• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect

    2015-11-18 10:11:37ShaoXianLiHongWeiZhaoandJiaGuangHan

    Shao-Xian Li, Hong-Wei Zhao, and Jia-Guang Han

    Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect

    Shao-Xian Li, Hong-Wei Zhao, and Jia-Guang Han

    —A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency (EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamaterial sensor, which consists of an EIT element unit with a cut-wire metallic resonator and two split-ring metallic resonators fabricated on a 490-μm thick silicon substrate, operates in a transmission geometry. The EIT peak was red-shifted and decreased with the increase of the water volume. A maximum redshift about 54 GHz of the EIT peak was detected between the 1,4-dioxane and water. The presented linear behavior and high sensitivity of the EIT peak depending on the water concentration pave a novel avenue for sensor applications.

    Index Terms—Chemical and biological sensors,metamaterials, mode coupling, terahertz.

    1. Introduction

    Metamaterials are artificially structured media with unit cells much smaller than the operating wavelengths and exhibit exotic properties that are difficult to achieve with natural materials[1]-[4]. With the rapid expansion of research into metamaterials, enormous interest has been attracted to their practical applications from microwave, infrared to optical frequency regions. In the terahertz (THz) regime,developing novel metamaterial-based practical devices is also of great interest. Terahertz filters[5],[6], amplitude modulator[7],[8], phase controller[9],[10], switch[11],[12],lens[13],[14], waveplates[15], and polarization rotators[16]have been proposed and demonstrated well. Electromagnetically induced transparency (EIT) is an important phenomenon in atomic physics and has many interesting properties, such as high dispersion in the narrow transparency window[17],[18]. In 2008, a plasmonic metamaterial analogue of EIT was theoretically suggested by using coupled optical resonators[19]. Since then, many different structures exhibiting similar behavior with EIT have been designed[20]-[26]. In fact, the metamaterial-based EIT effect is the coupling results of bright modes and dark modes, and those modes are sensitive to the surrounding dielectric condition[27]. Here we propose a terahertz metamaterial liquids sensor based on EIT effect. Unlike many solid chemical compounds that possess characteristic THz fingerprint spectra, liquids always show broad and smooth feature in THz range, which makes it difficult for identification and quantitative analysis. Our approach can convert the characterless dielectric information of liquid into the frequency shift and amplitude change of the transmission peak and dips, which is easy for probing and tracking the difference among liquids. The proposed method is easy-to-fabrication, high efficient, fast, direct,and non-destructive.

    2. Experiment

    The unit cell of EIT sensor consists of a pair of split-ring metallic resonators (SRRs) symmetrically placed on the left and right sides of a cut wire (CW) and its geometry parameters are shown in Fig. 1. The 200-nm-thick aluminum metamaterial samples were fabricated on a 490-μm-thick N-type silicon substrate by conventional optical lithography. Taking a widely used solvent 1,4-dioxane as one example, we could show that how the proposed sensor worked at terahertz frequencies.

    The 1,4-dioxane is a heterocyclic organic compound classified as an ether. It is used as a solvent in a wide range of industrial organic products (e.g., paints, varnishes, inks,and dyes) and is also present as a byproduct in many consumer products (e.g., cleaning products, cosmetics,shampoos, and laundry detergents). The 1,4-dioxane is a weak genotoxin[28]. It is miscible with water in all proportions, moderately volatile, and also resistant to hydrolysis and microbial degradation[29]. Those properties make 1,4-dioxane easily release into environments andcause harm to humans and other creatures. Hence, efficient detection of 1,4-dioxane in water is necessary and important.

