• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orthogonal Stacked Spectral Coding Labels for Fast Packets Routing over Optical MPLS Network

    2015-11-18 10:11:39KaiShengChenChaoChinYangandJenFaHuang

    Kai-Sheng Chen, Chao-Chin Yang, and Jen-Fa Huang

    Orthogonal Stacked Spectral Coding Labels for Fast Packets Routing over Optical MPLS Network

    Kai-Sheng Chen, Chao-Chin Yang, and Jen-Fa Huang

    —Multi-protocol label switching (MPLS)has the advantage of high efficiency in the second layer,which improves the performance of data packets routing. In this paper, a new structure to implement optical MPLS is proposed. We construct a code family for spectral-amplitude coding (SAC) labels in the optical MPLS networks. SAC labels are suitable for optical packet switching because they can be constructed and recognized quickly at each router. We use the label stacking to provide hierarchical routing to avoid swapping labels at each forwarding node and reduce system complexity. However, the phase-induced intensity noise (PIIN) appears due to the incoherent property of the light source when the stacked labels set makes the correlation decoding with the local node label,which degrades system performance.

    Index Terms—Arrayed waveguide grating, Internet protocol, label-switching path, multi-protocol label switching, spectral amplitude coding.

    1. Introduction

    Nowadays, Internet protocol (IP) is the general protocol to transfer data and multimedia[1]. With the rapid increasing of information, to provide large number of clients searching for high-quality applications, the evolvement of Internet with faster information transportation is needed. In classical IP networks, each router determines the next hop by executing routing algorithms individually when transmitting packets. When a packet is transmitted in a network, each router analyzes its header to get the IP address of destination, and then looks up the routing table to forward. And routers should repeat the same procedure in each forward even though having the same destination. The processing time will certainly increase since it requires doing IP routing for each forward in each router.

    Multi-protocol label switching (MPLS)[2]was proposed for a packet routed according to its label at the forwarding node. Great processing delay can be shortened at each node since the label de-composition in the network layer is averted. In another word, MPLS simplifies the forwarding function of routers. Without abandoning the basic of IP network, MPLS is considered as an extension protocol. MPLS provides a more flexible, extensible, and more efficient packet switching technique. Nevertheless, the electrical routing architecture still has a challenge when the IP services expand with the data traffic. Resent years, more interest focuses on developing optical packet switched networks to overcome the bottlenecks in transport and access networks[3]. By constructing all-optical node, optical packet switching (OPS) is a good solution since it simplifies several layers exiting in the present protocol stack into two. In optical MPLS, packets are transmitted node by node according to their label switching paths(LSPs). Their paths are determined by edge nodes at first,but requiring adding appropriate labels to the packets.

    Optical orthogonal labels coding, inspired by optical code-division multiple-access (OCDMA), is one of the promising approaches for implementing optical labels. These labels have shorter length, hence the complexity of the optical nodes is reduced. In this paper, we use spectral amplitude coding (SAC) as optical labels because they can be constructed easily and have low system cost[4],[5]. Each node is assigned a particular code as a label. Labels are encoded only at the source end. These labels can bypass the main bottleneck of electrical routers, i.e., lookup tables, and achieve all optical recognition by a balanced detector. In forwarding nodes, the incoming label is decoded over the balanced detector to detect a match. If the label and the decoder are matched, the auto correlation property would produce a control signal to route the packet into the proper path.

    In this paper, we propose a new structure to implement optical MPLS. The major techniques in this structure include an arbitrary waveform generator (AWG)[6], the label stacking, and the label recognition. The labels are added at the ingress and removed at the egress. Both the ingress and egress are the marginal nodes of MPLS networks. The label generator uses the label stackingachieved by AWG. In the MPLS network, each node performs the label recognition. As we use an incoherent broadband light source (BLS) as the method from SAC-labels encoding, the phase-induced intensity-noise(PIIN) seriously produces a change in system performance because the BLS changes frequently in intensity. So we have to analyze the PIIN effect on systems.

    The rest of this paper is organized as follows. In Section 2, we explain the label stacking and SAC labels in MPLS. In Section 3, we show the simulation setup of optical label switching and describe the encoding/decoding in detail. In Section 4, the simulation results and discussions are provided. Our final conclusions are presented in Section 5.

