• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Coding Unit and Prediction Unit Decision Algorithm for Multiview Video Coding

    2015-11-18 10:11:34WeiHsiangChangMeiJuanChenGwoLongLiandYuTingChen

    Wei-Hsiang Chang, Mei-Juan Chen, Gwo-Long Li, and Yu-Ting Chen

    Efficient Coding Unit and Prediction Unit Decision Algorithm for Multiview Video Coding

    Wei-Hsiang Chang, Mei-Juan Chen, Gwo-Long Li, and Yu-Ting Chen

    —To aim at higher coding efficiency for multiview video coding, the multiview video with a modified high efficiency video coding (MV-HEVC)codec is proposed to encode the dependent views. However, the computational complexity of MV-HEVC encoder is also increased significantly since MV-HEVC inherits all computational complexity of HEVC. This paper presents an efficient algorithm for reducing the high computational complexity of MV-HEVC by fast deciding the coding unit during the encoding process. In our proposal, the depth information of the largest coding units (LCUs) from independent view and neighboring LCUs is analyzed first. Afterwards, the analyzed results are used to early determine the depth for dependent view and thus achieve computational complexity reduction. Furthermore, a prediction unit(PU) decision strategy is also proposed to maintain the video quality. Experimental results demonstrate that our algorithm can achieve 57% time saving on average,while maintaining good video quality and bit-rate performance compared with HTM8.0.

    Index Terms—Coding unit, multiview video coding,prediction unit.

    1. Introduction

    Three dimensional television (3DTV), high definition television (HDTV), and free viewpoint video (FVV) have become the focus of multimedia development. The joint video team (JVT) proposed multiview video coding (MVC)as an extension of the H.264/AVC video coding standard to support multiview video applications. Furthermore, to take the advantage of high coding efficiency of H.265/HEVC[1],Muller et al. extended the high efficiency video coding(HEVC) standard for coding of multiview video (MV) and depth data[2]. Fig. 1 shows the frame structure of MV-HEVC coding. The coding order involves encoding the frame of independent view (V0) first, and then encoding the frame at the same instant in time as the dependent view(V1). Each dependent view has an interview reference frame to help the prediction. Comparing MV-HEVC with MVC extension of H.264/AVC, MV-HEVC gains a less bitrate but costs a lot in terms of computation time.

    Fig. 1. Frame structure of multiview coding system.

    To speed up the coding time of HEVC, the work in [3]considered the depth similarity in the temporal and spatial domains. According to statistical probability, two sets are defined. The α set consists of largest coding units (LCUs)with higher probabilities, while the β set consists of LCUs with lower probabilities. When encoding each LCU, the depths in the two sets will be checked and then the case will be classified according to one of three degrees of similarity(high, medium, and low). The coding unit will be predicted according to the degree of similarity. The work proposed in[4] consisted of an adaptive coding unit depth range determination (ACUDR) and three early termination methods. For ACUDR, the depths of the neighboring LCUs are multiplied by the corresponding weighting values to derive a predictive depth value, and then to decide the candidates of coding unit sizes.

    To reduce the high computational complexity problem of MV-HEVC, this paper proposes a fast coding unit (CU)and prediction unit (PU) decision algorithm to aim at that goal. In our proposal, the depth information between LCUs in view and spatial directions is analyzed first to constitute our proposed CU decision algorithm. To further decrease the computational complexity while keeping the compression efficiency, the conditional probability betweenthe depth and PU size is calculated to establish our proposed PU decision algorithm. Through the proposed algorithm, the computational complexity of MV-HEVC can be reduced significantly with ignorable rate distortion performance degradation.

    This paper is organized as follows. In Section 2, we analyze the correlation between the current LCU and interview/spatially neighboring LCUs, and then describe our proposed algorithm. Section 3 demonstrates the experimental results. Section 4 provides the conclusion.