    The 1,4-dioxane (99.5% and super dry) was purchased from J&K and used without further purified. The 1,4-dioxane was mixed with distilled water in different water volume fraction (0%, 20%, 40%, 60%, 80%, and 100%) thoroughly before measurement. A home-built photoconductive switch-based 8-F confocal terahertz time-domain spectroscopy (THz-TDS) system was employed to study the performance of the EIT sensor. A mode-locked Ti:sapphire laser (800 nm, 100 MHz, <35 fs,Mantis, Coherent, Inc.) was used as the light source to generate and detect the THz waves. The THz-TDS system was equipped with a GaAs photoconductive transmitter and a silicon-on-sapphire photoconductive receiver, covering the spectral range from 0.2 THz to 3.0 THz. Four parabolic mirrors were aligned in an 8-F confocal geometry, enabling excellent THz beam coupling between the transmitter and the receiver with a THz beam waist diameter less than 6 mm and a signal to noise ratio (SNR) about 10000:1. Samples were placed in the THz beam waist. The entire THz beam pathway was purged with dry air to keep a relative humidity below 2.0%. All experiments were performed at about 297.6 K.

    Fig. 1. Schematic diagram of the EIT metamaterial senor with geometrical parameters: Px=106 μm, Py=125 μm, L=110 μm, w=10 μm, R=19.5 μm, r=14.5 μm, g=5 μm, δx=27.5 μm, and δy=28 μm.

    3. Discussions

    3.1 Sensor Characterization

    Fig. 2 shows the measured and simulated THz transmission spectra of the EIT sensor, the sole pair of SRRs, and the CW. The simulation was carried on the CST microwave studio. The CW can be excited by the polarized electric field along the y axis (Ey). It shows a resonance at 0.52 THz, serving as a bright mode. The SRRs cannot directly be excited by Eydue to its structural symmetry with respect to the y axis. While interacting with Ex, the SRRs are resonant at the same frequency as the CW, thus acting as a dark mode under Eyexcitation. Upon the excitation by Ey, the coupling between the bright modes and dark modes results in a “W” shape spectrum with a transmission peak at 0.52 THz. The experiments and simulations agree well as shown in Fig. 2. The amplitude differences can be attributed to the deviation in fabrication of the sample and short scans of THz time signal to avoid including reflective echoes.

    Fig. 2. Experimental and simulated THz transmission spectra of EIT sensor and its two components: the CW and a pair of SRRs.

    3.2 Sensing Performance

    The sensor was inserted into a quartz cell filled with water/dioxane mixture. The water volume fractions were 100%, 80%, 60%, 40%, 20%, and 0%, respectively. The light path of the cell was 1 mm. An identical silicon inserted into the cell filled with the same solution was set as a reference. The experimentally measured transmission spectra are shown in Figs. 3 (a), (b), and (c). The red-shift of the EIT peak occurred when the volume fraction of water increased. At the same time, the amplitude of the transmission peak decreased. The two transmission dips of EIT became less absorptive, which weakened the EIT effect. The CST simulation results in Figs. 3 (a’), (b’), and (c’)exhibit a similar trend. It should be noted that the difference between the experiment and the simulation probably came from the deviation of fabrication of the sensor and the clearness of the sensor.

    The red-shift of the transmission peak was due to the increase of the refractive index around the metamaterial. As shown in Fig. 4, the refractive index and absorption coefficient of the mixture increase when the water volume fraction increases.

    The EIT phenomenon was induced by the coupling of bright modes and dark modes. To explain the weakening of EIT effect, the transmission spectra of bright modes (CW)and dark modes (a pair of SRRs) in different water/dioxane mixtures were measured, respectively, as shown in Fig. 5.

    Equally, the red-shift of the absorption was due to the increase of the ambient refractive index. The increased amplitude of the transmission dip showed a detuning of the original resonance and the diminution of Q value which resulted from the absorption of the water. The red-shift of the original resonance of the bright mode and dark mode led to the red-shift of the EIT transmission peak. The weakening of both modes resulted in the weakening of the EIT phenomenon.As shown in Fig. 6, the frequencies at the EIT peak and two transmission dips decrease almost linearly with the increase of water concentration. Accordingly, the water concentration of water/dioxane mixture can be deduced from the frequency shift of the EIT peak and the two transmission dips with the following derived formulas:

    Fig. 3. Experimental (a), (b), and (c) and simulated (a’), (b’), and(c’) results of the EIT sensor in different water/dioxane mixtures.

    Fig. 4. Experimentally measured refractive index and absorption coefficients of different water/dioxane mixtures.

    Fig. 5. Experimentally measured THz transmission spectra in different water/dioxane mixtures: (a) CW and (b) a pair of SRRs.