    2. Optical MPLS Network with Stacked SAC Labels

    Label stacking is used in MPLS systems by attaching one or more labels to a single packet to support hierarchical addressing[7]. This reduces the number of labels detected at each node. The forwarding nodes only need to check an optical label matching to their label set to determine whether the packet should be forwarded or not. They need not remove the previous labels and swap a new one. This might avoid the function of optical swapping at the expense of having a larger number of stacked labels. In MPLS, a random number of labels can be stacked referred to different network regions. The number of stacked labels is restricted by the successful decoding in which a decoder can hold with other interfering labels in the same optical band.

    In our proposed network, the labels are encoded by SAC because its consentience with label stacking, fast recognition, and low system cost[8],[9]. SAC is a type of OCDMA based on the encoding of incoherent BLS in the frequency domain. Due to its inherent nature, all SAC labels occupy the same optical band, regardless of the wavelength used by the optical payload in our system. The payload is coded with a laser whose spectrum is outside the band of labels. Thus the label and payload can be combined as an optical packet and transmitted simultaneously. Fig. 1 shows the diagram of optical packet with label stacking.

    Fig. 1. Diagram of optical packet with label stacking.

    At the ingress node, the SAC-labels are added. There are one label generator and one payload generator, as shown in Fig. 2 (a). In the label generator, the SAC-labels are implemented by an N×N AWG, a multiplexer, and BLSs. The number of BLS is the same as the labels,according to the number of intermediate nodes in the LSP. And at each intermediate node, the decoder is shown in Fig. 2 (b). The incoming packet is separated into two parts. The payload is waiting through the fiber delay line (FDL). The stacked labels are first filtered by filter 1. Then the label is decoded by executing balanced detection. Hence, the multiple label interference (MLI) is eliminated, and we can know whether the label is matched or not. As a result, this mechanism achieves the label switching.

    Fig. 2. Mechanism: (a) label encoding and (b) label decoding.

    3. Simulation Setups of Optical Label Switching

    At first, we assume that there are some nodes in a common region and the LSP is known by label distribution protocol (LDP). Fig. 3 shows the diagram of label switching in an MPLS network. There are 7 nodes (A to G) in this MPLS network, and nodes E, F, and G are the marginal nodes of the MPLS network. The LSP of data packet 1 is assumed as E (Ingress 1)-A-D-G (Egress).

    Fig. 4 illustrates the optical packet switching with label stacking. The packet generator in the ingress encodes the incoming IP packets as an optical packet, including payload and stacked labels. Payload and labels are sent simultaneously. The pseudo-random bit sequence generator(PRBS) is used for simulating payload. At forwarding nodes,only when the label of incoming packet matches the node label, a control signal is generated after the balanced detection which allows the packet to switch. When the optical packets arrive at the egress and all of their labels are matched, then the egress deletes the labels for returning IP packets and sends the packets back into the IP network.

    Fig. 3. Diagram of label switching in MPLS network.

    Fig. 4. Schematics for optical packet switching with label stacking.

    At the forwarding nodes A, D, and G, the tapped signal is arranged to a label processor. We only filter the labels for label recognition. Then the filtered signal is separated into the upper arm and the lower arm behind the de-multiplexer. The upper arm is tapped with exactly the code that is the same as its node label. And the lower arm is tapped with its complementary code. The outputs of two arms are taken to a balanced detector.

    Only when the label of incoming packet matches the code of the node label, a control signal is generated after the balanced detector. This signal is continuous to exist for the packet interval and allows the packet to pass through the optical modulator. As a result, the label switching proceeds immediately. When the packet does not have the matching label within it, no control signal exists and the modulator stays in the close condition. When the optical packets arrive at the egress and the packet labels are matching its node label, the egress then deletes the labels for returning IP packets. Afterward, the egress forwards the IP packets to the IP network.

    Next, we construct an M-sequence codes family for SAC-labels. Let N be the code length or the code size,representing the maximum number of labels can be used. Table 1 depicts the assigned label codes for the possible nodes in the network. The label codes are adopted from M-sequence codes of code length N=7 and code weight w=4.

    Table 1: Spectral codes assigned for node labels.

