maxwell system.This implies the large-time behavior of the electromagnetic field in that case.

    The proof of Theorem 1.2 and Theorem 1.3 based on techniques of symmetrizer and elaborate weighted energy method.It should be pointed out that the bipolar compressible Navier-Stokes-Maxwell system is much more complex than the unipolar compressible Navier-Stokes-Maxwell system.For example,Duan[5]introduced a new variable and reduced directly the unipolar Navier-Stokes-Maxwell system to a symmetric system by using a scaling technique. However,this technique doesn't work for the bipolar Navier-Stokes-Maxwell system due to the complexity of the coupled ions equations.To overcome this difficulty,we choose a new symmetrizer.Now,let us explain the main difference of proofs in the unipolar and bipolar Navier-Stokes-Maxwell systems.From(1.2),it is easy to see that?uνis dissipative.By using the weighted energy method,we obtain an energy estimate for?uνin L2?[0,T];Hs?R3??(see Lemma(2.4)).The key step for proving the global existence with asymptotic properties of solutions is to control nν-ˉn in L2?[0,T];Hs?R3??.In the unipolar Navier-Stokes-Maxwell system[5],this is achieved in estimate

    The rest of this paper is arranged as follows.In Section 2,we deal with the global existence for smooth solutions.The main goal is to prove Theorem 1.2 by establishing energy estimates. In Section 3,we complete the proof of Theorem 1.3 by establishing dissipations estimates for electromagnetic field,and the large-time behavior of the solutions is presented.

    2 Global Existence

    It is well known that the global existence of smooth solutions follows from the local existence and uniform estimates of solutions with respect to t.The main task of this section is devoted to the uniform estimates for proving Theorems 1.2.

    2.1 Preliminary

    We first introduce some notations for later use.The expression f~g means γg≤f≤1γg for a constant 0<γ<1.We denote by‖·‖sthe norm of the usual Sobolev space Hs(R3),andby‖·‖and‖·‖∞the norms of L2(R3)and L∞(R3),respectively.We also denote by<·,·>the inner product over L2(R3).For a multi-index α=(α1,α2,α3)∈N3,we denote

    For α=(α1,α2,α3)and β=(β1,β2,β3)∈N3,β≤α stands for βj≤αjfor j=1,2,3,and β<α stands for β≤α and β/=α.

    The Leibniz formulas

    where Cβα>0 for β<α are constants.

    The following Lemmas will be needed in the proof of Theorem 1.2.

    Lemma 2.1(Moser-type calculus inequalities,see[12,13]) Let s≥1 be an integer. Suppose u∈Hs(R3),?u∈L∞(R3)and v∈Hs-1(R3)∩L∞(R3).Then for all multi-index α with 1≤|α|≤s,one has?α(uv)-u?αv∈L2(R3)and

    where

    Furthermore,if s≥3,then the embedding Hs-1(R3)→L∞(R3)is continuous and we have

    and for all smooth function f and u,v∈Hs(R3),

    Lemma 2.2(see[7])For?u∈H1,there exists a constant C>0 such that

    Suppose(nν,uν,E,B)is a smooth solution of Cauchy problem for the bipolar Navier-Stokes-Maxwell system(1.2)with initial conditions(1.3)which satisfies(1.4).

    Set

    and

    Using(2.1),system(1.2)can be written as

    Furthermore,using(2.2),the Navier-Stokes equations of(2.3)can be rewritten as

    with

    where(e1,e2,e3)is the canonical basis of R3,I3is the 3×3 unit matrix,Vjdenotes the jth component of V∈R3.

    It is clear that(2.4)for Uνis symmetrizable hyperbolic parabolic when nν=ˉn+Nν>0. More precisely,sinceˉn≥const.>0 and we consider small solutions for which Nνis close to zero,we have nν=ˉn+Nν≥const.>0.Let

    Then

    1.5 就業(yè)市場(chǎng)管理體制有待完善。隨著我國(guó)改革開(kāi)放的進(jìn)一步深化發(fā)展,高校畢業(yè)生制度經(jīng)歷了一個(gè)由“統(tǒng)一分配”到“雙向選擇、自主擇業(yè)”的轉(zhuǎn)變過(guò)程。在此背景下,高校畢業(yè)生就業(yè)市場(chǎng)仍處于不斷發(fā)展完善中,其管理體制和相關(guān)保障機(jī)制不健全,無(wú)法有效維護(hù)畢業(yè)生的正當(dāng)就業(yè)權(quán)益,不利于其穩(wěn)定就業(yè)和高效就業(yè)。

    Since Aν0is symmetric positively definite and?Aνjis symmetric for all 1≤j≤3,system(2.4)is symmetrizable hyperbolic parabolic.