    Experiment: Simulation:

    EIT peak: f=0.524-0.054c EIT peak: f=0.498-0.046c

    Left foot: f=0.455-0.050c Left foot: f=0.426-0.041c

    Right foot: f=0.566-0.059c Right foot f=0.569-0.043c,

    where f is the frequency in unit THz and c is the volume fraction of water. A maximum red-shift about 54 GHz of the EIT peak was detected between 1,4-dioxane and water.

    Fig. 6. Experimentally measured (full symbols) and simulated(half full symbols) frequencies at the EIT peak and two transmission dips in different concentration of water/dioxane mixtures.

    4. Conclusions

    In summary, a THz metamaterial sensor based on the EIT peak shift was presented. A maximum red-shift about 54 GHz of the EIT peak was detected between 1,4-dioxane and water. The linear dependence of frequency shift of the EIT peak on the water concentration makes the EIT sensor be a useful tool to fast determine the water concentration of unknown water/dioxane mixtures.

    [1] K. Fan and W. J. Padilla, “Dynamic electromagnetic metamaterials,” Materials Today, vol. 18, no. 1, pp. 39-50,2015.

    [2] K. Yao and Y.-M. Liu, “Plasmonic metamaterials,”Nanotechnology Reviews, vol. 3, no. 2, pp. 177-210, 2014.

    [3] N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photonics, vol. 8, no. 12, pp. 889-898, 2014.

    [4] N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nature Materials, vol. 11, no. 11, pp. 917-924, 2012.

    [5] Z.-H. Zhu, X.-Q. Zhang, J.-Q. Gu, R. Singh, Z. Tian, J.-G. Han, et al., “A metamaterial-based terahertz low-pass filter with low insertion loss and sharp rejection,” IEEE Trans. Terahertz Science and Technology, vol. 3, no. 6, pp. 832-837, 2013.

    [6] Q. Li, X.-Q. Zhang, W. Cao, A. Lakhtakia, J. F. O'Hara, J.-G. Han, et al., “An approach for mechanically tunable, dynamic terahertz bandstop filters,” Applied Physics, vol. 107, no. 2,pp. 285-291, 2012.

    [7] Y.-M. Yang, R. Huang, L.-Q. Cong, Z.-H. Zhu, J.-Q. Gu, Z. Tian, et al., “Modulating the fundamental inductivecapacitive resonance in asymmetric double-split ring terahertz metamaterials,” Applied Physics Letters, vol. 98,no. 12, pp. 121114, 2011.

    [8] Q. Li, Z. Tian, X.-Q. Zhang, N.-N. Xu, R. Singh, J.-Q. Gu,et al., “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon, vol. 90, pp. 146-153, Aug. 2015.

    [9] L.-X. Liu, X.-Q. Zhang, M. Kenney, X.-Q. Su, N.-N. Xu,C.-M. Ouyang, et al., “Broadband metasurfaces with simultaneous control of phase and amplitude,” Advanced Materials, vol. 26, no. 29, pp. 5031-5036, 2014.

    [10] X.-Q. Zhang, Z. Tian, W.-S. Yue, J.-Q. Gu, S. Zhang, J.-G. Han, et al., “Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities,”Advanced Materials, vol. 25, no. 33, pp. 4567-4572, 2013.

    [11] J.-Q. Gu, R. Singh, X.-J. Liu, X.-Q. Zhang, Y.-F. Ma, S. Zhang, et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nature Communications, vol. 3, pp. 1151, Oct. 2012.

    [12] X.-Q. Su, C.-M. Ouyang, N.-N. Xu, S.-Y. Tan, J.-Q. Gu, Z. Tian, et al., “Broadband terahertz transparency in a switchable metasurface,” IEEE Photonics Journal, vol. 7, no. 1, pp. 5900108, 2015.

    [13] Q.-L. Yang, J.-Q. Gu, D.-Y. Wang, X.-Q. Zhang, Z. Tian,C.-M. Ouyang, et al., “Efficient flat metasurface lens for terahertz imaging,” Optics Express, vol. 22, no. 21, pp. 25931-25939, 2014.