    Based on the orthogonal property, the correlations between any two M-sequence label codes Xkand Xlof period length N satisfies the following equation[10]:

    Table 2: Correlations among stacked and local labels in LSP1

    Table 3: Correlations among stacked and local labels in LSP2

    For the light path LSP1, the stacked label is S1=X1+X4+X7=(2, 3, 1, 1, 2, 2, 1). Now we need to recognize labels of the associated data packet at each node within path LSP1. Table 2 enumerates the correlation processes between the stacked label and the local node labels for path LSP1. At node A, the correlation subtraction results in8-4=4 units energy. This means that a label code matches to that of node A. Then the control signal of the logic ‘on’ is generated and allows the data packet to pass through to the node D. At the node D, the correlation subtraction is S1X4-and the data packet is again allowed to pass through to the node G. Similarly, at the node G, the correlation result is stillSince the node G is the egress, the label is removed after the label recognizing successfully. Then the data packet is taken out and passes to the IP network.

    Similar to the discussions mentioned above, the light path LSP2 in Table 3 passes through nodes B, D, and G with local label codes, respectively, X2= (0, 1, 1, 1, 0, 0, 1), X4=(0, 1, 0, 1, 1, 1, 0), and X7= (1, 1, 0, 0, 1, 0, 1). The stacked label for LSP2 thus becomes S2= X2+X4+X7= (1, 3, 1, 2, 2,1, 2) = (λ1, 3λ2, λ3, 2λ4, 2λ5, λ6, 2λ7). The label recognitions at nodes B, D, and G are similarly implemented as those outlined for LSP1. Note that, if by any mistake with wrong label codes from the un-destined routes, the label recognition is failed. For example of mismatched condition,, the data packets is blocked at the node C where LSP2 actually does not route through.

    4. Simulation Results and Discussions

    In SAC-OCDMA systems, the light source has a flat power spectral density (PSD) in the coded bandwidth. The system capacity is mainly limited by the phase-induced intensity noise (PIIN)[10]. Thus we take the effect of PIIN and the thermal noise into account. Assume that each un-polarized light has a chip bandwidth ν and a magnitude Psr/ν, where Psris the received power at the decoder. The following equations are derived on consulting [10]. The photocurrent is expressed as

    and the variance of the PIIN and the thermal noise are expressed as

    where Kbis the Boltzmann’s constant, Tnis the absolute receiver noise temperature, and RLis the receiver load resistor. From the above equations, the signal-to-noise ratio(SNR) is, and the bit-error rate (BER) is erfc[(SNR/8)1/2]/2.

    Fig. 5 shows the relation between the BER and the number of stacking labels. Each chip is with the chip power Psr=0.1 mW and chip bandwidth ν=0.1 THz. Electrical bandwidth B is 2.5 GHz, and the responsivity of photodetectors R is 1 A/W. The BLS used for generating labels is centered at 193.4 THz. The bit stream is modulated on a laser diode at 192.9 THz. As the label length increases, more labels are supported at same time, but the maximum number of labels used cannot be greater than the code size.

    Fig. 5. BER versus number of stacking labels at detector output.

    5. Conclusions

    In this paper, the proposed structure of implementing optical MPLS is demonstrated. The MLI between SAC-labels is cancelled so that the label recognition can successfully work. We prove exactly the system performance by simulating BER results. Evaluations are demonstrated under the condition of different code lengths. The PIIN and the thermal are parts of key factors that are used in the simulation process. Because the system accomplishes fast label recognition, the label switching has a higher speed than the conventional IP routing. The large number of stacked labels represents the large number of LSRs in this MPLS network. Thus, the code size must be large enough. Furthermore, instead of many FBGs, only one AWG is used to generate the labels. Therefore, the system complexity and implementation cost are greatly reduced.

    [1] Z. Wei and H. Ghafouri-Shiraz, “IP routing by an optical spectral-amplitude-coding CDMA network,” IEE Proc.—Communications, vol. 149, no. 56, pp. 265-269, 2002.

    [2] A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Communication Magazine, vol. 40,no. 9, pp. 83-87, 2002.

    [3] M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Communication Magazine, vol. 39, no. 3, pp. 128-135, 2001.

