• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    2015-11-03 07:02:00JizheHAIWenleiSUNYujunZHOU
    機床與液壓 2015年3期
    關鍵詞:風力機氣動風機

    Ji-zhe HAI, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    Ji-zhe HAI*, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    Taking the S818 airfoil of 1.5 MW wind turbine blade as the research object. Model of the finite element of airfoil flow field was built in this paper. The non-viscous incompressible Navier-stokes equations are used as flow control equation, which conducted numerical simulation analysis on Ice-free airfoil, airfoil of rime ice, chord-length ice, and horn ice. The pressure distribution are obtained from the lift-drag ratio, velocity vector and surface pressure of different thickness of the blade airfoil in the angle of attack from -2° to 20°.The results showed that the thicker of the ice coating, the shaper maximum lift-drag ratio of airfoil are decreased. Moreover, certain thickness of chord length ice and horn ice leads to the mutation of the loss of lift-drag ratio. When ice thickness is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%, the chord length ice at 11.97% and rime ice at 6.14%. In addition, the airfoil after icing would enter stall area in advance which deteriorates aerodynamic performance of blade and reduces the power coefficient of wind turbine.

    Wind turbine, Airfoil, Ice coating, Aerodynamic performance

    1 Introduction

    As the wind power is one of the important strategic substitute energy, the research on wind turbine goes deeper both at home and abroad. Onshore wind energy resources in Xinjiang possessing nine large fetch accounts for 37% of the national total, only second to Inner Mongolia. But the climate in Xinjiang is so harsh, nearly half a year’s time in the snow-covered winter and great difference of day-night temperature that the wind turbine would be iced when runs under low temperature condition below zero especially meeting supercooled drops. blade of wind turbine prones to icing which changes the external shape and aerodynamic performance of blade. Thus it has negatively influence on transformation efficiency, may damage blade in severe case and causes accident. To improve the utilization efficiency of wind energy, it’s of great necessity to conduct a research on the effects of aerodynamic performance of icing wind turbine blades.

    A number of researches on icing wind turbine blades have been done internationally. For one thing, Montreuil [2] et al verified the variation about drops collection coefficient under various weather conditions through the calculation model adopted by theoretical analysis and experimental demonstration and they obtained good results. Forting [3] et al studied the effect of deice system especially by focusing on icing wind turbine and they described two theories about the formation of rime ice and glaze ice based on the experiments. For another, Zhang Dalin [4] etc. domestic scholars made a numerical simulation to calculate the air flow field of ice-forming surface impacted by supercooled droplets through applying Reynolds averagedN-Sequations andk-εtwo-equation turbulence model. Yi Xian [5] using Calculation model of Ice accretion process can predict the growth process of icing at the forefront of the wing.

    S818 of NREL airfoil was selected as the research object in this work. We established the finite element analysis model of Ice-free airfoil, rime ice, chord length ice and horn ice airfoil’s flow field and analyzed the variation of airfoil lift, drag and surface pressure characteristics of different thicknesses and different ice-model comparatively. Finally the mechanism of icing airfoil aerodynamic performance was obtained which provided fundamental basis for further valid measure of deicing.

    2 Icing airfoil and calculation model

    Due to the various temperature, air humidity and fluid speed, icing structure on the blade airfoil was different.The matted rime ice with poor transparency formed on the surface of airfoil when temperature was lower, below -15 degrees Celsius, because the droplets froze immediately and the inclusion of air in droplets had no chance to discharge. However, when the temperature was a little higher the droplets couldn’t freeze immediately and a part of droplet moved to rear airfoil so that groove formed in leading edge of airfoil and horn ice in rear. Moreover, chord length ice formed under the SLD (supercooled liquid drops) condition. The condensing droplets can’t evaporate completely with a heat protection system at leading edge and the backflow of droplets develops into ice covering on the upper and lower surfaces. As a result of above formation mechanism, the shape of chord length ice varies in different place which made the edge shape of chord length ice more complex than the horn ice’s. Airfoil with three icing shape was selected as research object. It was described in Fig.1.

    To begin with, the work chose Navier-Stokes equations of incompressible viscous based on Reynolds-averaged as flow-controlled equation, Spalart-Allmaras model which was suitable for airfoil flow as the turbulent model and SIMPLE pressure-velocity coupling equations as calculation methods [6]. Furthermore, the Convection Interpolation was second-order upwind scheme, Gradient Interpolation used least square method on a cell by cell basis and pressure interpolation was also second-order format. The sixth section of the S818 airfoil was selected as the research object. The chord length of Airfoil was 2.412 m, installation angle was 6.35°and the constant wind speed was 10 m/s. At this point, Reynolds number was 1.6×106. Divided airfoil flow field grid is shown in Fig.2.

