• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resonances Characteristics of Parallel Plate Waveguide Cavities

    2015-11-18 10:11:38LinChenDanNiWangYiMingZhuandYanPeng

    Lin Chen, Dan-Ni Wang, Yi-Ming Zhu, and Yan Peng

    Resonances Characteristics of Parallel Plate Waveguide Cavities

    Lin Chen, Dan-Ni Wang, Yi-Ming Zhu, and Yan Peng

    —The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide (TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz (THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency (EIT) will open a door to design the tunable THz devices.

    Index Terms—Electromagnetic induced transparency,metal parallel plate waveguide, terahertz filter.

    1. Introduction

    The parallel-plate waveguide (PPWG) is a simple structure in the THz range which is well understood in classical waveguide theory and is widely employed due to its low loss and low dispersion characteristics[1]. Owing to the fact that waveguides have the ability to confine radiation, they can be employed in conjunction with resonant structures, resulting in unique spectral resonant features, which opens up PPWG to a myriad of sensing and filtering applications. There have been several designs that employed resonant structures embedded within PPWGs such as Bragg gratings, photonic band gap, and resonant groove(s) structures[2]-[10]. Recently, a single rectangular cavity incorporated into a transverse-electric mode PPWG(TE-PPWG) has been demonstrated as a notch filter with a very narrow line width[11]. The PPWG with a single cavity has also been found to be a strong and high Q resonant system in which the electromagnetic induced transparency(EIT) phenomenon will appear. Astley et al. has characterized the single cavity waveguide resonant structure and also analyzed the origin of the resonant behavior and its dependence on geometric factors[12]. As the groove grows deeper (i.e. depth increases), this dip shifts to lower frequencies. However, there are still some key aspects of the single grooved TE-PPWG performance that has not been sufficiently studied. It should be noted that the grooved PPWG structures are analogous to plasmonic stub metal-insulator-metal (MIM) structures in the visible region[13]-[16]. The stub structure also plays an important role in filtering proposals but lacks the experimental support. Then we reported an observation of an EIT-like phenomenon in THz PPWG double cavities systems and analyzed the relation between the off-position of the cavities and the transmission properties. We also found that two detuned resonances could be varied by choosing different shifting length between double cavities. This means that the phase shift of the propagating wave between two resonances may be another important factor for the realization of EIT. The proposed system has the following features: First, since the most popular metals are seen as perfect conductors due to their extremely large conductivity in the THz region, the realization of THz EIT-like response in PPWG-cavities systems is not plasmonically induced. Second, the double cavities have identical geometry,therefore, the detuning of resonant frequencies does not arise from the different geometrical parameters of two cavities. We also found the EIT-like transmission presented here resulted from the resonances hybridization induced by the change of coupling strength of the top and bottom cavities[17].

    The PPWGG is a potentiial EIT devicee. This realization haas encouragedd a continuouss research formimicking EIT in cllassical systemms. In the fieeld of optics,waveguide bbased EEIT-like resonnances havebeen proposeed numericallly in reesonant cavityy systems. Immportantly, thhe phase couppling beetween the reesonators hasbeen provedto be a key ffactor foor EIT-like reesponse[18],[19]]. This papermainly discuusses thhe resonancess characteristiccs of parallelplate waveguuides wwith a single caavity and doubble cavities.

    2. PP PWG witt h Single Cavity

    A PPWG ssystem with aa single deep ccavity is showwn in Fig. 1 (a), thecavity geomeetry is designeed with a widdth of ww and a depthof h2(when hh1=0 μm, L=00 μm), d represents thhe waveguidee spacing bbetween thetwo plates.The fuundamental TTE mode wasexcited at thee beginning oof the wwaveguide annd the transmmission wasdefined asthe trransmitted powwer through PPPWG cavityy structure divvided byy the transmittted power thrrough PPWGwithout the cavity sttructure. We uused a groovee with a fixedd width of w==400 μmm based on aa previous expperiment[8],[20],, and set the ddepth too be h2=1400μm as our deffault number.For the excittation off TE mode,the incidentTHz wavewas appliedwith poolarization paarallelly to tthe plates[8],[220]. The photto of PPWG with a ssingle deep caavity is shownn in Fig. 1 (b). It is foormed by mmicro-machininng a rectanggular grooveinto boottom plates oof PPWG, resppectively. Eacch plate is madde of poolished nickell-plating Cu.In the experimment, we usedd the teerahertz timedomain specttroscopy (THHz-TDS) systeem to obbtain the outtput power sppectra of PPWG with adeep caavity[8],[10]. Moost of these deevices were mmeasured by ahigh peerformance TTHz-TDS[21]-[225], which isalso made byy the UUniversity ofShanghai forr Science annd Technologyy, as shhown in Fig.1 (c). In thissystem, we uused a P-I-N ddiode ass the terahertzz emitter, whoose frequencycan reach 4.22 THz annd the scan sppeed reaches 110 scan/s.

    Fig. 2 showws the measuured time dommain waveformms of frree space andthe groovedPPWG withh1=0 μm, h2=1400 μmm, and d=555 μm, respectively. The eexperimental ssetup haas the frequenncy resolutionn of 4.58 GHzz correspondinng to thhe time domaiin waveformsof ~218.4 ps.

    Fig. 3 showws the normaliized power traansmission sppectra foor the waveguuide of three tyypical plate sppacing with adeep grroove incorpoorated. The sppectra showthe characteriistics siingle, double,, and triple reesonant featurres for d=8000 μm,710 μm, and 5555 μm, respecttively.