    [4] H. Mrabet, I. Dayoub, R. Attia, and S. Haxha, “Performance improving of OCDMA system using 2-D optical codes with optical SIC receiver,” IEEE Journal of Lightwaνe Technology,vol. 27, no. 21, pp. 4744-4753, 2009.

    [5] R. Adams, J. Faucher, L. Thomas, D. V. Plant, and L. R. Chen, “Demonstration of encoding and decoding 2-D wavelength-time bipolar codes for OCDMA systems with differential detection,” IEEE Photonics Technology Letters,vol. 17, no. 11, pp. 2490-2492, 2005.

    [6] X. J. M. Leijtens, B. Kuhlow, and M. K. Smit “Arrayed Waveguide Gratings,” Waνelength Filters in Fibre Optics,vol. 123, pp. 125-187, 2006.

    [7] U. Black, MPLS and Label Switching Networks, 2nd ed. Englewood Cliffs: Prentice-Hall, 2002.

    [8] C. Habib, V. Baby, L. R. Chen, A. Delisle-Simard, and S. LaRochelle, “All-optical swapping of spectral amplitude code labels using nonlinear media and semiconductor fiber ring lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 879-888, 2008.

    [9] J. B. Rosas-Fernandez, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Ultrafast forwarding architecture using a single optical processor for multiple SAC-label recognition based on FWM,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 868-878, 2008.

    [10] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz,“Modified quadratic congruence codes for fiber Bragg grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Journal of Lightwaνe Technology, vol. 19, pp. 1274-1281, Sep. 2001.

    Kai-Sheng Chen received his B.S. degree from the Department of Electrical Engineering, National Central University,Taoyuan in 2010. In 2012, he received his M.S. degree from the Institute of Computer and Communication Engineering, National Chen Kung University, Tainan, where he is now working for the Ph.D. degree. His major interests are optical code-division multiple access and optical packet switching networks.

    Chao-Chin Yang received the B.S. degree in communication engineering from National Chiao Tung University, Hsinchu and the Ph.D. degree in electrical engineering from National Cheng Kung University, Tainan in 1996 and 2004,respectively. In August 2004, he joined Kun Shan University of Technology, Tainan, where he is now an associate professor with the Department of Electro-Optical Engineering. His major interests are in multiuser optical communications, the radio over fiber networks and in the second optical design of LED.

    Jen-Fa Huang received his M.S. and Ph.D. degrees from the Department of Electrical Engineering, University of Ottawa, Ottawa,Canada in 1981 and 1985, respectively. Since 1991, he has been a faculty member with the Department of Electrical Engineering,National Cheng Kung University, Tainan,where he is currently an adjunct professor with the Institute of Computer and Communication Engineering and the Institute of Optoelectronic Science and Engineering. His current research interests include optical communications,all-optical data networking, and fiber-grating-based optical sensors.

    Manuscript received November 7, 2014; revised January 15, 2015.

    K.-S. Chen is with the Institute of Computer and Communications,Department of Electrical Engineering, National Chen-Kung University,Tainan (Corresponding author e-mail: q38024016@mail.ncku.edu.tw).

    C.-C. Yang is with the Department of Electro-Optical Engineering, Kun Shan University, Tainan (e-mail: ccyang@mail.ksu.edu.tw).

    J.-F. Huang is with the Institute of Computer and Communications,Department of Electrical Engineering, National Chen-Kung University,Tainan (e-mail: huajf@ee.ncku.edu.tw).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.008

