• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Array Coding Scheme for Large-Scale Storage Systems

    2015-11-18 10:11:35DanTang

    Dan Tang

    Efficient Array Coding Scheme for Large-Scale Storage Systems

    Dan Tang

    —A family of array codes with a maximum distance separable (MDS) property, named L codes, is proposed. The greatest strength of L codes is that the number of rows (columns) in a disk array does not be restricted by the prime number, and more disks can be dynamically appended in a running storage system. L codes can tolerate at least two disk erasures and some sector loss simultaneously, and can tolerate multiple disk erasures (greater than or equal to three) under a certain condition. Because only XOR operations are needed in the process of encoding and decoding, L codes have very high computing efficiency which is roughly equivalent to X codes. Analysis shows that L codes are particularly suitable for large-scale storage systems.

    Index Terms—Array codes, high computing efficiency, high fault-tolerance, L codes.

    1. Introduction

    With the development of information technology, data is increasingly becoming an important resource in our daily lives. According to statistics, the total amount of data created, stored, and replicated in 2010 in the world has reached 1.2 ZB, and in 2011 the amount is 1.8 ZB. It will be expected to reach nearly 8 ZB in 2015, while data amount generated by the whole world in 2020 will reach 44 times that of today[1]. The foremost problem brought by the explosive growth of data is the increasing costs of storage equipment and management. The scale of storage nodes in a modern data center is ranging from tens of thousands to hundreds of thousands at present, and storage nodes may be more in a distributed storage system. Disk and storage node failures have become a normal behavior in the huge storage systems although the performance of the hardware has been very stable nowadays. At the same time, the network connection device and other components of the storage node often become invalid. However, data become increasingly important in the information society, the costs of data loss for business, governments, and individuals are staggering even unbearable. In order to satisfy the expanding demand for reliability, availability, and other pertinent characteristics of data storage, some fault-tolerant techniques are necessary to cope with the current situation.

    There are two main kinds of highly fault-tolerant technologies: N-way mirroring technologies and erasure-coding technologies. In brief, the N-way mirroring technology is replication, namely create multiple backups of important data and store in separate nodes. The replication scheme is concise and clear, easy to realize, and the high efficiency of parallel data reading is another advantage. N-way mirroring technologies can provide sufficient reliability, but have very low storage efficiency(about 1/N), which will cause significant waste of resources including the storage space and data transmission bandwidth. In contrast, erasure-coding technologies can provide both high fault tolerance and high storage efficiency. Thus, the erasure-coding technology is gained more and more attentions. Under this background, many erasure codes have been proposed in recent years. Aiming at fault tolerance for storage systems, we can divide all erasure codes into two categories: the reed-solomon (RS)erasure code and array code. The RS erasure code is the one of the most widely used in various areas because of its powerful error correcting capability, sophisticated mathematical theories, and some perfect properties. According to information theory, the RS codes meet the Shannon theorem[2], with the maximum distance separable(MDS) property, and it is perfect in the code rate and fault tolerance ability. However, for RS codes, the encoding and decoding procedures are performed as operations over a finite field, so that the systems based on RS codes will become very slow (even unacceptable) with the increase of operational data. Thus the RS code is not suitable for fault tolerance on large scale storage systems. Compared with RS codes, array codes just need XOR (exclusive or)operations, with high operational efficiency, which are more propitious to a scene with large scale data computing. The good news is that so many array codes for storage systems are proposed successively, such as EVENODD code[3], X code[4], STAR code[5], Waver code[6], sector-disk(SD) code[7], grid code[8], and so on. However, there arealso quite a few problems in the practical process. Multiple fault-tolerant (greater than or equal to four faults) array codes do not have the MDS property, and its high fault tolerance is with strict conditions. Array codes with the MDS property (just tolerant there and fewer faults) can have high storage efficiency, but the number of rows (or columns) of the array usually has a prime number restriction, namely the number of rows (or columns) must have some linear relationship with a prime number. So it would be confronted with great troubles in practical applications. For a long time, array codes for storage systems are used to correct erasure errors of entire disks,even if there is only one bit error in a disk, on which all data are considered incorrectness. In other words, for all of array codes early, the unit of failure is the disk. For example, an EVENODD coding system dedicates two parity disks to tolerate the simultaneous failures of any two disks in the system[3]. Larger systems dedicate more disks for coding to tolerate larger numbers of failures[8]. Recent research, however, studying the nature of failures in storage systems, has demonstrated that failures of entire disks are relatively rare. The much more common failure type is the latent sector error or undetected disk error where a sector on a disk becomes corrupted[7].