    Let T>0 and W be a smooth solution of(2.3)defined on time interval[0,T]with initial data W0.This local solution is given by Proposition 1.1.From now on,we define

    and by C >0 various constants independent of any time t and T.From the continuous embedding Hs(R3)→L∞?R3?for s≥2,there exists a constant Cm>0 such that

    Moreover,by Lemma 2.1,for any smooth function g one has

    Note that in the proof of Lemmas 2.3-2.5,we only suppose

    2.2 Energy Estimates

    In this subsection,we establish the classical energy estimate for W.The first lemma concerns the zero order energy estimate.

    Lemma 2.3 Under the assumptions of Theorem 1.2,if ωT≤ˉn

    Proof Taking the inner product of(2.4)with 2Aν0(nν)Uνin L2?R3?yields the classical energy equality for Uν:

    where

    Since

    using the first equation of(2.3),Lemma 2.2 and ωT≤ˉn2Cm,we have

    Then,

    Now,let us estimate each term on the right hand side of(2.9).For the first term,using(2.5),(2.10),(2.11)and Lemma 2.2,we get

    and then

    For the last two terms,using(2.6),the fact that uν·(uν×B)=0 and an integration by parts,we have

    Therefore,

    On the other hand,a standard energy estimate for the Maxwell equations of(2.3)yields

    Hence,the cancellation of the termneue-niui,Ein(2.12)and(2.13)exists.The sum of(2.12)and(2.13)for ν=e,i,we obtain

    Therefore,(2.8)follows from integrating(2.14)over(0,t)with t∈[0,T].This completes the proof of Lemma 2.3. □

    For Navier-Stokes equations in(2.3),we define the dissipation function Ds(t)by

    Lemma 2.4 Under the assumptions of Theorem 1.2,if ωT≤ˉn2Cm,it holds

    Proof For α∈N3with 1≤|α|≤s.Applying?αto(2.4)and multiplying the resulting equations by the symmetrizer matrix Aν0(nν),we have

    where

    Taking the inner product of(2.17)with 2?αUνin L2(R3),we obtain

    Using(2.10),(2.11)and the definition of,we have

    Now,let us estimate each term on the right hand side of(2.19).For the first two terms,it follows from(2.18),(2.20)and Cauchy-Schwarz inequality that

    For the last term,using(2.6),Leibniz formulas,Lemma 2.1 and Lemma 2.2,it holds

    and

    Then,

    This inequality together with(2.19)and(2.21)yields

    On the other hand,an easy high order energy estimate for the Maxwell equations of(2.3)gives

    Due to the choice of symmetrizer)we see that the cancellation of the term

    in(2.22)and(2.23)exists.It follows from(2.22)and(2.23)that

    Noting the fact that

    summing(2.24)for all α with 1≤|α|≤s,and then integrating over[0,t],together with(2.8),we get(2.16).This completes the proof of Lemma 2.4. □

    Estimate(2.16)stands for the dissipation of?uν.It is clear that this estimate is not sufficient to control the high order term on the right hand side of(2.16)and the dissipation estimates of Nνis necessary.