    大片免费播放器 马上看| 精品国产一区二区三区四区第35| 丰满饥渴人妻一区二区三| 国产亚洲一区二区精品| 97在线人人人人妻| 欧美+亚洲+日韩+国产| 一本久久精品| 亚洲成国产人片在线观看| 日韩大码丰满熟妇| 狠狠狠狠99中文字幕| 性高湖久久久久久久久免费观看| 国产精品久久久人人做人人爽| 12—13女人毛片做爰片一| 手机成人av网站| 精品国产国语对白av| 搡老熟女国产l中国老女人| 午夜91福利影院| 99国产精品一区二区三区| 窝窝影院91人妻| 啦啦啦中文免费视频观看日本| 青春草亚洲视频在线观看| 99香蕉大伊视频| 亚洲av国产av综合av卡| 十八禁人妻一区二区| 一级,二级,三级黄色视频| 日本a在线网址| 香蕉丝袜av| 中文字幕人妻丝袜制服| 日本a在线网址| 黄频高清免费视频| 国产精品一区二区在线观看99| 女人久久www免费人成看片| 久久av网站| 亚洲男人天堂网一区| 蜜桃在线观看..| 女人高潮潮喷娇喘18禁视频| 王馨瑶露胸无遮挡在线观看| 一本久久精品| 精品久久久精品久久久| 精品少妇久久久久久888优播| 日日爽夜夜爽网站| 色播在线永久视频| 日日爽夜夜爽网站| 91精品国产国语对白视频| 中国国产av一级| 制服人妻中文乱码| 免费av中文字幕在线| 大码成人一级视频| 日日夜夜操网爽| 亚洲av电影在线观看一区二区三区| 欧美少妇被猛烈插入视频| 91国产中文字幕| 免费观看av网站的网址| 日韩视频一区二区在线观看| 国产精品二区激情视频| 久久久欧美国产精品| 老熟女久久久| 亚洲专区国产一区二区| 欧美精品啪啪一区二区三区 | 久久久久视频综合| 如日韩欧美国产精品一区二区三区| 免费高清在线观看视频在线观看| 男女边摸边吃奶| 又大又爽又粗| 最新的欧美精品一区二区| 母亲3免费完整高清在线观看| 久久人妻福利社区极品人妻图片| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 欧美日本中文国产一区发布| 成年人免费黄色播放视频| 一区福利在线观看| 人妻 亚洲 视频| 蜜桃在线观看..| 亚洲男人天堂网一区| 一二三四社区在线视频社区8| 亚洲av美国av| 18禁国产床啪视频网站| 久久av网站| 十八禁网站网址无遮挡| 老司机影院毛片| 国内毛片毛片毛片毛片毛片| 午夜福利在线观看吧| 一本色道久久久久久精品综合| 精品欧美一区二区三区在线| av又黄又爽大尺度在线免费看| 国产区一区二久久| 日韩中文字幕视频在线看片| 日本猛色少妇xxxxx猛交久久| 久久影院123| 精品高清国产在线一区| a 毛片基地| 韩国高清视频一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产视频一区二区在线看| 国产亚洲一区二区精品| 久久人人爽人人片av| 激情视频va一区二区三区| 午夜视频精品福利| 无遮挡黄片免费观看| 久久久欧美国产精品| 精品乱码久久久久久99久播| 99国产综合亚洲精品| 国产黄色免费在线视频| 美女大奶头黄色视频| 亚洲熟女精品中文字幕| 国产精品亚洲av一区麻豆| 正在播放国产对白刺激| 啦啦啦在线免费观看视频4| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 精品亚洲成国产av| 国产免费现黄频在线看| 免费看十八禁软件| 一级毛片电影观看| 丝袜美足系列| 啦啦啦啦在线视频资源| 两个人免费观看高清视频| 叶爱在线成人免费视频播放| 两性夫妻黄色片| 老司机福利观看| 美国免费a级毛片| 不卡av一区二区三区| av天堂在线播放| 久久久国产精品麻豆| tocl精华| 正在播放国产对白刺激| 97人妻天天添夜夜摸| 国产在线观看jvid| 日本a在线网址| 极品人妻少妇av视频| 亚洲精品久久午夜乱码| 中文字幕av电影在线播放| 老司机影院成人| 中文字幕制服av| www日本在线高清视频| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| 久久99一区二区三区| 国产区一区二久久| 久久青草综合色| 老司机靠b影院| 啦啦啦 在线观看视频| 久久天躁狠狠躁夜夜2o2o| 狂野欧美激情性xxxx| 国产av国产精品国产| 日韩 亚洲 欧美在线| 日韩欧美国产一区二区入口| 精品一品国产午夜福利视频| 久久亚洲国产成人精品v| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 久久精品久久久久久噜噜老黄| 国产一区二区激情短视频 | 男人操女人黄网站| 中文精品一卡2卡3卡4更新| 自拍欧美九色日韩亚洲蝌蚪91| 9色porny在线观看| 中文字幕av电影在线播放| 亚洲一区中文字幕在线| 婷婷色av中文字幕| 美女午夜性视频免费| 国产av一区二区精品久久| 国产一区二区激情短视频 | 亚洲精品久久午夜乱码| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 