    In this article, we present a new family of erasure codes,named L codes. L codes do not be restricted by the prime number, that is to say, the number of rows (and columns)can be any positive integer. The new array code has the MDS property, so it is perfect in storage efficiency. And the processes of encoding and decoding just need XOR operations, thus it has high computational efficiency. Furthermore, L codes can tolerate at least 2 disk erasures and some sector loss simultaneously, which has very good practicability.

    The rest of this paper is arranged as follows. Section 2 contains a few remarks on some necessary notions and basic concepts related to our work. Section 3 describes the coding procedure and critical proprieties of L codes in detail. Section 4 gives an analysis of performance and complexity briefly. Section 5 provides a summary of the entire paper.

    2. Basic Concepts

    Array codes offer the advantages of block structure and easy encoding and decoding. This contribution is concerned with codes formed by generalizing one or more component codes into arrays codes in two or more dimensions. Array codes were first introduced by Elias[9]and have been proposed for many bursts and random error-control applications. Array codes are most often binary, but in general, they can have symbols from the field of q elements,GF(q), where q is just an integer power of a prime number. In this paper, we only consider binary array codes (namely q=2) unless otherwise stated. Array codes are mainly used to correct burst errors in a communication system for a long time, which have high efficiency of coding and decoding,especially are suitable for scenarios with large-scale data on operations. Because of these characteristics of the array code, it has been introduced to the storage technology for building a fault-tolerant mechanism on storage systems(including disk arrays, distributed storage systems, etc.). In 1993, the first nontrivial array code for storage systems was the EVENODD code introduced in [3], which is a kind of 2 fault tolerance code. After that, a variety of array codes for storage systems have been proposed successively, while some common concepts are used by almost all array codes,which are still used throughout this paper and are listed as follows[8].

    Data (information): a chunk of bytes or blocks that hold original unmodified user data.

    Parity (redundancy): a chunk of bytes or blocks that hold redundant information generated from user data by a code.

    Element (symbol): a fundamental unit of data or parities that can be a bit, a byte, a sector, or a larger disk block. In an array code system, an element is also considered as a basic unit on coding calculations.

    Stripe: a maximal set of data and parity elements that are dependently related by a code and the stripe size is defined as the number of disks that hold a stripe. A storage system can be viewed as a collection of many stripes, but stripes are independent from each other.

    Strip: a maximal set of elements in a stripe that are stored on the same disk; the strip size is defined as the number of elements contained in a strip. A strip can contain only the data or parity, and also can contain data and parity simultaneously.

    Relationship between element, strip, and stripe is shown in Fig. 1 and Fig. 2.

    Fig. 1. Element, strip, and stripe in a horizontal code.

    Fig. 2. Element, strip, and stripe in a vertical code.

    Horizontal codes: the family of erasure codes in which data and parity elements within a stripe are stored in separate strips. In a horizontal code, the data elements and parity elements of a stripe are stored in different strips,namely, each strip stores only data elements or parity elements. The EVENODD code and the Star code are representative horizontal codes[3],[5]. Fig. 1 shows a representation of our notions of element, strip, and stripe in a typical horizontal code.

    Vertical codes: the family of erasure codes in which each strip within a stripe contains both data and parity elements. For example, the X code is a case of the vertical code[4]. Fig. 2 shows the element, strip, and stripe in a typical vertical code.

    Fault tolerance: the maximum number of erased strips that an erasure code promises to be able to reconstruct.

    Storage efficiency: the ratio of user data to the total of user data plus redundancy data. Let the label Ndbe the number of user data elements, and the label Nrbe the number of redundancy, storage efficiency can be expressed as the formula (1) as follows:

    Maximum distance separable codes (MDS codes): the family of erasure codes that attain the Singleton bound and thus provide optimal storage efficiency.