    Fig. 4 commpares the powwer transmisssion spectra oof the siingle deep caavity PPWGwith differennt air gaps. Power trransmission sppectra are callculated by ussing the amplitude raatio of the waaveguide withh and without the incorporated caavity. The ressonance dip att the lowest ffrequency (Baand I,arrrow 1) is clear at all air gaaps in the speectra. Its frequuency iss changed from 0.321 THzz to 0.38 THzwhen the airr gap decrreases from880 μmto 510 μmm, respectively. Interrestingly, theresonance dipp at high frequuency (BandII,arrow 2) in the sppectrum exists explicitly att certain air gap fromm 510 μm to 760 μm. The reesonance dip ((Band III, arroow 3) can be observaable at the airgaps of 670 μμm, 620 μm, 585 μm,555 μm, annd 510 μm,respectively.The dramattic decrrease for the thhree bands coomes from thee increasing looss induuced by moree abrupt junctions betweenthe waveguide sectiions, and thee following smmall change iis owing to tthe highh energy conccentration in thhe deep cavityy. In Fig. 5, tthe twodimensionaltransmissionmap is obtaiined by varyinng inciddent frequency f and air gapp 1/d.

    Fig.1. Experimenttal structure annd setup: (a) structure sketchof caviity (cavities) wwaveguide resoonant structure,, (b) schematicof PPWWG sample, andd (c) THz-TDS ssystem.

    Fiig. 2. Time sscans corresponnding to THzz wave propaggation thhrough: (a) freee space and (b)PPWG with h1=0 μm, h2=1400 μm,annd d=555 μm.

    Fiig. 3. Measuured power trransmission sppectra of groooved wwaveguide withh1=0 μm and hh=1400 μm butt varying d.2

    Finally, wee make a simpple comparisoon of our propposed sttructure withh some simmilar structurres in theTHz reegion[10],[12]. SSince the singgle groove sttructure insidee the wwaveguide corrresponds tothe resonannt features inn the trransmission sspectra, ourstructure caan operate aas a mmultiband notcch filter byusing the sinngle deep caavity, whicch is very diifferent fromthe single baand notch filtter baseed on one shaallow groovedd TE-mode PPPWG (h1=0 μmm,h2=4412 μm, w=4660 μm) in [122]. Comparedd with the TEEM modde PPWG struucture in [10],, the multiplee resonances aare dueto the excitaation of highh order cavityy modes. Moost impoortantly, for tthe small air ggap, the novell phenomenaof resoonance frequenncy deviationand high ordeer cavity moddes havee been both nnumerically annd experimenttally verifiedin thispaper.

    Fig.4. Power trannsmission specttra for differennt air gap d. TThe arrowws indicate shaarp resonancedip (arrow 1: BBand I; arrow2: Bandd II; arrow 3: BBand III).

    Fig.5. Simulated trransmission maap as a functionn of 1/d with h1=0 μm,h2=800 μm, andd h3=1400 μm.

    BBesides, a mmultiband THHz notch fillter with bannd nummber control can be realizedd by tuning thhe air gap. Nootethhat the depthh2(h1=0 μm,L=0 μm) canalso be deepper to exxcite higher oorder cavity mmodes, makingg the deep groooved wwaveguide pootentially a vvery effectivee notch filteer to acchieve much mmore bands coontrol.

    3. PPP WG withh Double Cavities

    The PPWGG-cavities sysstem introducces the wavegguide sppacing as anoother degreeof freedom.By mechaniically tuuning the wavveguide spaciing between tthe two platess, we exxperimentallyy demonstratethe control off THz waves iin the PPWG-cavitiess system withh the approprriate fixed shiifting leength betweenn the two cavitties that can aachieve EIT.

    The PPWGG-cavities sysstem consistsof two alumiinum pllates, each wwith a micro-mmachined recttangular cavitty, as shhown in Fig. 11 (b). All caviities have the iidentical geommetry wwith a widthof w=470 μμm (±5 μm)and a deptth of h1=h2=420 μm(±5 μm). Wee fabricated foour sets of PPPWG caavities configgurations: a pperfect symmeetric one withh the toop and the bottom cavitiees exactly atthe center off the wwaveguide andd asymmetric cconfigurationss made by keeeping thhe top cavityfixed and displacing the bottom cavityfrom thhe center posiition with L=00 μm, 100 μm, 200 μm, andd 300 μmm, respectiveely, where Lrepresents tthe bottom cavity shhifting lengthfrom the cennter in the proopagation direction annd d represennts the lengthof the plates. A combinedd fast annd slow scaan-based THHz time dommain spectrosscopy(TTHz-TDS) wwas used forr evaluatingthe transmisssion prroperties of thhe PPWG sysstem. The fastt optical delayy line wwith a 110 ps rrange can be oobtained. If wwe combine itwith thhe slow scan,, the overalldelay line caan be expandeed to 218.4 ps. Thismeans the eexperimentalspectra resoluution caan reach 4.58GHz. The eleectric field ofthe incident bbeam wwas oriented pparallelly to thhe plates in oorder to excitee the TT E mode.

    From the ssimulation off the electricfield distribuution,thhe mode of thhe low frequenncy transmisssion dip shoulld be thhe inverse phaase couplingof the doublee cavities in FFig. 6(aa), and the higgh frequency sshould be thephase couplinng in Fig. 6 (b).

    Fiig. 6. Electricfield distribuution of transmmission dip’s ccenter frrequency: (a) loow frequency annd (b) high freqquency.

    FFig. 7 showsthe measuredd transmissionn spectra of tthe PPWWG, the PPWGG with a singlle cavity (d=6650 μm) and twwo caviities (d=650 μμm, L=200 μmm), respectiveely. The PPWWG withhout any cavitty acts as thereference. Thhe entire lossis exhiibited in eachh picture of FFig. 8 when thhe frequencyof theincident wavve is lowerthan the cuutoff frequenncy fc=c//2d=0.23 THzz[11],[26]. Forthe single-caavity structurred PPWWG, there wass a resonant frrequency at 0.381 THz. Whhen weadded anotheer cavity on tthe bottom pllate and set tthe staggered lengthL=200 μm, twwo resonant ddips appearedat 0.3554 THz and 00.41 THz, respectively. TThe water-vappor absoorption at 0.5557 THz andd 0.752 THzcould alsobe obseerved in thhis range, wwhich cannoot affect oour expeerimental resuults.