    2. Proposed Fast Coding Unit and Prediction Unit Decision Algorithm

    In this paper, the depth relationship between LCUs is analyzed first and the algorithm is then proposed according to the observation results. Here, the depths of current LCU and neighboring LCUs are used for observing the relationship. However, to further utilize the information between views, the depth of predicted LCU from independent view will be also observed. To derive the predicted LCU depth from the independent view, our proposed algorithm first calculates the global disparity vector which represents the geometrical shift between views. Once the global disparity vector has been calculated,the global disparity vector information will be used to find the predicted LCU depths from the independent view. The detailed operations of our proposed algorithm will be explained below.

    2.1 Calculation of Global Disparity Vector

    In multiview video coding, a correlation exists between adjacent views. The independent view (V0) and the dependent view (V1) have a slight disparity due to the camera setting positions. Therefore, we can use such disparity information of V0 to predict the position of image content in V1. The global disparity vector is calculated by

    where W and H are the horizontal and vertical LCU numbers. DV(i, j) indicates the disparity vectors of the LCU in the 0th frame of the dependent view. The averaged DV is treated as the global disparity vector. Since the locations of the cameras are substantially fixed, the global disparity vector in each picture is similar. We only calculate it from the 0th frame to obtain the global disparity vector between views so that the computational complexity for deriving GDV can be reduced significantly.

    2.2 Analysis of the Correlation between Neighboring LCUs and Current LCU

    After determining the global disparity, we can derive the depth information for dependent view (V1) from independent view (V0) by using the global disparity. Fig. 2 shows the relationship between V0 and V1 by using global disparity mapping. Since the depth is predicted by LCU unit, the global disparity vector (GDV) is divided by n to obtain DXand DY, given by

    where the variable of n is set to 64 since the LCU size is 64×64 in the MV-HEVC coding system.

    Afterwards, the prediction of maximum depths can be achieved by

    Fig. 2. Deriving the maximum depth information from V0 to V1 by global disparity vector mapping.

    Fig. 3. Neighboring LCUs of the current LCU.

    Fig. 4. Probability of neighboring LCU’s max depth more than current LCU’s max depth for sequences of (a) book-arrival, (b)newspaper, and (c) average of all test sequences.

    Once all required depth information has been derived successfully, we analyze the relationship between the maximum depths of the current LCU and predicted LCUs from V0, and the neighboring LCUs, as shown in Fig. 3. Here, the predicted depth from V0 is derived by (1) to (3). Five sequences with 1028×768 resolution (kendo, balloon,newspaper, book-arrival, and lovebird) are used for analysis. Fig. 4 plots the averaged probabilities of different depth relationships. In Fig. 4, the letters of A to I correspond tothe neighboring LCUs as shown in Fig. 3. From Fig. 4, we can observe that the probabilities between views are much higher than those in the spatial domain.

    2.3 Fast Coding Unit Decision Algorithm

    Based on the analytical results shown in previous section, we propose a fast coding unit decision algorithm to reduce the computational complexity. The operation of our proposed algorithm is described below in detail. First, we divide the neighboring LCUs into two sets. V0 set represents the depths between views including LCU A, B,C, D, and E. V1 set includes F and G, which represent the depths in the spatial domain. In addition, the LCUs of H and I are not included in our proposal since they appear less probability to be selected. Fig. 5 shows the flowchart of our algorithm. For the LCU located at the upper left corner of the frame, all depths are checked to find out the best coding unit size. Thus, the MaxDepthFinalis set to 3. For the LCUs at the boundary, the MaxDepthFinalis determined by the maximum value between the respective depths with the highest probabilities of available LCUs in the V0 and V1 sets. If the LCU is not located at the boundary, the predicted maximum depth (MaxDepthP) of the current LCU is obtained by the maximum value in V0 and V1 sets. However, this may result in MaxDepthPbeing larger than the best coding unit. In order to overcome the situation, we compute AD by (4) to indicate the average difference between MaxDepthPand the combined V0 and V1 sets. Here, the variable N is set to 7, which represents the number of depth candidates within both of V0 and V1 sets. j indicates the index of LCUs of the combined sets. Nei(j) is the depth of the LCU in the combined sets.

    Afterwards, we use AD to determine the MaxDepthP. If AD is small, it means the depths of MaxDepthPand the combined set is similar. Then a variable of MaxDepthADcan be set as MaxDepthP. In contrast, if AD is large, it means the greater deviation between MaxDepthPand the combined set size. In this situation, the MaxDepthADis decreased to reduce the computation according to TH1 to TH3. In our algorithm, TH1, TH2, and TH3 are set to 0.86,1.71, and 2.57, respectively.