    Encoding: the generating process from data to parity elements.

    Decoding (reconstruction of loss data): the process of recovering lost data (entire disks loss, or some sectors loss).

    Updating: the process of recalculating parity elements when the user data changes.

    Definitions and notations above would be used frequently in this paper, and they are useful for understanding other array codes. For ease of description, in this paper, each element (sector) is considered only storing a binary bit, and the coding problem is restricted to one stripe. So in disk arrays using array codes to correct erasure faults, typical data layouts of a horizontal code and a vertical code are shown as Fig. 3 and Fig. 4.

    As shown in Fig. 3, and Fig. 4, all elements in a stripe form an array, and giving every column in this array an integer number by a natural sequence, then an assisted definition can be given.

    Fig. 3. Data layout of a horizontal code.

    Fig. 4. Data layout of a vertical code.

    Geometrical distance: In an m×n array, supposing the column numbers of any two columns are i and j, the geometrical distance from column i to column j can be defined as follows:, where. Generally, the inequalityholds from the definition of geometrical distance.

    However, the geometrical distance between two columns with an erasure error needs a special note that only two incremental adjacent error columns have the geometrical distance value. For example, in an array with n columns, assuming that column i, column j, and column k are erasure-error columns, where 1 i j k n≤ < < ≤ . Then the geometrical distance from column i to column j exists,, but the geometrical distance from column j to column i does not exist, we denote that.

    3. New Family of Array Codes

    Suppose that there are n+1 disks, each strip has m elements, where m and n are positive integers, and an inequalityholds. Different from most array codes, the L code does not have a typical data layout: in a stripe, all strips contain both data and parity elements but a dedicated strip just storing parity elements that exist. In brief,all elements in the last row and the first column are parity elements, while other positions of the disk array are user data. The basic data layout of L codes is shown as Fig. 5. This kind of code cannot be classified as a typical horizontal or vertical array code from the point of the data layout, but this hybrid data layout structure also appeared in various array codes, such as Grid codes[8]and SD codes[7].

    Fig. 5. Data layout of the new code.

    Let,ijC be the element at the ith row and jth column(1 1i n≤ ≤ + ,1 j m≤ ≤ ), and using the symbol ‘⊕’ to represent the XOR operation, then the parity elements are constructed according to the following encoding rules:

    Geometrically speaking, the bottom parity row is XOR summed along the diagonal of slopes 1, and the left parity column is XOR summed along the horizontal direction. The detailed coding process is shown in Fig. 6. The XOR sum of all elements linked by a line is zero, and we call these lines coding chains.

    Fig. 6. Encoding process.

    And next, other important properties of L codes will be listed and proved.

    Property 1. L codes can tolerate any two disk erasures.

    Proof. First, assume that the size of the disk array is m n× , and there are just two erasure-error disks labelled as number i, j, where i<j. Thus the bidirectional geometrical distances between i and j exist. Supposing, the inequalityexists according to the definition ofcodes, then, andholds, whereis the ceil function andis the floor function. Hence the first element of the jth column can be recovered,then the first line of the disk array has only one unknown element, thus the first line can be recovered obviously. In the same way, all unknown elements of the two erasure-error disks can be reconstructed. Obviously, L codes have the MDS property, and it is optimum in storage efficiency.

    Property 2. There are t ( 3t≥ ) erasure errors in an m n× disk array coded by L codes, if any t-1 error columns meet the following condition:2, ..., t), all t erasure errors can be recovered.

    Proof. The proof process of Property 1 can be seen as a decoding method of L codes when there are just two disk erasures. Thus if there are just one unknown element (a sector loss) in a coding chain, which can be recovered easily because the XOR sum of all elements in a coding chain must be zero. From the decoding procedure, there are many coding chains in which all elements are known. Hence L codes can tolerate at least 2 disk erasures and some sector losses simultaneously. Then if all elements in a column(equivalent to disk) are in a coding chain in which no other elements are unknown, L codes can tolerate more than two disk erasures. Depending on the conditions of this theorem,all elements in t-2 error columns can be recovered. Then other elements in the last remaining two error columns can be recovered by Property 1.