色精品久久人妻99蜜桃| 日本撒尿小便嘘嘘汇集6| 国产成人av教育| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩高清在线视频 | 久久午夜综合久久蜜桃| 精品一区二区三区av网在线观看 | 视频区图区小说| 精品一区二区三区四区五区乱码| 亚洲精品国产一区二区精华液| 免费av中文字幕在线| 日日摸夜夜添夜夜添小说| 亚洲欧美清纯卡通| 婷婷色av中文字幕| 一个人免费看片子| 成年动漫av网址| 久久久久精品人妻al黑| 国产在线免费精品| 国产一区二区激情短视频 | 亚洲欧美清纯卡通| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 捣出白浆h1v1| av超薄肉色丝袜交足视频| 首页视频小说图片口味搜索| 久久久久精品国产欧美久久久 | 亚洲欧美精品综合一区二区三区| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 国产一区二区三区在线臀色熟女 | 亚洲黑人精品在线| 亚洲人成电影观看| 久久性视频一级片| 99香蕉大伊视频| 亚洲国产av影院在线观看| 日韩大片免费观看网站| 50天的宝宝边吃奶边哭怎么回事| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品古装| 女人高潮潮喷娇喘18禁视频| 精品人妻熟女毛片av久久网站| 99国产精品一区二区蜜桃av | 丝袜喷水一区| 亚洲中文av在线| 国产男女超爽视频在线观看| 精品福利永久在线观看| 国产麻豆69| 91老司机精品| 91大片在线观看| 国产99久久九九免费精品| 又黄又粗又硬又大视频| 亚洲精品国产区一区二| 啦啦啦免费观看视频1| 大香蕉久久网| a在线观看视频网站| 视频区图区小说| 国产人伦9x9x在线观看| 高清欧美精品videossex| 飞空精品影院首页| 18禁国产床啪视频网站| 99国产综合亚洲精品| 91国产中文字幕| 人妻久久中文字幕网| 久久久久久久精品精品| 国产精品免费视频内射| 日韩制服丝袜自拍偷拍| 欧美激情 高清一区二区三区| 欧美激情 高清一区二区三区| 亚洲精品粉嫩美女一区| 99精国产麻豆久久婷婷| 纵有疾风起免费观看全集完整版| 99热国产这里只有精品6| 国产精品一区二区在线不卡| 下体分泌物呈黄色| 国产又爽黄色视频| 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 久久久久久久大尺度免费视频| 人妻一区二区av| 电影成人av| 一级片'在线观看视频| 午夜91福利影院| 纯流量卡能插随身wifi吗| 人妻一区二区av| 中国美女看黄片| 国产高清videossex| 丝袜美足系列| 99热全是精品| av在线老鸭窝| 久久久水蜜桃国产精品网| 久久九九热精品免费| 国产在线免费精品| 中亚洲国语对白在线视频| 一区二区av电影网| 国产成人a∨麻豆精品| 久久久久久久国产电影| 亚洲精品一二三| 十八禁人妻一区二区| 一级毛片电影观看| 女性被躁到高潮视频| 欧美97在线视频| 国产成人精品无人区| 久久久国产一区二区| 国产精品一区二区精品视频观看| 啦啦啦免费观看视频1| 国产成人精品久久二区二区91| 国产成人一区二区三区免费视频网站| 国产一区二区 视频在线| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| a在线观看视频网站| 精品一区二区三区av网在线观看 | 欧美人与性动交α欧美精品济南到| 久久久国产一区二区| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 精品免费久久久久久久清纯 | 亚洲第一青青草原| 亚洲人成电影观看| 黄色怎么调成土黄色| 亚洲精品在线美女| 人妻一区二区av| 国产精品偷伦视频观看了| 欧美少妇被猛烈插入视频| 亚洲欧美精品综合一区二区三区| 一区二区日韩欧美中文字幕| 99国产综合亚洲精品| 日本撒尿小便嘘嘘汇集6| 国产免费一区二区三区四区乱码| 涩涩av久久男人的天堂| 欧美激情高清一区二区三区| e午夜精品久久久久久久| av不卡在线播放| 99国产极品粉嫩在线观看| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 美国免费a级毛片| 日韩精品免费视频一区二区三区| 制服诱惑二区| 高潮久久久久久久久久久不卡| www日本在线高清视频| 久久久欧美国产精品| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区mp4| 久久人妻福利社区极品人妻图片| 国产一区二区 视频在线| 亚洲全国av大片| 午夜福利在线观看吧| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 法律面前人人平等表现在哪些方面 | 