    [14] Q. Wang, X.-Q. Zhang, Y.-H. Xu, Z. Tian, J.-Q. Gu, W.-S. Yue, et al., “A broadband metasurface-based terahertz flat-lens array,” Advanced Optical Materials, 2015, doi: 10.1002/adom.201400557

    [15] L.-Q. Cong, N.-N. Xu, J.-Q. Gu, R. Singh, J.-G. Han, and W.-L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser & Photonics Reviews, vol. 8, no. 4, pp. 626-632, 2014.

    [16] L.-Q. Cong, W. Cao, X.-Q. Zhang, Z. Tian, J.-Q. Gu, R. Singh, et al., “A perfect metamaterial polarization rotator,”Applied Physics Letters, vol. 103, no. 17, pp. 171107, 2013.

    [17] K. J. Boller, A. Imamo?lu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Physical Review Letters, vol. 66, no. 20, pp. 2593-2596, 1991.

    [18] S. E. Harris, “Electromagnetically induced transparency,”Physics Today, vol. 50, no. 7, pp. 36-42, 1997.

    [19] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang,“Plasmon-induced transparency in metamaterials,” Physical Review Letters, vol. 101, no. 4, pp. 047401, 2008.

    [20] Z.-Y. Li, Y.-F. Ma, R. Huang, R. J. Singh, J.-Q. Gu, Z. Tian,et al., “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Optics Express, vol. 19, no. 9, pp. 8912-8919, 2011.

    [21] X.-J. Liu, J.-Q. Gu, R. Singh, Y.-F. Ma, J. Zhu, Z. Tian, et al.,“Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Physical Review Letters, vol. 100, no. 13, pp. 131101, 2012.

    [22] Y.-R. He, H. Zhou, Y. Jin, and S.-L. He, “Plasmon induced transparency in a dielectric waveguide,” Applied Physics Letters, vol. 99, no. 4, pp. 043113, 2011.

    [23] Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu,et al., “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Applied Physics Letters, vol. 97, no. 11, pp. 114101, 2010.

    [24] T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang,“Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Physical Review B, vol. 80, no. 19, pp. 195415, 2009.

    [25] R. D. Kekatpure, E. S. Barnard, W.-S. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Physical Review Letters, vol. 104, no. 24, pp. 243902, 2010.

    [26] D.-J. Meng, S.-Y. Wang, X.-L. Sun, R.-Z. Gong, and C.-H. Chen, “Actively bias-controlled metamaterial to mimic and modulate electromagnetically induced transparency,”Applied Physics Letters, vol. 104, no. 26, pp. 261902, 2014.

    [27] Y.-M. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine,“All-dielectric metasurface analogue of electromagnetically induced transparency,” Nature Communications, vol. 5, pp. 5753, Dec. 2014.

    [28] J. A. Stickney, S. L. Sager, J. R. Clarkson, L. A. Smith, B. J. Locey, M. J. Bock, et al., “An updated evaluation of the carcinogenic potential of 1,4-dioxane,” Regulatory Toxicology and Pharmacology, vol. 38, no. 2, pp. 183-195,2003.

    [29] J. H. Suh and M. Mohseni, “A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide,” Water Research, vol. 38, no. 10, pp. 2596-2604, 2004.

    Shao-Xian Li was born in Zhejiang Province, China in 1990. He received the B.S. degree from Tianjin University, Tianjin in 2012 in electronic science and technology(optoelectronics) and the M.S. degree from Tianjin University in 2015, in optical engineering. He is currently pursuing the Ph.D. degree with the College of Precision Instrument and Opto-electronics Engineering, Tianjin University. His research interests include terahertz applications in biochemistry and terahertz metamaterial sensor.

    Hong-Wei Zhao received her M.S. and Ph.D. degrees in chemistry from Tongji University and Shanghai Institute of Applied Physics,Chinese Academy of Sciences (CAS) in 1998 and 2003, respectively. Since 2003 she has been with Shanghai Institute of Applied Physics, CAS as an associate professor. She was a visiting scholar at Rensselaer Polytechnic Institute Terahertz Center, USA during 2007 to 2008. Her current research interests include radiation biochemistry,terahertz technique and its applications.