    4. Analysis and Discussions

    From the construction of L codes, it is easy to see that the parity row and the parity column are obtained independently. More specifically, each data element affects exactly two parity elements in the parity row and column respectively. All parity elements only depend on data elements, but not on each other. So, updating one data element results in updating only two parity elements. Thus the L code has the optimal encoding (or updating) property,in other words, it achieves the lower bound of the update complexity 2 for any codes of distance 3.

    L codes do not be restricted by the prime number, in a disk array in the size of m× n, m and n can be any positive integer as long as. With the increase of m (strip size) and a constant nthe storage efficiency will improve continuously. Fig. 7 shows the relationship between them.

    Fig. 7. Relationship between strip size and storage efficiency.

    Similarly, the storage efficiency will still improve with the increase of n and a constant m (such as 8), and Fig. 8 shows the relationship between them.

    It can be seen from the analysis above that L codes are suitable for storage systems with large scales. To the operation efficiency, the performance of L codes and X codes is roughly equivalent, this paper will do no more analysis. And new disks can be dynamic appended in a running storage system on L codes, and just 2m parity elements on m+1 disks are needed to be recalculated.

    Fig. 8. Relationship between strip size and storage efficiency.

    5. Conclusions

    A family of array codes is proposed in this paper. Different from most array codes, the proposed code does not be restricted by the prime number, namely the strip size m and stripe size n can be any positive integer as long as. The proposed code can tolerate at least two disk erasures and some sector loss simultaneously, and can tolerate multiple disk (more than 2) erasures under a certain condition. It has the MDS property, and is very suitable for large scale storage systems. The processes of encoding and decoding just need XOR operations, thus it has high computational efficiency. All descriptions are over the binary field, but the proposed code is easy to be extended to other finite fields, so it will have a good perspective.

    Acknowledgment

    The author would like to express his deepest gratitude to Prof. Xiao-Jing Wang, for his constant encouragement and guidance.

    [1] J. Gantz and D. Reinsel, The Digital Universe Decade—Are You Ready, Int. Data Corporation, Framingham, 2010.

    [2] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1997.

    [3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures,” IEEE Trans. on Computer, vol. 44, pp. 192-202, Feb. 1995.

    [4] L. Xu and J. Brunk, “X-Code: MDS array codes with optimal encoding,” IEEE Trans. on Information Theory, vol. 45, no. 1, pp. 272-276, 1999.

    [5] C. Huang and L.-H. Xu. (2005). Star: an efficient coding scheme for correcting triple storage node failures. [Online]. Available: http://research.microsoft.com/en-us/um/people/ chengh/papers/huang05star.pdf

    [6] J. Lee Hafner, “Weaver codes: Highly fault tolerant erasure codes for storage systems,” in Proc. of the FAST’05 Conf. on File and Storage Technologies, San Francisco, 2005, pp. 211-224

    [7] J. S. Plank and M. Blaum, “Sector-disk (SD) erasure codes for mixed failure modes in raid systems,” ACM Trans. on Storage, vol. 10, no. 1, pp. 4: 1-17, 2014.

    [8] M. Li, J. Su, and W. Zheng, “Grid codes: strip-based erasure codes with high fault tolerance for storage systems,” ACM Trans. on Storage, vol. 5, no. 4, pp. 15: 1-22, 2009.

    [9] P. Elias, “Error free coding,” Trans. of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 29-37,1954.

    Dan Tang received his Ph.D. degree from University of Chinese Academy of Sciences in 2000. Currently, he is an associate professor with Chengdu University of Information Technology. His research interests include coding theory and secret sharing scheme.

    Manuscript received September 23, 2014; revised November 30, 2014. This work was supported by the National Natural Science Foundation of China under Grant No. 61202250.