    Fig. 5. Flowchart of proposed fast coding unit decision algorithm.

    2.4 Determination of Prediction Units

    In the coding procedure of HEVC, a CU can be divided into several prediction units (PUs) and each PU has to be checked by the rate distortion cost. In order to avoid the performance degradation caused by early termination of the coding unit decided by MaxDepthADand further reduce the computational complexity, we propose the determination scheme of PUs in each CU based on analysis of the conditional probability of PU distributions. Table 1 tabulates the simulation results of conditional probability. From this table, we can find that the probabilities of 2N×2N,N×2N, and nL×2N are higher than the other modes for depth 1 or 2. In addition, for depth 3, 2N×2N and N×2N will also be higher than the other modes. The proposed PU determination algorithm based on the analytical results is shown in Fig. 6 and its operation is described as follow.

    Table1: Probability of PU modes for various best CU sizes

    First, the depth of current CU is checked. If DepthCur(the depth of the current CU) is less than or equal to MaxDepthFinalor MaxDepthAD, all of the prediction modes should be checked to derive best results. Otherwise, if DepthCuris larger than MaxDepthADand less than or equal to MaxDepthP, the proposed PU determination is applied. If DepthCuris equal to 1 or 2, only 2N×2N, N×2N, and nL×2N modes are checked. Otherwise, if DepthCuris equal to 3, we only check 2N×2N and N×2N modes. The reason for using these prediction modes in each corresponding CU is that the total probabilities for these modes are larger than 90%. Finally, if all above conditions have not been satisfied and DepthCuris larger than MaxDepthP, no prediction mode will be processed.

    Fig. 6. Flowchart of proposed PU decision algorithm.

    3. Experimental Results

    In this paper, we implement our algorithm in MV-HEVC reference software HTM8.0[5]with two views. Five test sequences with resolution 1024×768 (newspaper,kendo, balloon, book-arrival, and lovebird) and two test sequences with resolution 1280×960 (champagne-tower and dog) are evaluated. The experimental environment parameters are shown in Table 2.

    Table 2: Parameters of experimental environment

    Table 3 gives the comparison of hit-rate MaxDepthPand MaxDepthAD. In this table, the higher hit-rate means the higher chance to include best result after encoding. From this table, we can observe that hit-rate of MaxDepthPcan achieve 97.9%. Even for the computational complexity reduced version MaxDepthAD, the hit-rate can reach 92.7%. Table 4 shows the performance comparison of our proposed algorithm with ACUDR of [4] for dependent view by calculating the Bj?ntegaard delta (BD) bit-rate[6]and BD PSNR (peak signal-to-noise rate)[7]. Both methods are implemented on the software HTM8.0. Compared with HTM8.0, the proposed algorithm increases the BD bit-rate only 0.19%; the BD PSNR drops only 0.011dB, and gets 57.49% time saving. Compared with the ACUDR of [4], the BD bit-rate is reduced by up to 1.32% in the book-arrival test sequence, with an average reduction of 0.88%. The largest BD PSNR increase of 0.041 dB is in the kendo test sequence, with an overall average increase of 0.026 dB.

    Table 3: Comparison of hit-rate for MaxDepthPand MaxDepthAD

    Table 4: Coding performance of the proposed algorithm and ACUDR of [4] in HTM 8.0 (dependent view V1)

    The experimental results show that our proposed scheme is 14.89% faster than ACUDR of [4] and provides a better BD bit-rate and BD PSNR performance. For high motion sequences, the depth information in the temporal domain may be inaccurate. However, the interview information is irrelevant to the motion of the video and remains robust. The proposed algorithm employs the depth information between views to achieve better performance than methods relying only on temporal and spatial correlations.