    Jia-Guang Han received the B.S. degree in material physics from Beijing Normal University, Beijing in 2000 and the Ph.D. degree in applied physics from the Shanghai Institute of Applied Physics, CAS in 2006. respectively. He was a visiting researcher at the Japanese High Energy Accelerator Research Organization during 2004 to 2005. From 2006 to 2007, he was a postdoctoral researcher at the School of Electrical and Computer Engineering, Oklahoma State University, Stillwater. In 2007, he joined the Department of Physics, National University of Singapore, Singapore, where he was a Lee Kuan Yew Research Fellow. He is currently a full professor with the College of Precision Instruments and Optoelectronics Engineering, and a member of the Center for Terahertz Waves, Tianjin University. His current research interests include surface plasmon polaritons, metamaterials, and material studies in the terahertz regime.

    Manuscript received May 29, 2015; revised June 13, 2015. This work was supported by the National Basic Research Program of China under Grant No. 2014CB339800.

    S.-X. Li and J.-G. Han are with the Center for Terahertz wave, Key laboratory of Opto-electronic Information Science and Technology,Ministry of Education, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China(e-mail: lishaoxian31415926@aliyun.com and jiaghan@tju.edu.cn).

    H.-W. Zhao is with the Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China (Corresponding author e-mail: zhaohongwei@sinap.ac.cn).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.006