    Fig.7. Transmissioon spectra of thee THz wave traansmitted throuugh the PPPWG with sppacing d=650μm, single cavity (w=470 μμm,h=4220 μm), and twoo cavities with tthe shifted lenggth L=200 μm.

    NNext, we disccuss the influence of the shhifting lengthh L on thhe transmissioon response. FFor this discusssion, the lenggth of thhe top and boottom plates wwas fixed atd=650 μm. The PPWWG without aany cavity accted as the reeference. Fig.8 showws the powertransmission oof the PPWG--cavities systeem withh different L. FFor the structuure with symmmetry (L=0 μmm),onlyy one broad ssymmetric ressonant dip at0.417 THz wwas obseerved. For thee PPWG cavitties structure wwith L=100 μmm,asymmmetry was inntroduced, ressulting in a neew resonant ddip at alower frequency (0.354 THHz). When the bottom caviity wasfurther shiftted up to L=200 μm, thelower resonaant freqquency showwed blue-shifft and thehigh resonaant freqquency showeed red-shift. AA transparentt band between thetwo resonannt dips becommes narrow aas well as tthe decrrease of thetransmittancee. We observved an EIT-like transmission which was similaar to previous investigatioons for mmeta-materiall and plasmonn analogues oof EIT. For tthe asymmmetric struccture with L=300 μm, tworesonance diips camme closer and tthe transmission peak reducced further. Theexperimental results agree well with the numerical results in Fig. 8 and the deviation is probably caused by the fabrication imperfections of the sample, which introduce further asymmetry and rearrangement of some resonant frequencies. For a complete picture of resonant frequencies change, several calculations were performed with the variation of the shifting length from 0 μm to 450 μm. The detuning |ω1-ω2| (ω1and ω2are low and high resonant frequencies, respectively) decreases and the transparency window narrows down with the increase of the shifting length L.

    Fig. 8. Fourier-transformed intensity of the THz wave forms with different L (solid line: simulated, dash line & dots: experimental):(a) L=0 μm, (b) L=100 μm, (c) L=200 μm, and (d) L=300 μm.

    This EIT-like transmission can also be explained by analogy to the coupling of bright modes and dark modes. When the bottom cavity is set symmetrically to the top one,only one resonant dip, which corresponds to the two bright modes (each of them has the same resonant frequency), can be excited in both cavities simultaneously. In this condition,the dark modes cannot be excited. When the bottom cavity is shifted backward from the symmetric position, due to the identical geometry of the two cavities, the incident wave first arrives at the top cavity and couples with it. The shifted bottom cavity can hardly be interacted directly with the incident wave any more but can couple with the top cavity. In other words, the top cavity acts as the “radiative”resonator (a bright mode) that is coupled to a “bus”waveguide; the bottom cavity acts as the “sub-radiant”resonator (a quasi-dark mode, induced by the shifting length of two cavities) that cannot be coupled to the “bus”waveguide. This physical picture is similar to the unit cell(consists of an upper gold strip as a bright mode, a pair of lower gold strips as a dark mode, and a dielectric spacer)Then this EIT-like transmission can also be seen as the coupling between bright modes and quasi-dark modes when the symmetry is broken.

    Besides, the influence of the length of the top and bottom plates d was also investigated[20]. Four different waveguide spacings with d=610 μm, 670 μm, 740 μm, and 780 μm, were used to study the characteristics of the EIT. Fig. 9 shows the experimental (dots) and simulation (black lines) power transmissions by comparing the spectra of the propagated pulses with and without the cavities. The metal is set as a perfect electrical conductor in the simulation due to the disregard for the attenuation loss of the metal in the THz range. At least three more observations may be inferred by looking at Fig. 9: i) Fig. 9 exhibits a complete loss of spectral power up to the cutoff frequencies of 0.244 THz, 0.236 THz, 0.202 THz, and 0.192 THz, corresponding to d=610 μm, 670 μm, 740 μm, and 780 μm, respectively. ii)The transmission shows strong EIT effect, when d is increased from 610 μm to 780 μm, the low asymmetric resonances shows red-shift. The asymmetric resonant frequencies for d=610 μm, 670 μm, 740 μm, and 780 μm are 0.395 THz, 0.379 THz, 0.354 THz, and 0.338 THz,respectively. This red-shift of high symmetric resonances can also be found for d=610 μm and 670 μm, where the resonant frequencies are 0.456 THz and 0.446 THz,respectively. iii) As d is increased to 740 μm, the main symmetric resonances is degenerated in Fig.9 (c). This effect can also be found when d is equal to 780 μm. The measured and simulated results show good agreements. The deviation of experimental and numerical results is probably caused by the imperfections in the fabrication in real structures, which introduces further rearrangement of resonant frequencies.

    Fig. 9. Measured THz spectra with various air gaps (solid line: simulated, dots: experimental): (a) d=610 μm, (b) d=670 μm, (c)d=740 μm, and (d) d=780 μm.