    D. Tang is with the Software Engineering College, Chengdu University of Information Technology, Chengdu 610225, China (Corresponding author e-mail: tangdan@foxmail.com).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.002

    免费在线观看影片大全网站| 一本大道久久a久久精品| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 少妇被粗大的猛进出69影院| 香蕉丝袜av| 热99re8久久精品国产| 91老司机精品| 欧美 日韩 精品 国产| 1024香蕉在线观看| 18在线观看网站| 久久久久国产一级毛片高清牌| 天天躁日日躁夜夜躁夜夜| 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 免费看十八禁软件| 精品第一国产精品| 建设人人有责人人尽责人人享有的| 日韩精品免费视频一区二区三区| 高清黄色对白视频在线免费看| 夜夜夜夜夜久久久久| 一级毛片精品| www.自偷自拍.com| 国产一区二区三区在线臀色熟女 | 精品国产一区二区三区久久久樱花| 超色免费av| 国产精品欧美亚洲77777| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁人妻一区二区| 国产激情久久老熟女| 一本大道久久a久久精品| 人人妻,人人澡人人爽秒播| 捣出白浆h1v1| 99热国产这里只有精品6| 最新美女视频免费是黄的| 我要看黄色一级片免费的| 美女视频免费永久观看网站| 91成年电影在线观看| 精品熟女少妇八av免费久了| av国产精品久久久久影院| 精品国产亚洲在线| 久久久水蜜桃国产精品网| 如日韩欧美国产精品一区二区三区| 久久国产精品人妻蜜桃| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 亚洲成人手机| 日韩成人在线观看一区二区三区| cao死你这个sao货| av天堂久久9| 在线观看66精品国产| 他把我摸到了高潮在线观看 | 每晚都被弄得嗷嗷叫到高潮| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 夫妻午夜视频| 国产精品久久久久久精品古装| 久久中文看片网| 亚洲伊人久久精品综合| 色综合婷婷激情| 自线自在国产av| 成人免费观看视频高清| 首页视频小说图片口味搜索| 一级a爱视频在线免费观看| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91| 精品欧美一区二区三区在线| 在线十欧美十亚洲十日本专区| 日本欧美视频一区| 久久久久国内视频| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 国产一区二区 视频在线| 黄色a级毛片大全视频| av视频免费观看在线观看| 99re6热这里在线精品视频| 男女之事视频高清在线观看| 麻豆国产av国片精品| 午夜成年电影在线免费观看| 在线观看舔阴道视频| 欧美日韩av久久| 99久久人妻综合| 久久久久久免费高清国产稀缺| 中文字幕色久视频| 婷婷丁香在线五月| 成人影院久久| 黄色毛片三级朝国网站| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 亚洲国产毛片av蜜桃av| h视频一区二区三区| 深夜精品福利| 午夜福利免费观看在线| 大型av网站在线播放| 久久精品亚洲av国产电影网| 亚洲人成伊人成综合网2020| e午夜精品久久久久久久| 国产精品久久电影中文字幕 | 99热国产这里只有精品6| av一本久久久久| 99精品在免费线老司机午夜| 国产在线一区二区三区精| 天堂中文最新版在线下载| 国产精品免费大片| 每晚都被弄得嗷嗷叫到高潮| 满18在线观看网站| 天堂8中文在线网| 午夜视频精品福利| 51午夜福利影视在线观看| 多毛熟女@视频| 亚洲欧美激情在线| 日韩视频一区二区在线观看| 黑人猛操日本美女一级片| 中文亚洲av片在线观看爽 | 免费观看a级毛片全部| 久久99热这里只频精品6学生| 中文字幕制服av| 久久精品人人爽人人爽视色| 午夜久久久在线观看| 欧美精品亚洲一区二区| 91精品三级在线观看| 国产国语露脸激情在线看| 香蕉久久夜色| 久久中文看片网| 日本一区二区免费在线视频| 欧美日韩精品网址| 国产精品九九99| 99热网站在线观看| 在线观看免费视频日本深夜| 亚洲九九香蕉| 色视频在线一区二区三区| 亚洲全国av大片| 叶爱在线成人免费视频播放| 久久热在线av| 亚洲精品在线观看二区| 亚洲av国产av综合av卡| 美国免费a级毛片| 精品视频人人做人人爽| 三级毛片av免费| 又黄又粗又硬又大视频| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久小说| 