    4. Conclusions

    In this paper, a fast CU decision algorithm was proposed for MV-HEVC for reducing the computational complexity. Based on the high correlation between the independent view and dependent view, the depth information between them and the neighboring LCUs were used to compose our fast CU decision algorithm. In addition, we proposed the PU decision algorithm to maintain the coded vide quality based on the observing results between CU and PU. Simulation results demonstrated that our proposed algorithm can achieve 57% coding time saving on average with ignorable rate distortion performance degradation compared with HTM8.0,and achieve higher coding time savings and less rate distortion performance degradation on average compared with previous work ACUDR of [4].

    [1] High Efficiency Video Coding, Recommendation ITU-T H.265, 2013.

    [2] K. Muller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F. H. Rhee, G. Tech,M. Winken, and T. Wiegand, “3D high efficiency video coding for multi-view video and depth data,” IEEE Trans. on Image Processing, vol. 22, no. 9, pp. 3366-3378, 2013.

    [3] Y. Zhang, H. Wang, and Z. Li, “Fast coding unit depth decision algorithm for inter-frame coding in HEVC,” in Proc. of Data Compression Conf., 2013, pp. 53-62.

    [4] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective CU size decision method for HEVC encoders,”IEEE Trans. on Multimedia, vol. 15, no. 2, pp. 465-470,2013.

    [5] L. Zhang, G. Tech, K. Wegner, and S. Yea, “Test model of 3D-HEVC and MV-HEVC,” Document JCT3V-G1005 of Joint Collaborative Team on 3D Video Coding Extension Development, January 2014.

    [6] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,” ITU-T SG16/Q6 Document,VCEG-M33, Austin, April 2001.

    [7] G. Bjontegaard, “Improvements of the BD-PSNR model,”ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.

    Wei-Hsiang Chang was born in Taoyuan in 1989. He received the B.S. degree in electrical engineering from Tamkang University, Taipei in 2012, and the M.S. degree in electrical engineering from National Dong Hwa University, Hualien in 2014. His research interests include multiview video coding and HEVC.

    Mei-Juan Chen received her B.S., M.S.,and Ph.D. degrees in electrical engineering from National Taiwan University, Taipei in 1991, 1993, and 1997, respectively. Since August 2005, she has been a professor with the Department of Electrical Engineering,National Dong Hwa University, Hualien. She also served as the Chair of the department from 2005 to 2006. Her research topics include image/video processing, video compression, motion estimation,error concealment, and video transcoding.

    Dr. Chen was the recipient of many awards: including the Dragon Paper Awards in 1993 and the Xeror Paper Award in 1997,K.T. Li Young Researcher Award in 2005, Distinguished Young Engineer Award in 2006, Jun S. Huang Memorial Foundation best paper awards in 2005 and 2012, and IPPR society best paper award in 2013.

    Gwo-Long Li received his B.S. degree from the Department of Computer Science and Information Engineering, Shu-Te University,Kaohsiung in 2004; M.S. degree from the Department of Electrical Engineering,National DongHwa University, Hualien in 2006; and Ph.D. degree from the Department of Electronics Engineering, National Chiao-Tung University, Hsinchu in 2011. During 2011 to 2014, he was an engineer with Industrial Technology Research Institute(ITRI), Hsinchu. In 2006, he received the Excellent Master Thesis Award from Institute of Information and Computer Machinery. He is currently a senior engineer with Novatek Microelectronics Corp., Hsinchu. His research interests include the video signal processing and coding and its VLSI architecture design.

    Yu-Ting Chen was born in Taipei in 1993. She is now pursuing her B.S. degree in electrical engineering with National Dong Hwa University, Hualien. Her research interest mainly lies in 3D video coding.

    Manuscript received November 1, 2014; revised January 13, 2015. This work was supported by NSC under Grant No. NSC 100-2628-E-259 -002 -MY3.

    W.-H. Chang and Y.-T. Chen are with the Department of Electrical Engineering, National Dong Hwa University, Hualian (e-mail: destiny20216@hotmail.com; 410023017@ems.ndhu.edu.tw).

    M.-J. Chen is with the Department of Electrical Engineering, National Dong Hwa University, Hualian (Corresponding author e-mail: cmj@mail.ndhu.edu.tw).