    Firstly, as mentioned above in the experiment, when the waveguide spacing d decreases (1/d increases), the resonant frequencies of both symmetric and asymmetric resonances show red-shift. This red-shift effect is similar to the result of the PPWG with a single cavity for both TE[12]and TM[10]polarizations. The resonant frequency can be expressed as[10]

    w

    where c is thee light velociity in vacuumm (3×108m/ss=0.3 TTHz/mm-1) andd heffis the efffective cavityy height. The vvalue off hefffor the aasymmetric resonances is noot equal to thaat for thhe symmetricc resonancess due to thhe electricfield diifference betwween two resoonances at ressonant frequenncies(sshown in Figss. 4 (b) and (dd) of [17]). Thhis process caauses thhe red-shift off EIT peaks obbserved in booth experimentt and siimulation. The mechanismof red-shift bby the PPWGwith twwo cavities isidentical to tthat of the sinngle cavity[12]], the onnly differencce is thatthe singleFabbri-Palo(FP)reesonance is suupported by PPPWG with one cavity andd two FP resonances are suppoorted by asyymmetric PPPWG caavities.

    Accordingto the relationnship betweenn the size d aand λ,thhe dispersiondiagram can bbe divided intto three regionns as inn Fig. 10.

    1) RegionI: d<λ/2, themaximum moode order thatt can bee excited is 0.. No stable moode exists.

    2) Region III: λ/2<d<λ, thhe maximummode order wwhich caan be excited is 1. Onlyy the lowestt order transvverse ellectric modee TE is exxcited, we ccan observethe trransmission diip in the regioon II.

    3) Region IIII: d>λ, the mmaximum moode order is larger thhan 1. The llowest ordertransverse eelectric modeand hiigher transverrse electric moode can be exxcited. Consideering thhe residual effffect of the traansmission dipp, we can obsserve thhe claw type sstructure in reggion III.

    Fiig. 10. Observaation range of PPWG.

    So far, wecan describethe mechanismm of manipulation off EIT in a PPPWG cavitiess system. Byfixing approppriate shhifting lengthL (200 μm),as d increasees and the twwo FP reesonant waveelengths are llarger than dd (below thelight line), EIT canbe found obvviously and thhe two resonaances(iincluding thetransparent ppeak) show reed-shift. Oncee the syymmetric FPresonant wavelength is less than d, the TTEM wwave propagattes along a “zzigzag line” aand acts as guuided wavve. The cavvities produce little inflluence on tthe transmission (thatt is, the FP reesonances cannnot exist in tthe regioon above thelight line). Heere the increasse of d converrts theFP resonancees into the gguided wave.Since the EIT transparent peakbetween tworesonances ccomes from tthe desttructive interference of ssymmetric annd asymmetrric resoonances[17], asthe transitionn of symmetricc FP resonancces takee place, this innterference isbroken and aan on-to-off EIT peakk modulationcan be commpleted in thiis process. The mecchanism of above manipulaation is differeent from contrrol of EEIT in meta-material and plaasmonics[27]-[330].

    4. Connclusions

    In conclusionn, a tunable muultiband terahhertz notch filtter is ppresented expperimentallyand numericcally based oon PPWWG with a ssingle deepcavity and ddouble cavitiees,resppectively. Theadjustable airr gap has beenn investigatedto flexiibly modify thhe filtering chharacteristics oof the presentted filter. The air gaap can also bbe varied in tthe applyingto adjuust the band nnumber. Becauuse the air gaap can be easiily tunaable by mechaanical controlor electrical aadjustment, thhis deepp cavity PPWGG structure haas great potenttial applicatioons in TTHz communiications. Anon-to-off conntrol of the EEIT resoonances is achhieved by mecchanically tuniing the spacinng. It mmay inspire intterest in deveeloping mechaanically tunabble wavveguide basedd EIT, resultinng in a widerange of novvel commpact THz deevices, suchas slow lighht componennts,senssitive sensorrs, and ellectromagnetically induced absoorbers.

    Acknowlee dgment

    TThis work wa as supported by the Shanghai Rising-Star Prog gram under Gra ant No. 14QA1403100, Proggram of Shanghhai Subj ect Chief Scienntist under Gra ant No. 14XD11403000, Hujia ang Founndation of Chi ina under Grannt No. C14002, Zhejiang KKey Disc cipline of Instru ument Science a and Technology y under Grant NNo. JL1550505, and the New Century Excellent Tale ents Project fro om the MMinistry of Eduucation under GGrant No. NCETT-12-1052.

    Referee nces

    [1]R. Mendis annd D. Grischkowwsky, “Undistorted guided-waave propagationof subpicoseccond terahertzpulses,” Optiics Letter, vol. 266, no. 11, pp. 8446-848, 2001.

    [2]J. M. Nagell, P. H. Boliivar, and H.Kurz, “Moduular parallel-plateTHz componeents for cost-effficient biosensiing systems,” Semmiconductor Sccience and Technology, vol. 220,no. 7, pp. S2881-S285, 2005.

    [3]C.-Y. Lin, M. Wu, J. A. Blloom, I. J. Coxx, and M. Milller,“Rotation,scale, andtranslationresilient pubblic watermarkingg for imagess,” IEEE Traans. on Imaage Processing, vol. 10, no. 5, ppp. 767-782, 20001.

    [4]J. Kitagawa, MM. Kodama, S.Koya, Y. Nishhifuji, D. Armannd,and Y. Kadoyya, “THz wavepropagation inn two-dimensionnal metallicphootoniccrystalwithmechaanicallytunabblephotonic-bands,” Optics Express, vol. 20, no. 16, pp. 17271-17280, 2012.

    [5] R. Mendis, V. Astley, J. Liu, and D. M. Mittleman,“Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Applied Physics Letter, vol. 95,no. 17, pp. 171113-1-171113-3, 2009.

    [6] E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T. I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Optics Express, vol. 20, no. 6,pp. 6116-6123, 2012.

    [7] E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,”O(jiān)ptics Express, vol. 19, no. 16, pp. 14852-14859, 2011.

    [8] L. Chen, C.-M. Gao, J.-M. Xu, X.-F. Zang, B. Cao, and Y.-M. Zhu, “Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems,” Optics Letter, vol. 38, no. 9,pp. 1379-1381, 2013.