午夜91福利影院| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到| 丝袜美足系列| 国产淫语在线视频| 女警被强在线播放| 国产精品1区2区在线观看. | 久久免费观看电影| 亚洲中文日韩欧美视频| 他把我摸到了高潮在线观看 | 亚洲国产看品久久| 中文字幕人妻熟女乱码| 岛国在线观看网站| 99在线人妻在线中文字幕 | 国产老妇伦熟女老妇高清| 久久久欧美国产精品| 久久久国产成人免费| 91九色精品人成在线观看| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 黄色视频不卡| √禁漫天堂资源中文www| 不卡一级毛片| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯 | 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 久久人妻av系列| 日韩制服丝袜自拍偷拍| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产91精品成人一区二区三区 | 国产又色又爽无遮挡免费看| 操出白浆在线播放| 一级a爱视频在线免费观看| 国产亚洲欧美在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲高清精品| 狠狠狠狠99中文字幕| 国产成人av激情在线播放| 亚洲伊人色综图| 亚洲国产精品一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 新久久久久国产一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 黄色a级毛片大全视频| 国产一区有黄有色的免费视频| 十八禁人妻一区二区| 黑人操中国人逼视频| 久热这里只有精品99| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 大型av网站在线播放| 久久热在线av| 国产淫语在线视频| 女人精品久久久久毛片| 成人特级黄色片久久久久久久 | 一级毛片女人18水好多| 在线永久观看黄色视频| 中文字幕色久视频| 国产精品影院久久| 欧美成狂野欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 建设人人有责人人尽责人人享有的| 国产精品自产拍在线观看55亚洲 | 国产精品亚洲一级av第二区| 一夜夜www| 黄片播放在线免费| 国产精品久久久人人做人人爽| 18禁黄网站禁片午夜丰满| 一边摸一边抽搐一进一出视频| 国产一区二区激情短视频| 久久久国产一区二区| 精品国产亚洲在线| 亚洲精品自拍成人| 免费日韩欧美在线观看| 国产一区二区三区在线臀色熟女 | 成人三级做爰电影| videos熟女内射| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 精品一区二区三区av网在线观看 | 99热网站在线观看| 久久久久久久国产电影| 一边摸一边抽搐一进一小说 | 亚洲少妇的诱惑av| 女警被强在线播放| 日韩中文字幕欧美一区二区| 人成视频在线观看免费观看| 99国产精品一区二区三区| 国产欧美日韩精品亚洲av| 中文字幕色久视频| 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到| 成年版毛片免费区| 少妇裸体淫交视频免费看高清 | 在线观看免费午夜福利视频| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲综合一区二区三区_| 久久影院123| av线在线观看网站| 国产欧美日韩一区二区精品| 日本黄色视频三级网站网址 | 精品欧美一区二区三区在线| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 国产三级黄色录像| 欧美大码av| 国产成人系列免费观看| 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 久热爱精品视频在线9| 国产一区二区三区在线臀色熟女 | 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 亚洲欧美日韩高清在线视频 | 精品少妇久久久久久888优播| 午夜福利欧美成人| 一本色道久久久久久精品综合| 老司机靠b影院| 国产精品 国内视频| 夜夜骑夜夜射夜夜干| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 亚洲美女黄片视频| 亚洲国产av影院在线观看| 国产亚洲一区二区精品| 日韩大码丰满熟妇| av免费在线观看网站| 51午夜福利影视在线观看| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 国产高清videossex| 国产xxxxx性猛交| 