    G.-L. Li is with Novatek Microelectronics Corp., Hsinchu (e-mail: gwolong@gmail.com).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.001

    久久久久亚洲av毛片大全| 99热这里只有精品一区 | 长腿黑丝高跟| 欧美在线黄色| 欧美av亚洲av综合av国产av| 午夜免费成人在线视频| 我的老师免费观看完整版| 日韩精品中文字幕看吧| 中文字幕高清在线视频| 亚洲 欧美一区二区三区| 亚洲在线观看片| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| 伊人久久大香线蕉亚洲五| 精品不卡国产一区二区三区| 国产精品亚洲美女久久久| 亚洲av成人精品一区久久| 美女扒开内裤让男人捅视频| 亚洲av电影不卡..在线观看| 国产亚洲欧美98| 老司机午夜十八禁免费视频| 很黄的视频免费| 亚洲成人久久爱视频| 嫁个100分男人电影在线观看| 91久久精品国产一区二区成人 | 成年女人看的毛片在线观看| 又紧又爽又黄一区二区| 又紧又爽又黄一区二区| 九九在线视频观看精品| 国产极品精品免费视频能看的| 全区人妻精品视频| 成年女人看的毛片在线观看| 99视频精品全部免费 在线 | 嫩草影院精品99| 男女床上黄色一级片免费看| 久久中文看片网| 黄色女人牲交| 免费av毛片视频| 1024香蕉在线观看| 日韩欧美三级三区| 国产精品,欧美在线| avwww免费| 久久亚洲精品不卡| 国产不卡一卡二| 国产蜜桃级精品一区二区三区| 一a级毛片在线观看| 一区福利在线观看| 国产精品久久久av美女十八| 丁香欧美五月| 五月伊人婷婷丁香| 国产成人系列免费观看| 国产真人三级小视频在线观看| 亚洲精品一区av在线观看| 欧美av亚洲av综合av国产av| 亚洲片人在线观看| 久久国产乱子伦精品免费另类| 亚洲精品在线观看二区| av中文乱码字幕在线| 最好的美女福利视频网| 国产男靠女视频免费网站| 91av网一区二区| 一区福利在线观看| 在线永久观看黄色视频| 日韩欧美三级三区| 美女高潮喷水抽搐中文字幕| 国产精品久久久人人做人人爽| 亚洲精品色激情综合| 丰满人妻一区二区三区视频av | 美女大奶头视频| 啦啦啦免费观看视频1| 日韩成人在线观看一区二区三区| 少妇人妻一区二区三区视频| 亚洲国产精品999在线| 男女下面进入的视频免费午夜| 精品国产美女av久久久久小说| www.999成人在线观看| 国产精品自产拍在线观看55亚洲| 一夜夜www| 亚洲精华国产精华精| 嫩草影院入口| 美女cb高潮喷水在线观看 | 激情在线观看视频在线高清| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 午夜成年电影在线免费观看| 老司机午夜十八禁免费视频| 亚洲av电影不卡..在线观看| 国产高清videossex| 久久久久久久久免费视频了| 99国产精品99久久久久| 一个人看视频在线观看www免费 | 国产精品98久久久久久宅男小说| 动漫黄色视频在线观看| 老熟妇仑乱视频hdxx| 欧美又色又爽又黄视频| 男女午夜视频在线观看| 欧美在线黄色| 亚洲精品粉嫩美女一区| 18禁美女被吸乳视频| 日韩高清综合在线| 日韩有码中文字幕| 91麻豆av在线| 久久久久久久久免费视频了| 亚洲av电影在线进入| 综合色av麻豆| 免费看美女性在线毛片视频| 男人舔女人下体高潮全视频| 丁香欧美五月| www.999成人在线观看| 男女之事视频高清在线观看| 母亲3免费完整高清在线观看| 欧美成狂野欧美在线观看| 一进一出抽搐动态| 国产69精品久久久久777片 | 女人高潮潮喷娇喘18禁视频| 五月伊人婷婷丁香| 黄片小视频在线播放| 噜噜噜噜噜久久久久久91| 99国产精品一区二区蜜桃av| 免费看十八禁软件| 国产美女午夜福利| 色视频www国产| 欧美另类亚洲清纯唯美| 黑人欧美特级aaaaaa片| 色综合婷婷激情| 国产精品一区二区精品视频观看| 久久久久久九九精品二区国产| 日本与韩国留学比较| 久久久国产欧美日韩av| 国产精品久久久人人做人人爽| 国产一区二区在线av高清观看| 国产精品自产拍在线观看55亚洲| 最近最新免费中文字幕在线| 亚洲人成电影免费在线| 欧美日韩亚洲国产一区二区在线观看| 欧美一级a爱片免费观看看| 在线观看舔阴道视频| 网址你懂的国产日韩在线| 国产高潮美女av| 成人三级黄色视频| 88av欧美| 久久久久久久午夜电影| 夜夜爽天天搞| 国产淫片久久久久久久久 | 成人国产综合亚洲| 精品国产亚洲在线| 搡老岳熟女国产| 亚洲,欧美精品.