    [9] V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,”Applied Physics Letter, vol. 100, no. 23, pp. 231108-1-231108-4, 2012.

    [10] E. S. Lee and T. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Optics Express, vol. 20, no. 28, pp. 29605-29612, 2012.

    [11] R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Optics Express,vol. 17, no. 17, pp. 14839-14850, 2009.

    [12] V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman,“Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Optics Letter, vol. 36, no. 8, pp. 1452-1454, 2011.

    [13] L. Chen, Z.-Q. Cao, F. Ou, H.-G. Li, Q.-S. Shen, and H.-C. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Optics Letter, vol. 32, no. 11, pp. 1432-1434,2007.

    [14] X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Optics Letter, vol. 33, no. 23, pp. 2874-2876, 2008.

    [15] M. Yosuke, O. Toshihiro, H. Masanobu, F. Masuo, and N. Masatoshi, “Characteristics of gap plasmon waveguide with stub structures,” Optics Express, vol. 16, no. 12, pp. 16314-16325, 2008.

    [16] X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Optics Express, vol. 19, no. 11, pp. 10907-10912, 2011.

    [17] L. Chen, C.-M. Gao, J.-M. Xu, X.-F. Zang, B. Cai, and Y.-M. Zhu, “Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems,” Optics Letter, vol. 38, no. 9,pp. 1379-1381, 2013.

    [18] X.-F. Zang, T. Zhou, B. Cai, and Y.-M. Zhu, “Single-photon transport properties in an optical waveguide coupled with a Λ-type three-level atom,” Journal of the Optical Society of American B, vol. 30, no.5, pp. 1135-1140, 2013.

    [19] X.-F. Zang, T. Zhou, B. Cai, and Y.-M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” Journal of Physics B, vol. 46, no. 14, pp. 145504-1-145504-6, 2013.

    [20] L. Chen, J.-M. Xu, C.-M. Gao, X.-F. Zang, B. Cai, and Y.-M. Zhu, “Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities,”Applied Physics Letters, vol. 103, no. 25, pp. 251105-1-251105-4, 2013.

    [21] Y.-M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa,“Femtosecond acceleration of electrons under very high electric fields in bulk GaAs investigated by time-domain terahertz spectroscopy,” Applied Physics Letters, vol. 93, no. 4, pp. 042116, 2008.

    [22] Y.-M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa, “Power dissipation spectra and terahertz intervalley transfer gain in bulk GaAs under high electric fields,” Applied Physics Letters, vol. 93, no.23, pp. 232102-1-232102-3, 2008.

    [23] Y.-M. Zhu, L. Chen, Y. Peng, M.-H. Yuan, Y. Wen, and S.-L. Zhuang, “Temperature dependence of nonequilibrium transport time of electrons in bulk GaAs investigated by time-domain terahertz spectroscopy,” Applied Physics Letters, vol. 99, no. 2, pp. 022111-1-022111-3, 2011.

    [24] Y.-M. Zhu and S.-L. Zhuang, “Terahertz electromagnetic waves emit from semiconductor investigated by time domain terahertz spectroscopy,” Chinese Optics Letters, vol. 9, no. 11, pp. 110007, 2011.

    [25] J.-M. Xu, L. Chen, L. Xie, S.-Q. Du, M.-H. Yuan, Y. Peng,and Y.-M. Zhu, “Effect of boundary condition and periodical extensionon transmission characteristics of terahertz filterswith periodical hole array structure fabricatedon aluminum slab,” Plasmonics, vol. 8, no. 3, pp. 1293-1297,2013.

    [26] R. Mendis, V. Astley, J. Liu, and D. M. Mittleman,“Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Applied Physics Letters, vol. 95,no. 17, pp. 171113-1-171113-3, 2009.

    [27] Y. Huang, C.-J. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Applied Physics Letters, vol. 99, no. 14, pp. 143117-1-143117-3, 2011.

    [28] Z.-H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Optics Express,vol. 19, no. 4, pp. 3251-3257, 2011.

    [29] Z.-Y. Li, Y.-F. Ma, R. Huang, R. J. Singh, J.-Q. Gu, Z. Tian,J.-G. Han, and W.-L. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,”O(jiān)ptics Express, vol. 19, no. 9, pp. 8912-8919, 2011.

    [30] J.-Q. Gu, R. Singh, X.-J. Liu, X.-Q. Zhang, Y.-F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J.-G. Han, and W.-L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nature Communications, vol. 3,1151-1-1151-6, 2012.

    Lin Chen was born in Jiangsu, China in 1980. He received the B.S. and M.S. degrees from the Southeast University in 2002 and 2005,both in electrical engineering, and the Ph.D. degree from the Shanghai Jiao Tong University in 2008, in optics, respectively. Now he is an associate professor with the University of Shanghai for Science and Technology. His research interests include terahertz waveguide,meta-material, and lab on chip. He has been awarded the “Chen Guang” Scholar in 2009, China Instrument Society-JinGuofan Youth Award in 2011, and Shanghai “rising star” Scholar in 2014. He has published more than 40 SCI papers and 20 patents. As the project leader, he is also responsible for several national funds and funds supported by Shanghai government.

    Dan-Ni Wang was born in Anhui, China in 1991. She received her B.S. degree from the Shanghai Normal University in 2013. She won the National Scholarship and Shuikang Feng Scholarship in 2012. She was awarded the outstanding graduates of Shanghai in 2013. Now, she is a postgraduate with the University of Shanghai for Science and Technology. Her research interests include terahertz waveguide, meta-material, and sensor chip.