    Lemma 2.5 Under the assumptions of Theorem 1.2,if ωT≤ˉn

    2Cm,there exist positive constants C1and C2,independent of t and T,such that

    Proof For α∈N3with|α|≤s-1,applying?αto the second equation of(2.3),and then taking the inner product of the resulting equation with??αNνin L2?R3?,we have

    where

    Now,let us estimate each term in(2.26).First,noting thatand hνis a strictly increasing function on(0,+∞),we haveHence,

    Next,using the first equation of(2.3)and an integration by parts,we get

    When|α|=0,from Lemma 2.2 and Cauchy-Schwarz inequality,we have

    And when|α|≥1,it follows similarly that

    These last two inequalities together with(2.26)-(2.28)yields

    Summing up this inequality for all|α|≤s-1 and choosing ε>0 small enough,so that the term ε||?αNν||2can be controlled by that in the left hand side.Hence,integrating the resulting equation over[0,t],we have

    Finally,

    and

    Therefore,together with(2.16),we obtain(2.25).This completes the proof of Lemma 2.5.□

    Proof of Theorem 1.2 By Lemma 2.5,we find that if C2ωT<1,the integral term on the right hand side of(2.25)may be controlled by that of the left hand side.It follows that

    Then,it suffices to choose a constant δ0small enough such that

    3 Large Time Behavior

    3.1 Dissipation of the Electromagnetic Fields

    The large time behavior of smooth solutions follows from uniform energy estimates of Nν,?uν,?E and?2G with respect to T in L2([0,T];Hs′(R3))

    for appropriate integers s′≥1.We establish these estimates in the following two lemmas.

    Proof For α∈N3with 1≤|α|≤s-1,applying?αto the second equation of(2.3)and taking the inner product of the resulting equations with?αE in L2(R3),we have

    where

    and

    Using the electric field equation in(2.3),Cauchy-Schwarz inequality and an integration by parts,we obtain

    Similarly as before,we obtain

    It follows from(3.2)-(3.4)that

    Summing up this inequality for all α with 1≤|α|≤s-1 and taking ε>0 so small that the term ε‖?αE‖2can be controlled by that in the left hand side,and then integrating the resulting equation over[0,t],using(2.25)and noting the fact that for all t∈[0,T],

    we obtain(3.1).This completes the proof of Lemma 3.1. □

    Lemma 3.2 Under the assumptions of Theorem 1.2,if if ωT≤ˉn

    2Cmfor all t∈[0,T],it holds

    Proof For α∈N3with 1≤|α|≤s-2,applying?αto the electric field equation in(2.3)and taking the inner product of the resulting equation with-?×?αB,we obtain

    Note that for all t∈[0,T],

    Let ε>0 be small enough,integrating(3.6)over[0,T]and summing for all 1≤|α|≤s-2,together with(3.1),we get(3.5).In this estimate we have used

    for 1≤i≤3,due to the fact that?·B=0 and?i△-1?is bounded from Lpto itself with 1<p<∞,see[24].This completes the proof of Lemma 3.2. □3.2 Proof of Theorem 1.3

    Recall the following Lemma that is used in the following.

    Lemma 3.3 Let f:(0,+∞)→ R be a uniformly continuous function such that f∈ThenIn particular,the conclusion holds when f∈L1(0,+∞)∩W1,+∞(0,∞).

    Now let us establish the large time behavior of solutions and complete the proof of Theorem 1.3.From Lemma 2.5,there exists a constant δ0such that if ωT≤δ0,it holds

    Since ne-ni=Ne-Niand?nν=?Nν,this together with(2.15)implies that

    Using the Navier-Stokes equations in(2.3),we obtain

    Then

    which imply(1.6)-(1.7).

    Similarly as before,from(3.5)and(3.7),we get

    It follows from the Maxwell equations in(2.3)that

    Therefore,

    which implies(1.8).We further deduce that

    Then

    which implies(1.9).This completes the proof of Theorem 1.3. □

    [1]Chen F.Introduction to Plasma Physics and Controlled Fusion,Vol 1.New York:Plenum Press,1984

    [2]Chen G Q,Jerome J W,Wang D H.Compressible Euler-Maxwell equations.Transport Theory and Statistical Physics,2000,29:311-331

    [3]Degond P,Deluzet F,Savelief D.Numerical approximation of the Euler-Maxwell model in the quasineutral limit.J Comput Phys,2012 231:1917-1946

    [4]Duan R J.Global smooth flows for the compressible Euler-Maxwell system:relaxation case.J Hyperbolic Differential Equations,2011 8:375-413

    [5]Duan R J.Green's function and large time behavior of the Navier-Stokes-Maxwell system.Anal Appl,2012,10:133-197