| 在线观看美女被高潮喷水网站 | 99国产精品99久久久久| 成人国产综合亚洲| 九九热线精品视视频播放| 精品乱码久久久久久99久播| 偷拍熟女少妇极品色| 黄片大片在线免费观看| 亚洲第一欧美日韩一区二区三区| 精品国产乱子伦一区二区三区| 精品福利观看| 婷婷精品国产亚洲av在线| 在线永久观看黄色视频| 久久精品aⅴ一区二区三区四区| 丁香欧美五月| 丁香欧美五月| 国产高清激情床上av| 综合色av麻豆| 亚洲五月婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 成人精品一区二区免费| 国产精品久久久久久久电影 | 亚洲 国产 在线| 丰满的人妻完整版| 综合色av麻豆| www.www免费av| 免费在线观看成人毛片| 级片在线观看| 又黄又粗又硬又大视频| 一区二区三区高清视频在线| 美女午夜性视频免费| 欧美性猛交黑人性爽| 一本久久中文字幕| 法律面前人人平等表现在哪些方面| 麻豆一二三区av精品| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 天堂av国产一区二区熟女人妻| 中文亚洲av片在线观看爽| 美女大奶头视频| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 中文字幕最新亚洲高清| 免费在线观看视频国产中文字幕亚洲| 动漫黄色视频在线观看| 亚洲国产精品999在线| 麻豆国产97在线/欧美| 成人无遮挡网站| 桃色一区二区三区在线观看| 久久热在线av| 日韩精品中文字幕看吧| www.自偷自拍.com| 亚洲av美国av| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品中文字幕看吧| 真人一进一出gif抽搐免费| 亚洲av日韩精品久久久久久密| 一本久久中文字幕| 狂野欧美白嫩少妇大欣赏| 成人18禁在线播放| 成人国产综合亚洲| av国产免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| 在线观看舔阴道视频| 国产一级毛片七仙女欲春2| 亚洲激情在线av| 91在线精品国自产拍蜜月 | 熟女人妻精品中文字幕| svipshipincom国产片| 黑人操中国人逼视频| 久久久久久九九精品二区国产| 午夜福利18| 亚洲精品国产精品久久久不卡| www.www免费av| 99久久成人亚洲精品观看| 久久久久免费精品人妻一区二区| 黄色 视频免费看| 亚洲,欧美精品.| 中国美女看黄片| x7x7x7水蜜桃| 精品久久久久久久久久免费视频| 国产精品乱码一区二三区的特点| 国产av在哪里看| 亚洲无线在线观看| 在线观看日韩欧美| 欧美大码av| 曰老女人黄片| 国产男靠女视频免费网站| 国产精品九九99| 日韩有码中文字幕| 看免费av毛片| 又黄又爽又免费观看的视频| 18禁观看日本| 亚洲乱码一区二区免费版| 国产亚洲欧美在线一区二区| 欧美成狂野欧美在线观看| 在线播放国产精品三级| 欧美不卡视频在线免费观看| 婷婷精品国产亚洲av在线| 舔av片在线| 操出白浆在线播放| 怎么达到女性高潮| 夜夜看夜夜爽夜夜摸| av欧美777| 18禁美女被吸乳视频| 很黄的视频免费| 人妻丰满熟妇av一区二区三区| 亚洲色图av天堂| 美女午夜性视频免费| 国产精品av久久久久免费| 熟女人妻精品中文字幕| 美女被艹到高潮喷水动态| 成年女人看的毛片在线观看| 黄片小视频在线播放| 嫁个100分男人电影在线观看| 午夜久久久久精精品| av福利片在线观看| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 熟女少妇亚洲综合色aaa.| 国产伦一二天堂av在线观看| 成人三级黄色视频| 91av网站免费观看| 久久久国产成人精品二区| 好看av亚洲va欧美ⅴa在| 好男人电影高清在线观看| 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| 日韩有码中文字幕| 欧美高清成人免费视频www| 亚洲成人久久性| 久久久水蜜桃国产精品网| 久久久国产成人免费| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 老汉色av国产亚洲站长工具| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| xxx96com| 精品国产超薄肉色丝袜足j| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 老司机午夜十八禁免费视频| 在线国产一区二区在线| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 国产精品野战在线观看| 神马国产精品三级电影在线观看| 90打野战视频偷拍视频| 国产欧美日韩一区二区精品| 亚洲在线自拍视频| 亚洲成人久久性| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 久久久久久久久中文| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 亚洲色图av天堂| 国产精品久久久人人做人人爽| 久久久久国内视频| 