日本wwww免费看| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 天天躁日日躁夜夜躁夜夜| 成年人免费黄色播放视频| 91大片在线观看| 国产xxxxx性猛交| 亚洲成a人片在线一区二区| 午夜精品国产一区二区电影| 99国产精品一区二区蜜桃av | 91成人精品电影| 日韩欧美免费精品| 一级片'在线观看视频| 黄色成人免费大全| 久久毛片免费看一区二区三区| 视频区图区小说| 国产精品99久久99久久久不卡| 亚洲精品一二三| 中文字幕人妻熟女乱码| 9热在线视频观看99| 欧美黄色片欧美黄色片| bbb黄色大片| 国产高清国产精品国产三级| 亚洲精品国产区一区二| 男女免费视频国产| 成人18禁在线播放| 变态另类成人亚洲欧美熟女 | 午夜福利,免费看| 久久久久国内视频| 黄片播放在线免费| 成年版毛片免费区| 国产精品国产av在线观看| 亚洲五月婷婷丁香| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 亚洲精华国产精华精| 午夜免费鲁丝| 国产在线精品亚洲第一网站| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 国产精品电影一区二区三区 | 丝瓜视频免费看黄片| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 老司机靠b影院| 制服诱惑二区| 不卡一级毛片| 最黄视频免费看| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 日本黄色视频三级网站网址 | 国产精品一区二区免费欧美| 亚洲成人国产一区在线观看| 久久影院123| 国产欧美日韩一区二区三| 久久久精品94久久精品| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 90打野战视频偷拍视频| 99九九在线精品视频| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 欧美激情高清一区二区三区| 后天国语完整版免费观看| 亚洲三区欧美一区| 青草久久国产| 国产精品久久久久久精品古装| 中文欧美无线码| 亚洲欧美激情在线| 亚洲天堂av无毛| 飞空精品影院首页| 精品国产一区二区久久| 国产亚洲精品第一综合不卡| 亚洲国产欧美在线一区| 人妻 亚洲 视频| www.精华液| 成年动漫av网址| 国产亚洲欧美精品永久| 国产高清激情床上av| svipshipincom国产片| 人妻 亚洲 视频| www.熟女人妻精品国产| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 99re6热这里在线精品视频| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 91大片在线观看| 欧美av亚洲av综合av国产av| 日本五十路高清| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 国产免费现黄频在线看| 最新美女视频免费是黄的| 极品少妇高潮喷水抽搐| 纵有疾风起免费观看全集完整版| 高潮久久久久久久久久久不卡| 宅男免费午夜| 黄色丝袜av网址大全| 日韩免费av在线播放| 黄色视频,在线免费观看| 国产激情久久老熟女| 亚洲色图av天堂| 黄色视频不卡| av又黄又爽大尺度在线免费看| 我要看黄色一级片免费的| 久久av网站| 人妻久久中文字幕网| 亚洲国产成人一精品久久久| 电影成人av| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 国产深夜福利视频在线观看| 欧美乱妇无乱码| 国产精品久久久久久精品电影小说| 极品教师在线免费播放| 国产av国产精品国产| 露出奶头的视频| 在线观看舔阴道视频| 日本a在线网址| 水蜜桃什么品种好| tocl精华| 日本五十路高清| av又黄又爽大尺度在线免费看| 成年动漫av网址| 欧美大码av| 久久久水蜜桃国产精品网| 丝袜美足系列| 久久99一区二区三区| 久久国产精品影院| 制服诱惑二区| 亚洲少妇的诱惑av| 午夜久久久在线观看| a级片在线免费高清观看视频| 91老司机精品| 久久国产精品大桥未久av| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 欧美日韩亚洲高清精品| 首页视频小说图片口味搜索| 考比视频在线观看| 脱女人内裤的视频| 国产男女超爽视频在线观看| 下体分泌物呈黄色| 亚洲色图 男人天堂 中文字幕| 自线自在国产av| 久久久久视频综合| 国产91精品成人一区二区三区 | 亚洲av美国av| 午夜日韩欧美国产| 天天操日日干夜夜撸| 又紧又爽又黄一区二区| 国产精品成人在线| 国产在线一区二区三区精| 91麻豆av在线| 久久av网站| 亚洲中文日韩欧美视频| cao死你这个sao货| 亚洲精品国产区一区二| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| 色视频在线一区二区三区| 