下体分泌物呈黄色| 国产伦理片在线播放av一区| 国产色视频综合| 亚洲色图综合在线观看| 乱人伦中国视频| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 国产不卡av网站在线观看| 国产精品一区二区在线观看99| 午夜激情久久久久久久| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 国产成人av教育| 老熟妇乱子伦视频在线观看 | 日本wwww免费看| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 一区在线观看完整版| 亚洲精品一卡2卡三卡4卡5卡 | 多毛熟女@视频| 悠悠久久av| 一二三四在线观看免费中文在| 狠狠婷婷综合久久久久久88av| 青青草视频在线视频观看| 男女无遮挡免费网站观看| 欧美黄色片欧美黄色片| 久久精品久久久久久噜噜老黄| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 亚洲avbb在线观看| 国产精品一二三区在线看| 久久99一区二区三区| 亚洲国产欧美在线一区| 亚洲av成人不卡在线观看播放网 | 黄色毛片三级朝国网站| a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 97精品久久久久久久久久精品| 国产三级黄色录像| 黄色a级毛片大全视频| 久久天堂一区二区三区四区| 首页视频小说图片口味搜索| 久久久久国产精品人妻一区二区| 午夜福利在线免费观看网站| 亚洲综合色网址| 国产高清视频在线播放一区 | 国产精品一区二区在线不卡| 九色亚洲精品在线播放| 黄色视频不卡| 亚洲综合色网址| www.自偷自拍.com| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 国产av一区二区精品久久| 亚洲av男天堂| 亚洲三区欧美一区| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 久久久精品国产亚洲av高清涩受| 性色av一级| 久久99一区二区三区| 精品高清国产在线一区| 欧美激情 高清一区二区三区| 亚洲国产欧美在线一区| 成年av动漫网址| 亚洲人成电影观看| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 久久99一区二区三区| 亚洲精品av麻豆狂野| 人妻 亚洲 视频| 亚洲av男天堂| 久久久久久久大尺度免费视频| 久久久久国内视频| 亚洲专区字幕在线| 黄色视频不卡| 久久人人爽av亚洲精品天堂| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 亚洲精品在线美女| 日本a在线网址| 欧美乱码精品一区二区三区| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 久久女婷五月综合色啪小说| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲欧美清纯卡通| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 熟女少妇亚洲综合色aaa.| 国产精品久久久人人做人人爽| 中国国产av一级| 久久久久精品人妻al黑| 99九九在线精品视频| 久久人妻熟女aⅴ| 亚洲午夜精品一区,二区,三区| 亚洲激情五月婷婷啪啪| 亚洲精品国产区一区二| 亚洲国产av影院在线观看| 一个人免费看片子| www.熟女人妻精品国产| 捣出白浆h1v1| 一本久久精品| 久久免费观看电影| 蜜桃国产av成人99| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| 成人18禁高潮啪啪吃奶动态图| 十八禁网站网址无遮挡| 搡老熟女国产l中国老女人| 亚洲av日韩在线播放| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 好男人电影高清在线观看| 欧美黄色淫秽网站| 在线永久观看黄色视频| 久久青草综合色| 久久国产精品大桥未久av| 老司机亚洲免费影院| 最近最新免费中文字幕在线| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| svipshipincom国产片| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区久久| 老鸭窝网址在线观看| 激情视频va一区二区三区| 99热国产这里只有精品6| 日本91视频免费播放| 成年女人毛片免费观看观看9 | 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 999久久久国产精品视频| 国产成人欧美在线观看 | 啦啦啦免费观看视频1| 亚洲欧洲精品一区二区精品久久久| 