99热这里只有是精品50| 黄色 视频免费看| 琪琪午夜伦伦电影理论片6080| 国产美女午夜福利| 亚洲国产欧美网| 又粗又爽又猛毛片免费看| 久久中文字幕人妻熟女| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 欧美在线黄色| 偷拍熟女少妇极品色| 精品熟女少妇八av免费久了| 国产精品一区二区免费欧美| ponron亚洲| 国产伦人伦偷精品视频| 超碰成人久久| 男女午夜视频在线观看| 又大又爽又粗| 少妇的丰满在线观看| 婷婷亚洲欧美| 九九久久精品国产亚洲av麻豆 | 日本一本二区三区精品| 国内精品美女久久久久久| 成年女人永久免费观看视频| 桃色一区二区三区在线观看| 一个人看视频在线观看www免费 | 成人三级黄色视频| 亚洲国产精品成人综合色| svipshipincom国产片| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美人成| 亚洲成a人片在线一区二区| 又黄又爽又免费观看的视频| 黄片小视频在线播放| tocl精华| 久久精品国产综合久久久| av欧美777| 后天国语完整版免费观看| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看 | 国产精品美女特级片免费视频播放器 | 九九在线视频观看精品| 欧美在线黄色| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 一个人看视频在线观看www免费 | 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 麻豆国产97在线/欧美| 欧美色视频一区免费| 欧美绝顶高潮抽搐喷水| 国产欧美日韩一区二区三| 精品一区二区三区视频在线 | 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看| 香蕉国产在线看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利18| 色精品久久人妻99蜜桃| 男女那种视频在线观看| 午夜福利在线在线| 夜夜爽天天搞| 免费在线观看日本一区| 午夜福利18| 久久久久九九精品影院| 国产1区2区3区精品| 国产精品久久久av美女十八| 1024手机看黄色片| 国产伦在线观看视频一区| 一二三四社区在线视频社区8| 色av中文字幕| 久久精品人妻少妇| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 国产野战对白在线观看| 亚洲精品久久国产高清桃花| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 国产美女午夜福利| 成年版毛片免费区| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 一区二区三区高清视频在线| 两个人视频免费观看高清| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 亚洲五月婷婷丁香| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 99久久综合精品五月天人人| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| 美女免费视频网站| 精品欧美国产一区二区三| 亚洲最大成人中文| 久久精品综合一区二区三区| 日本在线视频免费播放| www.自偷自拍.com| 亚洲精华国产精华精| 精品久久久久久久人妻蜜臀av| 日韩欧美一区二区三区在线观看| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| tocl精华| 亚洲av五月六月丁香网| 亚洲无线在线观看| 国产精品 欧美亚洲| 亚洲自拍偷在线| 久久性视频一级片| 老司机深夜福利视频在线观看| 九色成人免费人妻av| 色av中文字幕| 久久久久亚洲av毛片大全| 久久性视频一级片| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看| 中文在线观看免费www的网站| 97碰自拍视频| 免费观看的影片在线观看| 精品国产乱码久久久久久男人| 日本免费a在线| 久久久精品大字幕| 国产成人系列免费观看| 美女 人体艺术 gogo| 久久香蕉精品热| 两个人视频免费观看高清| 国产成人精品久久二区二区免费| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 欧美zozozo另类| 色综合婷婷激情| 久久中文看片网| netflix在线观看网站| 亚洲av免费在线观看| 成年女人毛片免费观看观看9| 国产乱人视频| 少妇裸体淫交视频免费看高清| 啦啦啦韩国在线观看视频| 一a级毛片在线观看| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 