午夜福利在线免费观看网站| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 国产高清国产精品国产三级| 视频区欧美日本亚洲| 热99国产精品久久久久久7| 亚洲精华国产精华精| 久久婷婷成人综合色麻豆| 日本vs欧美在线观看视频| 国产日韩欧美在线精品| 中文字幕最新亚洲高清| 国产欧美亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品自拍成人| 伊人久久大香线蕉亚洲五| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 日本av手机在线免费观看| 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区免费开放| 91成人精品电影| 男女高潮啪啪啪动态图| 成年人免费黄色播放视频| 夜夜骑夜夜射夜夜干| 老鸭窝网址在线观看| 不卡一级毛片| 日韩一卡2卡3卡4卡2021年| 精品一品国产午夜福利视频| 亚洲 欧美一区二区三区| 免费观看av网站的网址| 女同久久另类99精品国产91| 亚洲国产av影院在线观看| 亚洲精品久久成人aⅴ小说| 国产在线精品亚洲第一网站| 久久中文字幕一级| 午夜两性在线视频| 99热网站在线观看| 亚洲精品一二三| 丝袜美足系列| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 亚洲国产欧美在线一区| 十八禁网站免费在线| 一本大道久久a久久精品| 汤姆久久久久久久影院中文字幕| 亚洲伊人色综图| 成人18禁在线播放| 人人妻人人澡人人爽人人夜夜| 老司机在亚洲福利影院| 美女主播在线视频| 国产精品香港三级国产av潘金莲| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 欧美日韩黄片免| 两人在一起打扑克的视频| 精品人妻在线不人妻| 国产1区2区3区精品| 天天操日日干夜夜撸| 女人被躁到高潮嗷嗷叫费观| 大片电影免费在线观看免费| www.999成人在线观看| 一本久久精品| a在线观看视频网站| 日本五十路高清| 国产高清国产精品国产三级| 精品国产一区二区三区久久久樱花| 欧美精品亚洲一区二区| 日本wwww免费看| 国产精品久久久人人做人人爽| 成人精品一区二区免费| 亚洲av欧美aⅴ国产| 久久久久久久国产电影| 亚洲欧洲日产国产| 国产三级黄色录像| 老熟妇乱子伦视频在线观看| 别揉我奶头~嗯~啊~动态视频| 精品国产一区二区三区四区第35| 窝窝影院91人妻| 在线看a的网站| 超碰97精品在线观看| 久久久久国产一级毛片高清牌| 91精品三级在线观看| www日本在线高清视频| tocl精华| 亚洲国产看品久久| 少妇猛男粗大的猛烈进出视频| 69av精品久久久久久 | 免费不卡黄色视频| 亚洲第一青青草原| 欧美 亚洲 国产 日韩一| 青草久久国产| 欧美av亚洲av综合av国产av| 亚洲精品久久午夜乱码| 亚洲七黄色美女视频| 久久久久久久大尺度免费视频| 欧美成人免费av一区二区三区 | 国产福利在线免费观看视频| 午夜精品国产一区二区电影| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品大桥未久av| 国产亚洲av高清不卡| 色婷婷av一区二区三区视频| 1024香蕉在线观看| 搡老熟女国产l中国老女人| 青草久久国产| 亚洲国产看品久久| 亚洲成人手机| 久久精品亚洲av国产电影网| 啦啦啦免费观看视频1| 免费一级毛片在线播放高清视频 | 亚洲精品在线观看二区| 国产人伦9x9x在线观看| 亚洲九九香蕉| 免费在线观看影片大全网站| √禁漫天堂资源中文www| 大陆偷拍与自拍| 一区二区三区激情视频| 欧美成人免费av一区二区三区 | 夜夜爽天天搞| 日韩制服丝袜自拍偷拍| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区黑人| 男人舔女人的私密视频| 久久午夜综合久久蜜桃| 国产亚洲精品久久久久5区| 女人被躁到高潮嗷嗷叫费观| 男女高潮啪啪啪动态图| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲高清精品| 久久久久精品国产欧美久久久| 免费观看人在逋| 丝袜在线中文字幕| www.熟女人妻精品国产| 免费观看av网站的网址| 国产欧美日韩一区二区三区在线| 成人影院久久| 黄频高清免费视频| 久久人人97超碰香蕉20202| 亚洲精品国产色婷婷电影| 男女之事视频高清在线观看| 大型黄色视频在线免费观看| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 日韩免费av在线播放| 国产aⅴ精品一区二区三区波| 在线看a的网站| 99国产极品粉嫩在线观看| 精品国产乱子伦一区二区三区| 69av精品久久久久久 | 中文字幕最新亚洲高清| 国产免费福利视频在线观看| 老熟女久久久| 日本av手机在线免费观看| 亚洲精华国产精华精| 国产精品久久久av美女十八|