    [6]Duan R J,Liu Q Q,Zhu C J.The Cauchy problem on the compressible two-fluids Euler-Maxwell equations. SIAM J Math Anal,2012,44:102-133

    [7]Feng Y H,Peng Y J,Wang S.Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations.Nonlinear Anal Real,2014,19:105-116

    [8]Feng Y H,Wang S,Kawashima S.Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system.Math Mod Meth Appl Sci,2014,24:2851-2884

    [9]Germain P,Masmoudi N.Global existence for the Euler-Maxwell system.Ann Sci Ecole Norm S,2014,47(3):469-503

    [10]J¨ungel A.Quasi-Hydrodynamic Semiconductor Equations.Birkh¨auser,2001

    [11]Kato T.The Cauchy problem for quasi-linear symmetric hyperbolic systems.Arch Ration Mech Anal,1975,58:181-205

    [12]Klainerman S,Majda A.Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids.Comm Pure Appl Math,1981 34:481-524

    [13]Majda A.Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables.New York:Springer-Verlag,1984

    [14]Matsumura A,Nishida T.The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids.Proc Japan Acad,Ser A,1979,55:337-342

    [15]Matsumura A,Nishida T.The initial value problem for the equation of motion of viscous and heatconductive gases.J Math Kyoto Univ,1980,20:67-104

    [16]Markowich P,Ringhofer C A,Schmeiser C.Semiconductor Equations.Springer,1990

    [17]NishidaT.Nonlinearhyperbolicequationsand related topicsin fluidsdynamics.Publications Math′ematiques d'Orsay,Universit′e Paris-Sud,Orsay,1978:78-02

    [18]Peng Y J.Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations. Ann I H Poincare-AN,2012,29:737-759

    [19]Peng Y J,Wang S.Convergence of compressible Euler-Maxwell equations to incompressible Euler equations. Comm Part Diff Equations,2008,33:349-376

    [20]Peng Y J,Wang S.Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations.SIAM J Math Anal,2008,40:540-565

    [21]Peng Y J,Wang S.Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters.Discrete Contin Dyn Syst,2009,23:415-433

    [22]Peng Y J,Wang S,Gu Q L.Relaxation limit and global existence of smooth solution of compressible Euler-Maxwell equations.SIAM J Math Anal,2011,43:944-970

    [23]Rishbeth H,Garriott O K.Introduction to Ionospheric Physics.Academic Press,1969

    [24]Stein E M,Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series. Princeton:Princeton University Press,1970

    [25]Ueda Y,Kawashima S.Decay property of regularity-loss type for the Euler-Maxwell system.Methods Appl Anal,2011,18:215-268

    [26]Ueda Y,Wang S,Kawashima S.Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system.SIAM J Math Anal,2012,44:2002-2017

    [27]Wang S,F(xiàn)eng Y H,Li X.The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasm.SIAM J Math Anal,2012,44:3429-3457

    [28]Wang S,F(xiàn)eng Y H,Li X.The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas.Appl Math Comput,2014,231:299-306

    [29]Xu J.Global classical solutions to the compressible Euler-Maxwell equations.SIAM J Math Anal,2011,43:2688-2718

    [30]Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas. J Math Anal Appl,2011,380:343-353

    ?Received October 30,2014;revised February 14,2015.The authors are supported by the Collaborative Innovation Center on Beijing Society-building and Social Governance,NSFC(11371042),BNSF(1132006),the key fund of the Beijing education committee of China and China Postdoctoral Science Foundation funded project.