日本a在线网址| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 精品久久久久久成人av| 午夜福利18| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 五月玫瑰六月丁香| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看 | 黄色丝袜av网址大全| 免费看a级黄色片| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 我要搜黄色片| 欧美日本视频| 欧美一区二区国产精品久久精品| xxx96com| 在线观看一区二区三区| 女警被强在线播放| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| www日本在线高清视频| 嫩草影院精品99| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 午夜福利在线在线| 日韩有码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 成人鲁丝片一二三区免费| 国产爱豆传媒在线观看| 久久久色成人| 一区二区三区激情视频| 天天躁日日操中文字幕| 亚洲自偷自拍图片 自拍| 久久久国产精品麻豆| 窝窝影院91人妻| 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 午夜福利欧美成人| 两人在一起打扑克的视频| 嫩草影视91久久| av女优亚洲男人天堂 | 俺也久久电影网| 色老头精品视频在线观看| 亚洲av第一区精品v没综合| 亚洲一区二区三区不卡视频| 舔av片在线| 国产成人精品久久二区二区免费| 国产av不卡久久| 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| av黄色大香蕉| 国产高清激情床上av| 精品99又大又爽又粗少妇毛片 | 国产高清视频在线观看网站| 一本精品99久久精品77| 国产91精品成人一区二区三区| 成人18禁在线播放| 99久久精品热视频| 黄色丝袜av网址大全| 国产欧美日韩一区二区三| 亚洲avbb在线观看| 少妇丰满av| 女人被狂操c到高潮| 不卡一级毛片| а√天堂www在线а√下载| 亚洲人成网站高清观看| 日韩成人在线观看一区二区三区| 俺也久久电影网| 熟妇人妻久久中文字幕3abv| 88av欧美| 成人三级做爰电影| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 亚洲在线观看片| 欧美在线黄色| 午夜精品久久久久久毛片777| 99国产精品一区二区三区| 中文字幕人妻丝袜一区二区| 性欧美人与动物交配| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 天堂网av新在线| 国产主播在线观看一区二区| 午夜激情欧美在线| 黄色日韩在线| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 精华霜和精华液先用哪个| 18禁黄网站禁片午夜丰满| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 最新美女视频免费是黄的| av国产免费在线观看| 热99re8久久精品国产| 1000部很黄的大片| 女警被强在线播放| 男女午夜视频在线观看| 精品久久蜜臀av无| av欧美777| 国产aⅴ精品一区二区三区波| 欧美午夜高清在线| 精品久久久久久久久久免费视频| www.999成人在线观看| 欧美高清成人免费视频www| 香蕉丝袜av| 曰老女人黄片| 青草久久国产| 日韩欧美 国产精品| 精品无人区乱码1区二区| 国产野战对白在线观看| 精品久久久久久成人av| 在线永久观看黄色视频| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 日韩欧美在线乱码| 男女之事视频高清在线观看| 婷婷亚洲欧美| 男插女下体视频免费在线播放| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产| 久久人妻av系列| 国产精品日韩av在线免费观看| 国产亚洲精品一区二区www| 国产高清有码在线观看视频| 变态另类成人亚洲欧美熟女| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9| 久久精品国产亚洲av香蕉五月| 天堂网av新在线| 嫩草影院精品99| 国产精品乱码一区二三区的特点| 精品久久久久久久末码| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 在线视频色国产色| 国产人伦9x9x在线观看| 99在线人妻在线中文字幕| 在线观看舔阴道视频|