    国产成人av激情在线播放| 老汉色av国产亚洲站长工具| 悠悠久久av| 欧美黑人精品巨大| av视频在线观看入口| 国产极品粉嫩免费观看在线| 免费久久久久久久精品成人欧美视频| 免费在线观看日本一区| 黄色 视频免费看| 国产蜜桃级精品一区二区三区| 制服丝袜大香蕉在线| 波多野结衣一区麻豆| 在线播放国产精品三级| 手机成人av网站| 亚洲 国产 在线| 美女大奶头视频| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清 | 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 亚洲第一青青草原| 桃红色精品国产亚洲av| 久久人妻av系列| 久久久久国产精品人妻aⅴ院| 日本五十路高清| 黄色视频不卡| 精品欧美国产一区二区三| 法律面前人人平等表现在哪些方面| 搡老熟女国产l中国老女人| 丝袜在线中文字幕| 亚洲精品国产精品久久久不卡| 亚洲av熟女| aaaaa片日本免费| 日韩大尺度精品在线看网址 | 国产av又大| 日本在线视频免费播放| 国产精品乱码一区二三区的特点 | 亚洲av电影不卡..在线观看| 成人永久免费在线观看视频| 波多野结衣av一区二区av| 黄色视频不卡| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| 午夜影院日韩av| 国产精品二区激情视频| tocl精华| 成人欧美大片| 97碰自拍视频| 黄色视频,在线免费观看| 一区在线观看完整版| 欧美大码av| 麻豆成人av在线观看| av在线播放免费不卡| 18禁美女被吸乳视频| 午夜老司机福利片| 91精品国产国语对白视频| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 亚洲色图 男人天堂 中文字幕| 欧美大码av| 麻豆成人av在线观看| 久久精品国产亚洲av香蕉五月| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人免费av一区二区三区| 好看av亚洲va欧美ⅴa在| 久久久久亚洲av毛片大全| 国产精品精品国产色婷婷| 热99re8久久精品国产| 99精品在免费线老司机午夜| 999精品在线视频| 岛国视频午夜一区免费看| 国产精华一区二区三区| 日日爽夜夜爽网站| 乱人伦中国视频| 亚洲中文av在线| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看 | 久久久久久免费高清国产稀缺| 一进一出好大好爽视频| 一级,二级,三级黄色视频| 午夜久久久在线观看| 国产乱人伦免费视频| av欧美777| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 亚洲中文av在线| av福利片在线| 一区二区三区国产精品乱码| 99久久久亚洲精品蜜臀av| 日韩欧美三级三区| 操出白浆在线播放| 咕卡用的链子| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 一级黄色大片毛片| 91精品三级在线观看| 十八禁人妻一区二区| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 久久狼人影院| 成人手机av| 日日爽夜夜爽网站| 国产在线观看jvid| 丝袜人妻中文字幕| 制服人妻中文乱码| 夜夜看夜夜爽夜夜摸| 国产精品免费一区二区三区在线| 在线观看日韩欧美| 国产熟女xx| 亚洲少妇的诱惑av| 男女下面插进去视频免费观看| 久久草成人影院| www日本在线高清视频| 村上凉子中文字幕在线| 夜夜爽天天搞| 夜夜躁狠狠躁天天躁| 黄网站色视频无遮挡免费观看| 宅男免费午夜| 在线观看免费午夜福利视频| 成人永久免费在线观看视频| 国产免费av片在线观看野外av| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 波多野结衣高清无吗| 午夜福利免费观看在线| 精品久久蜜臀av无| 亚洲欧美激情在线| 久久久国产精品麻豆| 性少妇av在线| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清 | 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 国产精品美女特级片免费视频播放器 | 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站 | 精品欧美国产一区二区三| 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| 免费看美女性在线毛片视频| 性欧美人与动物交配| 女性被躁到高潮视频| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 成人欧美大片| 日韩 欧美 亚洲 中文字幕| 久久久久久久精品吃奶| 国产精品永久免费网站| 成人国产一区最新在线观看| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 午夜影院日韩av| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 午夜两性在线视频| 日韩视频一区二区在线观看| 亚洲精品国产一区二区精华液| 久久香蕉精品热| 天堂√8在线中文| 欧美日韩一级在线毛片| 超碰成人久久| 黄色女人牲交| 欧美日韩福利视频一区二区| 女性被躁到高潮视频| 午夜福利一区二区在线看| 午夜福利在线观看吧| xxx96com| 亚洲国产精品999在线| 亚洲精品久久国产高清桃花| 真人做人爱边吃奶动态| 国产免费av片在线观看野外av| 久久九九热精品免费| 成人精品一区二区免费| 一区福利在线观看| 女警被强在线播放| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 三级毛片av免费| 亚洲最大成人中文| 中文字幕人妻丝袜一区二区| 欧美黄色淫秽网站| 亚洲成人免费电影在线观看| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| 国产av精品麻豆| 国产激情久久老熟女| 亚洲国产高清在线一区二区三 | 亚洲国产精品成人综合色| xxx96com| 在线视频色国产色| 在线观看免费日韩欧美大片| 美国免费a级毛片| 国产一区在线观看成人免费| 波多野结衣一区麻豆| 无限看片的www在线观看| 国产av一区二区精品久久| 一区在线观看完整版| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 成年人黄色毛片网站| 