    Yi-Ming Zhu graduated from the University of Tokyo, now he is a professor with the University of Shanghai for Science and Technology, the vice director of the Shanghai Key Lab of Modern Optical System, and the associate dean of the Research Institute of Optoelectronics. He studied at Shanghai Jiaotong University from 1998 to 2002 and received a bachelor degree in apply physics. In 2003, he began to work as an assistant researcher with the Research Center for Advanced Science and Technology, University of Tokyo. He won the Japanese Government Scholarship in 2004 and studied electronics engineering in University of Tokyo as a doctor candidate. He gained his Ph.D. degree in electronics engineering in 2008. He has published more than 100 papers on SCI/EI journals as the first author or corresponding author, including two publication on Nature Group series, more than 20 papers in SCI section II and above, He has also presided more than 20 projects at the national and ministerial/provincial levels, which include one project supported by National 863 Project, 3 projects supported by National Natural Science Foundation of China, 2 sub-projects supported by National 973 Project, 2 projects supported by Major National Development Project of Scientific Instrument and Equipment, etc.

    Yan Peng was born in Anhui, China in 1982. She received the B.S. degree from the Anhui Normal University in 2004 and the Ph.D. degree from the East China Normal University in 2009, both in physics. She is an associate professor with the University of Shanghai for Science and Technology. Her research interests include ultrafast optics, terahertz, high-order harmonic generation, and microstructure.

    As a project leader, Dr. Peng is responsible for the National Program on Key Basic Research Project of China (973 Program,sub-project), two National Development Projects of Scientific Instrument and Equipment, one National Natural Science Foundation of China, one State Scholarship Fund, and two projects from Shanghai Municipal Education Commission. She was awarded the “Chen Guang” Scholar in 2012, China Instrument Society-Jin Guofan Youth Award, and “Excellent Woman” Award of University of Shanghai for Science and Technology. Up to now, she has published more than 30 SCI papers and 20 patents.

    Manuscript received June 5, 2015; revised June 17, 2015. This work was supported by the National Program on Key Basic Research Project of China under Grant No. 2014CB339806, Basic Research Key Project under Grant No. 12JC1407100, Major National Development Project of Scientific Instrument and Equipment under Grant No. 2011YQ150021 and No. 2012YQ14000504, and the National Natural Science Foundation of China under Grant No. 11174207, No. 61138001, No. 61205094, and No. 61307126.

    Y.-M. Zhu and Y. Peng are with the Shanghai Key Lab of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China (Corresponding authors e-mail:ymzhu@usst.edu.cn; py@usst.edu.cn)

    L. Chen and D.-N. Wang are with the Shanghai Key Lab of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China (e-mail: linchen@usst.edu.cn;danniwang07@163.com)