    猜你喜歡
    李新保障機(jī)制管理體制
    盛夏時(shí)節(jié),老年人更應(yīng)警惕腦卒中——專訪天津醫(yī)科大學(xué)第二醫(yī)院副院長(zhǎng)李新
    我與《資本論》的故事
    山區(qū)高速公路中小跨徑橋梁設(shè)計(jì)
    關(guān)于完善事業(yè)單位財(cái)政保障機(jī)制的探討
    國(guó)外自然資源管理體制對(duì)比分析——以國(guó)家公園管理體制為例
    行政管理體制的創(chuàng)新
    論各地高新園區(qū)管理體制
    禁止令適用保障機(jī)制和程序的完善
    建立大病保障機(jī)制正當(dāng)其時(shí)
    完善刑事辯護(hù)權(quán)保障機(jī)制的思考
    女性生殖器流出的白浆| 国产激情久久老熟女| 两个人看的免费小视频| 亚洲专区字幕在线| 91字幕亚洲| 国产高清激情床上av| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 国产色视频综合| 国产区一区二久久| 丁香六月欧美| 日韩欧美 国产精品| 久久精品aⅴ一区二区三区四区| 国产一区二区在线av高清观看| 99国产精品一区二区蜜桃av| 成人三级做爰电影| 老司机深夜福利视频在线观看| 精品少妇一区二区三区视频日本电影| 又紧又爽又黄一区二区| 成人18禁在线播放| 美女国产高潮福利片在线看| av中文乱码字幕在线| 欧美午夜高清在线| 中亚洲国语对白在线视频| 欧美日韩福利视频一区二区| 人人澡人人妻人| 白带黄色成豆腐渣| 日韩欧美一区视频在线观看| 成人午夜高清在线视频 | 国产伦在线观看视频一区| 一区二区三区高清视频在线| 久久久国产精品麻豆| 一级作爱视频免费观看| 在线国产一区二区在线| 国产男靠女视频免费网站| 亚洲无线在线观看| 久久久国产成人精品二区| 在线观看舔阴道视频| 国产精品久久久久久亚洲av鲁大| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影 | 怎么达到女性高潮| 美女国产高潮福利片在线看| 午夜福利在线在线| 99热只有精品国产| 久久久国产成人免费| 黄色a级毛片大全视频| 亚洲熟女毛片儿| 一本一本综合久久| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 精品国产亚洲在线| 国产午夜精品久久久久久| 欧美乱妇无乱码| 两个人看的免费小视频| 91字幕亚洲| 亚洲av电影在线进入| 国产成人一区二区三区免费视频网站| 一级毛片高清免费大全| 午夜影院日韩av| 国产精品精品国产色婷婷| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| avwww免费| 色播亚洲综合网| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 久久狼人影院| 嫁个100分男人电影在线观看| 成人三级做爰电影| 成人特级黄色片久久久久久久| 久热这里只有精品99| 亚洲精华国产精华精| svipshipincom国产片| av免费在线观看网站| 男女做爰动态图高潮gif福利片| 欧美黑人欧美精品刺激| av在线天堂中文字幕| 波多野结衣高清作品| 天天添夜夜摸| 欧美zozozo另类| 欧美日韩一级在线毛片| 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 国产激情偷乱视频一区二区| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 免费看十八禁软件| 看片在线看免费视频| 韩国精品一区二区三区| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| 少妇 在线观看| 免费电影在线观看免费观看| tocl精华| 一级毛片精品| 一级a爱片免费观看的视频| 国产成人精品无人区| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 亚洲精品国产精品久久久不卡| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| 黑人操中国人逼视频| 日本黄色视频三级网站网址| 国产一卡二卡三卡精品| 黄频高清免费视频| www国产在线视频色| 国产1区2区3区精品| 成人国产一区最新在线观看| 亚洲精品中文字幕一二三四区| 人人妻人人澡人人看| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 视频在线观看一区二区三区| 可以在线观看毛片的网站| 男人舔奶头视频| 黄频高清免费视频| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 一个人观看的视频www高清免费观看 | 国产精品野战在线观看| 国产又色又爽无遮挡免费看| 好男人在线观看高清免费视频 | 色在线成人网| 亚洲,欧美精品.