一区二区三区国产精品乱码| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| 欧美日韩乱码在线| 精品国内亚洲2022精品成人| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 宅男免费午夜| 老司机午夜福利在线观看视频| 精品少妇一区二区三区视频日本电影| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 国产一区二区三区视频了| 黄色视频,在线免费观看| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 99香蕉大伊视频| 欧美乱色亚洲激情| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 国产高清视频在线播放一区| 国产精品av久久久久免费| 正在播放国产对白刺激| 国产精品久久久av美女十八| 免费在线观看亚洲国产| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 我的亚洲天堂| 欧美黑人精品巨大| 男人操女人黄网站| 在线观看66精品国产| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 亚洲中文av在线| 老司机午夜福利在线观看视频| 在线观看www视频免费| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看| 亚洲av成人一区二区三| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色 | 又黄又粗又硬又大视频| 久久精品人人爽人人爽视色| 我的亚洲天堂| 亚洲激情在线av| 首页视频小说图片口味搜索| 999久久久国产精品视频| 国产精品 国内视频| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕| 欧美色欧美亚洲另类二区 | 国产欧美日韩综合在线一区二区| 国产精品1区2区在线观看.| 亚洲av电影在线进入| 成人18禁在线播放| 97人妻精品一区二区三区麻豆 | 中国美女看黄片| 国产激情欧美一区二区| 88av欧美| 美女扒开内裤让男人捅视频| 久久人人精品亚洲av| 国产成人精品无人区| 中文字幕av电影在线播放| 日韩欧美一区二区三区在线观看| 亚洲成国产人片在线观看| 丝袜在线中文字幕| 黑丝袜美女国产一区| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 在线播放国产精品三级| 日韩精品青青久久久久久| 久久久久久久午夜电影| 国产片内射在线| av天堂在线播放| 在线观看午夜福利视频| 搞女人的毛片| 亚洲精品国产精品久久久不卡| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 极品人妻少妇av视频| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| 久久久久亚洲av毛片大全| 午夜精品在线福利| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 久久午夜综合久久蜜桃| 日韩欧美一区视频在线观看| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 久久欧美精品欧美久久欧美| 国产国语露脸激情在线看| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 亚洲第一青青草原| 欧美国产日韩亚洲一区| av在线播放免费不卡| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| 美女高潮到喷水免费观看| 级片在线观看| 日本 av在线| 两人在一起打扑克的视频| 悠悠久久av| 99riav亚洲国产免费| 精品福利观看| 亚洲av熟女| 无限看片的www在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲男人的天堂狠狠| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 国产精品1区2区在线观看.| 久久人妻熟女aⅴ| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 啦啦啦观看免费观看视频高清 | 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 精品国产乱子伦一区二区三区| 国产精品久久久久久精品电影 | 国产精品国产高清国产av| 亚洲av电影在线进入| 脱女人内裤的视频| 亚洲精品粉嫩美女一区| 久久国产亚洲av麻豆专区| 99精品欧美一区二区三区四区| 精品久久久久久成人av| 免费少妇av软件| e午夜精品久久久久久久| 成人av一区二区三区在线看| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 国产免费男女视频| 久久精品国产亚洲av高清一级| 欧美日本视频| 久久久久久国产a免费观看| 久久热在线av| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 亚洲第一电影网av| 精品国产美女av久久久久小说| 国产激情久久老熟女| 国产不卡一卡二| 中出人妻视频一区二区| av在线播放免费不卡| 99久久综合精品五月天人人| 波多野结衣av一区二区av| 亚洲一区高清亚洲精品| 无遮挡黄片免费观看| 最新在线观看一区二区三区| av中文乱码字幕在线| 欧美日韩福利视频一区二区| 天天躁夜夜躁狠狠躁躁| 日本一区二区免费在线视频| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 18禁观看日本| 非洲黑人性xxxx精品又粗又长| 国产高清视频在线播放一区| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 999久久久国产精品视频| 黄片大片在线免费观看| 老司机靠b影院| 欧美成狂野欧美在线观看| 午夜两性在线视频| 成人手机av| 亚洲电影在线观看av| 这个男人来自地球电影免费观看| 亚洲欧美激情在线| 18禁裸乳无遮挡免费网站照片 | 女人被躁到高潮嗷嗷叫费观| 国产av又大| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 国产一级毛片七仙女欲春2 | 精品国产乱子伦一区二区三区| 国产一卡二卡三卡精品| 久久午夜综合久久蜜桃| 久久精品影院6| 一级毛片女人18水好多| 