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.007

    大话2 男鬼变身卡| 午夜日本视频在线| 一区二区三区精品91| 国产黄频视频在线观看| 亚洲国产av新网站| 亚洲av.av天堂| 久久综合国产亚洲精品| 黄色视频在线播放观看不卡| 午夜福利视频在线观看免费| 国产成人精品久久久久久| 日本wwww免费看| 激情五月婷婷亚洲| 国产在视频线精品| 精品亚洲成国产av| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 国产精品无大码| 18在线观看网站| 欧美日韩成人在线一区二区| 观看av在线不卡| 久久这里只有精品19| 美女国产视频在线观看| 日韩三级伦理在线观看| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 午夜91福利影院| 免费av中文字幕在线| 老鸭窝网址在线观看| av免费观看日本| 桃花免费在线播放| 中文字幕人妻熟女乱码| 亚洲精品国产一区二区精华液| 精品久久久久久电影网| 亚洲av电影在线观看一区二区三区| 热re99久久国产66热| 在现免费观看毛片| 韩国精品一区二区三区| 赤兔流量卡办理| av有码第一页| 1024视频免费在线观看| av免费在线看不卡| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 国产精品99久久99久久久不卡 | 国产97色在线日韩免费| 黄片无遮挡物在线观看| 99热网站在线观看| 综合色丁香网| 国产精品久久久久久精品电影小说| 亚洲精品中文字幕在线视频| 国产日韩欧美亚洲二区| 一区二区三区激情视频| 国产精品久久久久久久久免| 性色av一级| 亚洲精品第二区| 看免费av毛片| 在线 av 中文字幕| 三上悠亚av全集在线观看| 巨乳人妻的诱惑在线观看| 99国产精品免费福利视频| 成年美女黄网站色视频大全免费| 只有这里有精品99| 看非洲黑人一级黄片| 亚洲av福利一区| 精品第一国产精品| 久久久久精品性色| 女人高潮潮喷娇喘18禁视频| 国产精品国产av在线观看| 精品国产乱码久久久久久男人| 亚洲一区二区三区欧美精品| 亚洲av中文av极速乱| 久久久久久久久久久久大奶| 亚洲精品一二三| 久久久a久久爽久久v久久| 欧美成人午夜免费资源| 80岁老熟妇乱子伦牲交| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 国产精品av久久久久免费| 波野结衣二区三区在线| 老熟女久久久| 欧美 亚洲 国产 日韩一| 欧美少妇被猛烈插入视频| 99热国产这里只有精品6| 精品人妻偷拍中文字幕| 色94色欧美一区二区| 欧美精品一区二区大全| 伦理电影免费视频| 99热全是精品| 成人亚洲精品一区在线观看| 在线观看三级黄色| 少妇人妻精品综合一区二区| 欧美+日韩+精品| 成人黄色视频免费在线看| 最近中文字幕高清免费大全6| 飞空精品影院首页| 欧美激情极品国产一区二区三区| av免费在线看不卡| 少妇 在线观看| 宅男免费午夜| 观看av在线不卡| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| 五月伊人婷婷丁香| 不卡av一区二区三区| 巨乳人妻的诱惑在线观看| 老鸭窝网址在线观看| 中国国产av一级| 啦啦啦啦在线视频资源| 国产精品一区二区在线观看99| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 蜜桃在线观看..| 久久99蜜桃精品久久| 亚洲精品久久午夜乱码| 在线观看人妻少妇| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| 亚洲第一区二区三区不卡| 久久久国产一区二区| 最近的中文字幕免费完整| 免费在线观看完整版高清| av免费观看日本| 精品卡一卡二卡四卡免费| 在线观看人妻少妇| 久久99精品国语久久久| videossex国产| 欧美精品高潮呻吟av久久| 亚洲精品aⅴ在线观看| 国产视频首页在线观看| 如何舔出高潮| 熟女电影av网| 亚洲国产精品一区三区| 久久精品国产亚洲av天美| 熟女电影av网| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 国产av码专区亚洲av| 午夜激情久久久久久久| 老汉色∧v一级毛片| 亚洲中文av在线| 一级毛片 在线播放| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 国产精品熟女久久久久浪| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 亚洲经典国产精华液单| 国产精品三级大全| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 亚洲av福利一区| 日韩中文字幕欧美一区二区 | 亚洲精品一二三| 久久精品久久久久久噜噜老黄| av不卡在线播放| 国产av一区二区精品久久| 制服诱惑二区| 五月天丁香电影| 黄片小视频在线播放| 婷婷色综合大香蕉| 国产成人av激情在线播放| 新久久久久国产一级毛片| 久久久亚洲精品成人影院| 亚洲色图综合在线观看| 久久精品熟女亚洲av麻豆精品| 久久99精品国语久久久| 精品国产国语对白av| 精品国产一区二区三区四区第35| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 亚洲人成电影观看| av卡一久久| 欧美97在线视频| 免费人妻精品一区二区三区视频| 美女福利国产在线| 热99久久久久精品小说推荐| 日韩伦理黄色片| 春色校园在线视频观看| 精品人妻熟女毛片av久久网站| 精品一区二区免费观看| 一级黄片播放器| 成人免费观看视频高清| 国产人伦9x9x在线观看 | 国产精品免费大片| 亚洲伊人色综图| 成人毛片a级毛片在线播放| 久久久久久久久免费视频了| 国产又爽黄色视频| 99热国产这里只有精品6| 亚洲精品日本国产第一区| 欧美激情 高清一区二区三区| 五月伊人婷婷丁香| 亚洲五月色婷婷综合| 老司机影院毛片| www.熟女人妻精品国产| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 青草久久国产| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线| 免费观看性生交大片5| 中国三级夫妇交换| 只有这里有精品99| 久久ye,这里只有精品| 咕卡用的链子| 精品99又大又爽又粗少妇毛片| 99re6热这里在线精品视频| 如日韩欧美国产精品一区二区三区| av天堂久久9| 激情视频va一区二区三区| 深夜精品福利| 哪个播放器可以免费观看大片| 又粗又硬又长又爽又黄的视频| 日韩欧美精品免费久久| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 成人二区视频| 欧美精品一区二区大全| 春色校园在线视频观看| 国产免费现黄频在线看| 亚洲av电影在线观看一区二区三区| 亚洲伊人色综图| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 波多野结衣av一区二区av| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 黄频高清免费视频| 91精品伊人久久大香线蕉| 精品人妻在线不人妻| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 寂寞人妻少妇视频99o| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 波多野结衣一区麻豆| 欧美日韩精品网址| 欧美日韩一区二区视频在线观看视频在线| 嫩草影院入口| 久久久久精品人妻al黑| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 99热全是精品| 亚洲欧美一区二区三区黑人 | 另类亚洲欧美激情| 亚洲av福利一区| 亚洲av综合色区一区| 最近最新中文字幕大全免费视频 | 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 99香蕉大伊视频| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 一二三四中文在线观看免费高清| 两个人免费观看高清视频| 女人精品久久久久毛片| 国产爽快片一区二区三区| 亚洲精品视频女| 亚洲成人手机| 亚洲,欧美精品.| xxx大片免费视频| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| videosex国产| 啦啦啦中文免费视频观看日本| 少妇被粗大的猛进出69影院| 免费不卡的大黄色大毛片视频在线观看| 中文字幕制服av| 成人毛片60女人毛片免费| 美女福利国产在线| 伦精品一区二区三区| 熟女少妇亚洲综合色aaa.| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 另类精品久久| 亚洲人成电影观看| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 天天躁夜夜躁狠狠久久av| 婷婷色综合www| 日韩熟女老妇一区二区性免费视频| 两个人看的免费小视频| 久热这里只有精品99| 亚洲成国产人片在线观看| 九九爱精品视频在线观看| 一区二区三区精品91| 777久久人妻少妇嫩草av网站| 狠狠婷婷综合久久久久久88av| 久久韩国三级中文字幕| 深夜精品福利| 天堂8中文在线网| 日韩一区二区视频免费看| 日日撸夜夜添| 伊人久久国产一区二区| 日本vs欧美在线观看视频| 中文字幕亚洲精品专区| 欧美bdsm另类| 免费看av在线观看网站| 一区二区三区精品91| 最近的中文字幕免费完整| 满18在线观看网站| av不卡在线播放| 人体艺术视频欧美日本| 一本久久精品| 中文字幕人妻丝袜制服| 一本久久精品| 久久人妻熟女aⅴ| 日韩欧美精品免费久久| 在线天堂最新版资源| 一二三四中文在线观看免费高清| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 欧美黄色片欧美黄色片| 综合色丁香网| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 亚洲欧美成人精品一区二区| 精品第一国产精品| 亚洲,欧美,日韩| 国产视频首页在线观看| 少妇的逼水好多| 欧美中文综合在线视频| 久久这里有精品视频免费| 国产成人精品婷婷| 一区福利在线观看| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 婷婷成人精品国产| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 老女人水多毛片| 国产精品秋霞免费鲁丝片| 欧美成人精品欧美一级黄| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 久久久亚洲精品成人影院| 97人妻天天添夜夜摸| 国产免费福利视频在线观看| 下体分泌物呈黄色| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 亚洲美女黄色视频免费看| 在线观看www视频免费| 国产黄频视频在线观看| 黄色 视频免费看| 欧美精品一区二区免费开放| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 一区二区三区激情视频| 观看av在线不卡| 在线亚洲精品国产二区图片欧美| 久久久久精品久久久久真实原创| 日韩制服丝袜自拍偷拍| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 日日撸夜夜添| 看免费av毛片| 91精品三级在线观看| 精品少妇久久久久久888优播| 亚洲在久久综合| 欧美精品av麻豆av| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 嫩草影院入口| 少妇精品久久久久久久| 久久99精品国语久久久| 国产高清国产精品国产三级| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 婷婷色综合www| 国产不卡av网站在线观看| 18禁裸乳无遮挡动漫免费视频| 青春草国产在线视频| 亚洲第一区二区三区不卡| 亚洲 欧美一区二区三区| 新久久久久国产一级毛片| 亚洲国产精品一区二区三区在线| 观看美女的网站| 日韩视频在线欧美| 看非洲黑人一级黄片| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 中国国产av一级| 精品视频人人做人人爽| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 日韩精品有码人妻一区| 亚洲少妇的诱惑av| av网站在线播放免费| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 久久久国产精品麻豆| 性色avwww在线观看| 寂寞人妻少妇视频99o| 午夜激情av网站| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 日韩伦理黄色片| 日日啪夜夜爽| 2018国产大陆天天弄谢| 午夜免费男女啪啪视频观看| 人人澡人人妻人| 国产一区二区激情短视频 | 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 中文字幕色久视频| 日韩欧美一区视频在线观看| 久久热在线av| 亚洲成色77777| 婷婷色综合www| 欧美精品一区二区大全| 久久精品久久久久久久性| 最黄视频免费看| av线在线观看网站| 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 免费观看性生交大片5| 波野结衣二区三区在线| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 乱人伦中国视频| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 性色av一级| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 岛国毛片在线播放| 9色porny在线观看| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看 | 性少妇av在线| 性色av一级| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 一级片免费观看大全| 一二三四在线观看免费中文在| 国产成人av激情在线播放| 久久久久精品性色| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 国产精品av久久久久免费| 精品卡一卡二卡四卡免费| www.av在线官网国产| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 激情五月婷婷亚洲| av视频免费观看在线观看| 国产精品免费大片| 精品亚洲成国产av| 久久久精品国产亚洲av高清涩受| 在线亚洲精品国产二区图片欧美| 大香蕉久久成人网| 最近2019中文字幕mv第一页| 久久精品国产亚洲av高清一级| videossex国产| 免费大片黄手机在线观看| 成人漫画全彩无遮挡| 80岁老熟妇乱子伦牲交| 国产97色在线日韩免费| 欧美 日韩 精品 国产| 中文天堂在线官网| 亚洲综合精品二区| 黄色配什么色好看| 在线观看国产h片| 日韩一区二区视频免费看| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站| 欧美xxⅹ黑人| 亚洲成人手机| 黄色一级大片看看| 久久久久久久久免费视频了| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 日韩视频在线欧美| 亚洲国产欧美在线一区| 久久久国产欧美日韩av| 国产一区二区在线观看av| 飞空精品影院首页| 青草久久国产| 丰满饥渴人妻一区二区三| 亚洲av中文av极速乱| 午夜激情av网站| 免费观看在线日韩| 黄色毛片三级朝国网站| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 美女主播在线视频| 晚上一个人看的免费电影| 国产 一区精品| 丝袜在线中文字幕| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 免费播放大片免费观看视频在线观看| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 日本91视频免费播放| 亚洲伊人色综图| 亚洲欧美成人综合另类久久久| 国产爽快片一区二区三区| 69精品国产乱码久久久| 飞空精品影院首页| 26uuu在线亚洲综合色| 亚洲国产精品国产精品| 视频区图区小说| 天天躁夜夜躁狠狠躁躁| 国产精品无大码| 女人被躁到高潮嗷嗷叫费观| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 最近最新中文字幕免费大全7| 日本91视频免费播放| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| 宅男免费午夜| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 久久ye,这里只有精品| 久久亚洲国产成人精品v| 在线观看国产h片| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| 欧美人与善性xxx| 精品第一国产精品| 久久亚洲国产成人精品v| 在线观看国产h片| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 99久国产av精品国产电影| 大话2 男鬼变身卡| 亚洲欧美中文字幕日韩二区| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 国产精品国产三级专区第一集| 超碰97精品在线观看| 日韩中字成人| 日韩制服丝袜自拍偷拍| 美女国产视频在线观看| 在线观看一区二区三区激情| 国产男女内射视频| 国产精品国产av在线观看| 久久久久久久久免费视频了| 中文字幕人妻丝袜一区二区 | 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 好男人视频免费观看在线| 国产有黄有色有爽视频| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 嫩草影院入口| 永久网站在线| 亚洲四区av| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频| 国产成人精品久久久久久| 精品少妇一区二区三区视频日本电影 | 久久97久久精品| 99精国产麻豆久久婷婷| 欧美日韩av久久| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 国产免费现黄频在线看| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品一区二区三区在线| 在线观看www视频免费| 观看av在线不卡| 涩涩av久久男人的天堂| 中文字幕色久视频| 国产又爽黄色视频| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久婷婷青草| av一本久久久久| 亚洲第一青青草原| 欧美日韩视频高清一区二区三区二| 高清视频免费观看一区二区| 国产精品女同一区二区软件| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| www.av在线官网国产|