| 91av网站免费观看| 久久九九热精品免费| 午夜精品久久久久久毛片777| 精品午夜福利视频在线观看一区| 国产精品1区2区在线观看.| 欧美激情 高清一区二区三区| 禁无遮挡网站| 国产伦一二天堂av在线观看| 亚洲激情在线av| 久久香蕉激情| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | 久久久久免费精品人妻一区二区 | 国产真实乱freesex| netflix在线观看网站| www日本黄色视频网| 18禁裸乳无遮挡免费网站照片 | 国内揄拍国产精品人妻在线 | 免费在线观看视频国产中文字幕亚洲| 婷婷六月久久综合丁香| 黄色片一级片一级黄色片| 久久精品亚洲精品国产色婷小说| 18禁黄网站禁片免费观看直播| 久久久久久久精品吃奶| 日日爽夜夜爽网站| 日本 av在线| 亚洲五月婷婷丁香| 中文字幕精品免费在线观看视频| 亚洲激情在线av| 免费在线观看黄色视频的| 好看av亚洲va欧美ⅴa在| 国内揄拍国产精品人妻在线 | 亚洲国产精品合色在线| 免费在线观看完整版高清| 久99久视频精品免费| 无限看片的www在线观看| 国产精品久久久人人做人人爽| 中国美女看黄片| 国产av一区在线观看免费| 悠悠久久av| 免费观看人在逋| 国产av一区在线观看免费| 国产爱豆传媒在线观看 | 国产精品美女特级片免费视频播放器 | 午夜精品在线福利| 99国产精品一区二区三区| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 午夜福利成人在线免费观看| 悠悠久久av| av在线天堂中文字幕| 国产精品永久免费网站| 久久精品人妻少妇| 日韩大码丰满熟妇| 亚洲最大成人中文| videosex国产| 国产久久久一区二区三区| 久久久久久九九精品二区国产 | 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 久久狼人影院| 久久这里只有精品19| 国产黄片美女视频| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 色哟哟哟哟哟哟| 精品国产乱码久久久久久男人| www.精华液| 精品不卡国产一区二区三区| 一夜夜www| 日本一本二区三区精品| 99re在线观看精品视频| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 欧美黑人精品巨大| av超薄肉色丝袜交足视频| 久久这里只有精品19| 久久人妻av系列| 女性被躁到高潮视频| 亚洲av成人av| 级片在线观看| 亚洲国产精品999在线| 高清毛片免费观看视频网站| 欧美性长视频在线观看| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| www.熟女人妻精品国产| 成人三级黄色视频| bbb黄色大片| 国产黄片美女视频| 嫩草影院精品99| 高清在线国产一区| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区| 男人操女人黄网站| 精品久久久久久久久久久久久 | 91成人精品电影| 日韩欧美国产一区二区入口| 99久久无色码亚洲精品果冻| 91在线观看av| 国产欧美日韩精品亚洲av| 精品日产1卡2卡| 午夜福利高清视频| 欧美乱妇无乱码| 亚洲最大成人中文| 久久中文字幕人妻熟女| 国产激情欧美一区二区| 两个人免费观看高清视频| 免费在线观看亚洲国产| 丝袜在线中文字幕| 夜夜爽天天搞| 中文字幕精品免费在线观看视频| 变态另类丝袜制服| 欧美大码av| 丁香欧美五月| 麻豆国产av国片精品| 欧美激情久久久久久爽电影| 丝袜美腿诱惑在线| 窝窝影院91人妻| 在线永久观看黄色视频| 国产精品亚洲av一区麻豆| 久久精品91蜜桃| 欧美成人性av电影在线观看| 国产精品野战在线观看| www.999成人在线观看| 午夜福利成人在线免费观看| 精品久久久久久,| 午夜精品在线福利| 亚洲熟女毛片儿| 精品免费久久久久久久清纯| 亚洲国产日韩欧美精品在线观看 | 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 午夜福利成人在线免费观看| 人人妻人人澡欧美一区二区| 一进一出抽搐动态| 999精品在线视频| 一个人观看的视频www高清免费观看 | 满18在线观看网站| 国产精品野战在线观看| 亚洲熟妇熟女久久| 男女那种视频在线观看| 在线永久观看黄色视频| 欧美中文综合在线视频| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 亚洲成a人片在线一区二区| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 丁香六月欧美| 一二三四社区在线视频社区8| 性欧美人与动物交配| 18禁观看日本| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 国产黄色小视频在线观看| 中文字幕av电影在线播放| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看 | 精品久久久久久久久久久久久 | 午夜精品久久久久久毛片777| 国产精品国产高清国产av| 99在线人妻在线中文字幕| 亚洲欧美激情综合另类| 岛国在线观看网站| 国产一区二区三区在线臀色熟女| 精品国产乱子伦一区二区三区| 精华霜和精华液先用哪个| 久久久精品国产亚洲av高清涩受| 少妇 在线观看| 亚洲七黄色美女视频| 欧美日本视频| 99国产综合亚洲精品| 一级毛片女人18水好多| 欧美激情 高清一区二区三区| 精品欧美一区二区三区在线| 国产在线观看jvid| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 午夜激情av网站| 搡老妇女老女人老熟妇| 99国产精品一区二区三区| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 一区福利在线观看| 老司机福利观看| 无遮挡黄片免费观看| 人人妻人人澡人人看| 每晚都被弄得嗷嗷叫到高潮| 1024手机看黄色片| 国产99白浆流出| 日韩高清综合在线| 成年女人毛片免费观看观看9| 亚洲三区欧美一区| 这个男人来自地球电影免费观看| 成人国产综合亚洲| 亚洲av熟女| 一本大道久久a久久精品| 淫秽高清视频在线观看| 91在线观看av| 欧美性猛交╳xxx乱大交人| 中文字幕av电影在线播放| 亚洲av成人av| 丁香六月欧美| 90打野战视频偷拍视频| 亚洲午夜理论影院| 99国产综合亚洲精品| 9191精品国产免费久久| 天堂动漫精品| 亚洲 欧美一区二区三区| 国产精品二区激情视频| 日韩大尺度精品在线看网址| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 亚洲久久久国产精品| 日本一本二区三区精品| 久久精品影院6| 高潮久久久久久久久久久不卡| 免费av毛片视频| 亚洲第一电影网av| 免费av毛片视频| 国产av一区在线观看免费| 国产av一区二区精品久久| 亚洲免费av在线视频| 精品人妻1区二区| 国产成人一区二区三区免费视频网站| 天天躁夜夜躁狠狠躁躁| 最近在线观看免费完整版| 国产免费男女视频| 99热只有精品国产| 国内精品久久久久久久电影| 又紧又爽又黄一区二区| or卡值多少钱| 亚洲av电影不卡..在线观看| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 国产成人av激情在线播放| 午夜福利在线在线| 精品久久久久久久末码| 中文字幕久久专区| 亚洲精品在线观看二区| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址| 午夜影院日韩av| 久久九九热精品免费| 国产免费男女视频| 亚洲男人天堂网一区| 免费在线观看亚洲国产| 麻豆成人av在线观看| videosex国产| 国产人伦9x9x在线观看| 欧美又色又爽又黄视频| 一区二区三区精品91| 91在线观看av| 美女高潮喷水抽搐中文字幕| 国内精品久久久久精免费| 天堂√8在线中文| 成人欧美大片| 99国产综合亚洲精品| 一本大道久久a久久精品| 日本a在线网址| 欧美日韩瑟瑟在线播放| 亚洲五月天丁香| 欧美成人午夜精品| 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕日韩| 久久性视频一级片| 欧美一区二区精品小视频在线| 一本一本综合久久| 男人舔奶头视频| 成年免费大片在线观看| 中文字幕人成人乱码亚洲影| 国产片内射在线| 亚洲第一青青草原| 人妻丰满熟妇av一区二区三区| 亚洲男人天堂网一区| 人妻丰满熟妇av一区二区三区| 亚洲久久久国产精品| 亚洲精品av麻豆狂野| 亚洲无线在线观看| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 久热爱精品视频在线9| 久久久久九九精品影院| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 亚洲精品一区av在线观看| 可以免费在线观看a视频的电影网站| 91成人精品电影| 老司机午夜福利在线观看视频| 美女大奶头视频| 国产成人啪精品午夜网站| 宅男免费午夜| 欧美最黄视频在线播放免费| 成在线人永久免费视频| 成年版毛片免费区| 成人手机av| 免费在线观看影片大全网站| 在线看三级毛片| 欧美av亚洲av综合av国产av| 午夜成年电影在线免费观看| 日本精品一区二区三区蜜桃| 热re99久久国产66热| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 国产高清有码在线观看视频 | 男女那种视频在线观看| 色综合站精品国产| 国产免费男女视频| 久久精品成人免费网站| 99久久久亚洲精品蜜臀av| 很黄的视频免费| 97人妻精品一区二区三区麻豆 | 国产av在哪里看| 老司机午夜福利在线观看视频| 久久国产精品男人的天堂亚洲| 欧美一级毛片孕妇| 日韩有码中文字幕| 中文字幕久久专区| 国产精品久久久人人做人人爽| 后天国语完整版免费观看| 一级a爱视频在线免费观看| 亚洲九九香蕉| 国产激情欧美一区二区| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 