国产精品九九99| 一级毛片精品| 黄色视频,在线免费观看| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 精品国产国语对白av| 亚洲无线在线观看| 国产亚洲精品av在线| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 免费女性裸体啪啪无遮挡网站| 好看av亚洲va欧美ⅴa在| 国产精品精品国产色婷婷| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 18禁美女被吸乳视频| 久久精品亚洲熟妇少妇任你| 久久久久久久精品吃奶| 在线观看66精品国产| 男人的好看免费观看在线视频 | 美女国产高潮福利片在线看| 麻豆av在线久日| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国产精品人妻aⅴ院| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 午夜福利免费观看在线| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 亚洲五月色婷婷综合| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 99国产精品99久久久久| 啦啦啦 在线观看视频| 亚洲av成人一区二区三| 久久人妻熟女aⅴ| 欧美乱色亚洲激情| 69av精品久久久久久| 国产精品99久久99久久久不卡| 久久精品91无色码中文字幕| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 不卡一级毛片| 久久久精品国产亚洲av高清涩受| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 国产一区在线观看成人免费| 国产av一区在线观看免费| 亚洲第一青青草原| 99精品在免费线老司机午夜| 黑丝袜美女国产一区| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 日本黄色视频三级网站网址| 操出白浆在线播放| 久久人人精品亚洲av| 亚洲第一欧美日韩一区二区三区| 一区二区日韩欧美中文字幕| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 超碰成人久久| 欧美成人一区二区免费高清观看 | 好男人在线观看高清免费视频 | 午夜福利免费观看在线| www日本在线高清视频| 久久久久国内视频| 一区二区三区高清视频在线| 免费不卡黄色视频| 日韩 欧美 亚洲 中文字幕| 在线播放国产精品三级| 亚洲精品国产精品久久久不卡| 精品国产国语对白av| а√天堂www在线а√下载| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 午夜免费观看网址| 一级毛片精品| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 人妻丰满熟妇av一区二区三区| 久久久久久大精品| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 国产一级毛片七仙女欲春2 | 免费一级毛片在线播放高清视频 | 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 久久国产乱子伦精品免费另类| 美女扒开内裤让男人捅视频| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 亚洲av电影在线进入| 757午夜福利合集在线观看| 中亚洲国语对白在线视频| 999久久久国产精品视频| 亚洲欧美激情综合另类| 婷婷六月久久综合丁香| 一区二区三区国产精品乱码| a级毛片在线看网站| 国产欧美日韩一区二区三区在线| 美女扒开内裤让男人捅视频| 亚洲精品国产精品久久久不卡| 日韩精品中文字幕看吧| 亚洲人成电影免费在线| 在线观看免费视频网站a站| 亚洲色图综合在线观看| 国产高清有码在线观看视频 | 夜夜躁狠狠躁天天躁| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 免费不卡黄色视频| 日韩欧美三级三区| 免费在线观看视频国产中文字幕亚洲| 欧美成狂野欧美在线观看| 国产在线观看jvid| 精品国内亚洲2022精品成人| 99国产精品一区二区蜜桃av| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面| 欧美激情极品国产一区二区三区| 9热在线视频观看99| 18禁黄网站禁片午夜丰满| 男女做爰动态图高潮gif福利片 | 亚洲精品美女久久av网站| 岛国在线观看网站| 一进一出抽搐动态| 国产主播在线观看一区二区| 一级毛片高清免费大全| 最近最新免费中文字幕在线| 日本五十路高清| 久久人妻av系列| 国产伦人伦偷精品视频| 悠悠久久av| 亚洲男人的天堂狠狠| 亚洲av日韩精品久久久久久密| 九色亚洲精品在线播放| 热99re8久久精品国产| 一进一出好大好爽视频| 成人永久免费在线观看视频| 制服诱惑二区| avwww免费| 色综合婷婷激情| 国产成人影院久久av| 国产男靠女视频免费网站| 9色porny在线观看| 两个人视频免费观看高清| 纯流量卡能插随身wifi吗| 成人18禁在线播放| 叶爱在线成人免费视频播放| 色哟哟哟哟哟哟| 色综合欧美亚洲国产小说| 久久香蕉国产精品| 777久久人妻少妇嫩草av网站| 精品无人区乱码1区二区| 亚洲视频免费观看视频| 美国免费a级毛片| 欧美色视频一区免费| 日本 av在线| 9191精品国产免费久久| 成年人黄色毛片网站| 国产不卡一卡二| 色综合婷婷激情| 久久性视频一级片| 精品国产一区二区三区四区第35| 看黄色毛片网站| 久久久久九九精品影院| 波多野结衣av一区二区av| 亚洲色图综合在线观看| 视频在线观看一区二区三区| 免费看a级黄色片| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区三区在线| 久久久久精品国产欧美久久久| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久免费高清国产稀缺| 亚洲avbb在线观看| 亚洲av电影在线进入| 国产99白浆流出| 精品久久蜜臀av无| 视频区欧美日本亚洲| 亚洲国产高清在线一区二区三 | 法律面前人人平等表现在哪些方面| 国产精品久久久久久精品电影 | 99riav亚洲国产免费| 亚洲第一av免费看| 国产成人欧美在线观看| 国产三级黄色录像| 黑人巨大精品欧美一区二区mp4| 在线观看午夜福利视频| 日本欧美视频一区| 国产区一区二久久|