一二三四社区在线视频社区8| 国产免费一区二区三区四区乱码| 亚洲av欧美aⅴ国产| 精品国产超薄肉色丝袜足j| 国产一区二区三区av在线| 国产视频一区二区在线看| 亚洲激情五月婷婷啪啪| 国产精品一区二区精品视频观看| 日本a在线网址| 搡老熟女国产l中国老女人| 大香蕉久久网| 久久久久久久久免费视频了| 欧美激情 高清一区二区三区| 伦理电影免费视频| 日韩欧美一区二区三区在线观看 | 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 久热爱精品视频在线9| 大型av网站在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产深夜福利视频在线观看| 99精品久久久久人妻精品| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 动漫黄色视频在线观看| 久久精品亚洲av国产电影网| 久久人人爽人人片av| 桃红色精品国产亚洲av| 亚洲欧美激情在线| 欧美日韩成人在线一区二区| 亚洲熟女毛片儿| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 免费高清在线观看视频在线观看| 99热全是精品| 嫁个100分男人电影在线观看| 麻豆乱淫一区二区| 最新的欧美精品一区二区| 秋霞在线观看毛片| 桃红色精品国产亚洲av| 激情视频va一区二区三区| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 69精品国产乱码久久久| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 美女中出高潮动态图| 亚洲精品久久午夜乱码| 亚洲七黄色美女视频| 在线观看www视频免费| 精品久久久久久电影网| 国产欧美日韩一区二区三 | 中文字幕人妻丝袜一区二区| 中文字幕精品免费在线观看视频| 青草久久国产| 在线观看一区二区三区激情| 久久久久久久精品精品| 在线看a的网站| 免费在线观看影片大全网站| 精品欧美一区二区三区在线| 亚洲精品美女久久av网站| 不卡av一区二区三区| 如日韩欧美国产精品一区二区三区| 久久久国产欧美日韩av| 国产一区二区 视频在线| 久久中文字幕一级| 久久久久久免费高清国产稀缺| 成人国产av品久久久| 欧美激情高清一区二区三区| 丰满饥渴人妻一区二区三| 十分钟在线观看高清视频www| 久久中文看片网| av电影中文网址| 国产精品偷伦视频观看了| 无遮挡黄片免费观看| 国产精品一区二区免费欧美 | 国产亚洲av高清不卡| 国产精品秋霞免费鲁丝片| 另类亚洲欧美激情| netflix在线观看网站| 国产成人影院久久av| 亚洲精品一区蜜桃| 亚洲国产精品一区三区| 久久人妻福利社区极品人妻图片| 妹子高潮喷水视频| 老司机福利观看| 亚洲精品国产精品久久久不卡| 9热在线视频观看99| 国产成人av教育| 久久毛片免费看一区二区三区| 午夜福利视频精品| 久久久久国内视频| 午夜福利视频在线观看免费| 亚洲欧美日韩高清在线视频 | 夫妻午夜视频| 天天添夜夜摸| 久久久久久免费高清国产稀缺| 亚洲第一欧美日韩一区二区三区 | 精品免费久久久久久久清纯 | 天堂俺去俺来也www色官网| 亚洲精品乱久久久久久| 捣出白浆h1v1| av免费在线观看网站| 日本vs欧美在线观看视频| 久久亚洲国产成人精品v| 日日夜夜操网爽| 日韩欧美免费精品| av免费在线观看网站| 久久九九热精品免费| 啦啦啦 在线观看视频| av国产精品久久久久影院| 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 最近中文字幕2019免费版| 9热在线视频观看99| 国产成人影院久久av| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频 | 色婷婷av一区二区三区视频| h视频一区二区三区| 黑人猛操日本美女一级片| 国产一区二区三区综合在线观看| 国产1区2区3区精品| 国产精品一区二区在线观看99| 欧美激情久久久久久爽电影 | 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| 日韩欧美一区二区三区在线观看 | 热99久久久久精品小说推荐| 一级毛片女人18水好多| 90打野战视频偷拍视频| 五月天丁香电影| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 色播在线永久视频| 男女免费视频国产| 韩国高清视频一区二区三区| 精品国产一区二区久久| 欧美在线黄色| 人人澡人人妻人| 天天添夜夜摸| 97人妻天天添夜夜摸| 美女主播在线视频| 国产日韩欧美亚洲二区| 欧美另类一区| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美软件| a在线观看视频网站|