国产成人欧美| 十八禁人妻一区二区| 又黄又爽又免费观看的视频| 免费高清在线观看日韩| 丁香六月欧美| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 亚洲精品在线美女| 日韩av在线大香蕉| 成人永久免费在线观看视频| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 草草在线视频免费看| 可以免费在线观看a视频的电影网站| 老司机靠b影院| 久久久久国内视频| 色老头精品视频在线观看| 亚洲九九香蕉| 色综合亚洲欧美另类图片| 成年免费大片在线观看| 免费在线观看影片大全网站| 日韩高清综合在线| 国产精品1区2区在线观看.| 69av精品久久久久久| 日本熟妇午夜| 99国产综合亚洲精品| 丁香六月欧美| 波多野结衣高清作品| 热re99久久国产66热| 人成视频在线观看免费观看| 老司机靠b影院| 国产精品亚洲av一区麻豆| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 欧美日韩亚洲综合一区二区三区_| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 成人av一区二区三区在线看| 精品久久蜜臀av无| 亚洲精品色激情综合| 欧美乱码精品一区二区三区| 又大又爽又粗| 精品人妻1区二区| 国产精品永久免费网站| 亚洲无线在线观看| av免费在线观看网站| 操出白浆在线播放| avwww免费| 窝窝影院91人妻| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 成年免费大片在线观看| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 午夜福利高清视频| 午夜久久久在线观看| 欧美激情极品国产一区二区三区| 搞女人的毛片| 午夜精品在线福利| 久久久久久人人人人人| 一进一出抽搐动态| 午夜福利高清视频| 制服诱惑二区| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 老熟妇乱子伦视频在线观看| 久久精品成人免费网站| 午夜福利在线在线| 日韩欧美国产在线观看| 国产精品九九99| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 超碰成人久久| a在线观看视频网站| 日本五十路高清| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 成年免费大片在线观看| 欧美黑人欧美精品刺激| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 99热6这里只有精品| 2021天堂中文幕一二区在线观 | 国产av一区二区精品久久| 麻豆一二三区av精品| 黄频高清免费视频| 亚洲成人久久性| 成人亚洲精品av一区二区| 亚洲精品国产精品久久久不卡| 国产精品乱码一区二三区的特点| 最近最新免费中文字幕在线| 久久久久亚洲av毛片大全| 一本精品99久久精品77| 露出奶头的视频| 国产亚洲精品久久久久久毛片| 国产成人一区二区三区免费视频网站| 国产不卡一卡二| 精品久久久久久久人妻蜜臀av| 大型av网站在线播放| 伊人久久大香线蕉亚洲五| 亚洲第一电影网av| 免费看美女性在线毛片视频| 欧美亚洲日本最大视频资源| 一卡2卡三卡四卡精品乱码亚洲| 国产av不卡久久| 午夜激情av网站| 久久这里只有精品19| 欧美激情 高清一区二区三区| 亚洲国产日韩欧美精品在线观看 | 日韩免费av在线播放| svipshipincom国产片| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| www.999成人在线观看| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 亚洲精品色激情综合| 亚洲一区中文字幕在线| 午夜老司机福利片| 亚洲av美国av| 女性被躁到高潮视频| 久久久精品国产亚洲av高清涩受| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www| 久久午夜亚洲精品久久| 久久精品夜夜夜夜夜久久蜜豆 | 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 亚洲成人国产一区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 99在线视频只有这里精品首页| 在线视频色国产色| 国产1区2区3区精品| 久久久久国内视频| 美女免费视频网站| 巨乳人妻的诱惑在线观看| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕| 无遮挡黄片免费观看| 黄色毛片三级朝国网站| 99riav亚洲国产免费| www日本黄色视频网| 精品卡一卡二卡四卡免费| 久久午夜亚洲精品久久| 两个人免费观看高清视频| 又黄又粗又硬又大视频|