    Fig.1 Solid model and two-dimensional trajectory of different ice-model

    Fig.2 S818 airfoil computing grid

    3 Basic theory of aerodynamics

    3.1 Wind turbine power coefficient

    The axial velocity inducing factoraand the radial velocity inducing factor b were stable value.

    (1)

    Where,λis tip speed ratio, combining with the knowledge of aerodynamics.CP, the power coefficient, can be calculated as follows.

    (2)

    Where,ζis lift-drag ratio andλtis the tip speed ratio of wind turbine design.

    It can be concluded from the above formula that coefficient of wind turbine power was irrelevant to lift and drag coefficient value but only relates to lift-drag ratio of airfoil. The greater the value of airfoil lift-drag ratio was, the higher power efficiency was.λtis a constant value for a running wind turbine so that only the airfoil lift-drag ratio affects the utilization efficiency of power.

    3.2 Fluid control equations

    This article studied on flow around of airfoil under low wind speed condition in which inflow parameters Reynolds number was 1×106-2×106and Mach number was 0.04-0.08. In general, the fluid with Mach number lower than 0.1 can be regarded as incompressible flows and heat transfers was out of consideration.

    The equations of numerical solution were Navier-Stokes equations of incompressible viscous based on Reynolds-averaged and it’s expressed in the Cartesian coordinate system[8] as follows:

    Mass equation:

    (3)

    Momentum equation:

    (4)

    Where,uis the average fluctuating velocity;xis the position vector;ρis the air density;Pis pressure;uefis the effective viscosity coefficient;u′ is the fluctuating instantaneous value;i,j,kis the three components of Cartesian coordinate system.

    3.3 Turbulence equations

    Taking the compressibility of fluid, feasibility of establishment, requirement of precision and the limit of time into consideration comprehensively, Spalart-Allmaras model was used as turbulence model to calculate boundary flux. This model was first used in flow calculations especially when adverse pressure gradient exists within the flow region. It did well in calculation of boundary layer which was often selected for calculation near the Flow separation area. Additionally, the model combined with wall function was applicable for low grid precision and we can get accurate solution. To solve the dynamic viscosity of the vortex, Spalart-Allmaras model is a simple equation relatively.

    The corresponding transport equation [9] is:

    (5)

    4 Icing airfoil lift and drag performance analysis

    Based on the different icing conditions, the work established aerodynamic analysis model on Ice-free airfoil, airfoil of rime ice, chord-length ice and horn ice.We analyzed and calculated the influence of icing thickness and different icing shape to the aerodynamic performance under the condition of inflow wind with attack angle from -2° to 20°.

    4.1 The influence of icing thickness to the aerodynamic performance

    It can be concluded from Fig.3 to Fig.5 that the lift-drag ratio of airfoil decreased with the increase of the thickness of three shapes of ice. What’s more, between -2° and 5° attack angle the lift-drag ratio of airfoil increased in a small range. After 5° attack angle it reduced greatly and the thicker ice was the greater amplitude reduction was. The calculation results are shown in Table 1.

    Fig.3 Lift-drag ratio curve of rime ice airfoil with different thickness

    Fig.4 Lift-drag ratio curve of chord length ice airfoil with different thickness

    Fig.5 Lift-drag ratio curve of horn ice airfoil with different thickness

    Table 1 Comparison of aerodynamic force of different icing thickness

    Icethickness0mm5mm10mm15mm20mmlossoflift-dragratioofrimeice/%05.466.419.8413.40lossoflift-dragratioofchordlengthice/%03.7911.9714.1216.50lossoflift-dragratioofhornice/%010.4711.2422.0422.91

    As is shown in Table 1, the change of the loss of maximum lift-drag ratio of rime ice appeared to be uniform. Nevertheless, reduction was three times than before when the thickness of chord length ice was 15 mm and it became uniform again at 15 or 20 mm thickness.

    There was a great mutation of reduction which was 10 times than the uniform when at 15 mm thickness of horn ice and reduction was back to uniform at 20 mm. Consequently, the increase of the horn ice thickness influenced coefficient of wind turbine power most.

    Besides, the maximum lift-drag ratio of ice-free airfoil appeared at 8° attack angle. However, when ice thickness of rime ice and horn ice was 15, 20 mm it appeared at 6° and 4° attack angle which led to the stall of airfoil in advance.

    4.2 The impact of different shape ice-model on airfoil aerodynamic lift and drag characteristics

    To obtain a further understanding about the impact of different ice model on the coefficient of wind turbine power, three shapes with 10 mm thickness of icing airfoil were selected to have a comparative analysis, as shown from Fig.6 to Fig.8.

    Fig.6 Lift coefficient comparison chart of airfoil with different thickness

    Fig.7 Drag coefficient comparison chart of airfoil with different thickness

    Fig.8 Lift-drag ratio comparison chart of airfoil with different thickness

    Fig.6 indicates that the three ice-models with same ice thickness and attack angle from 1° to 16°, rime ice had the largest lift coefficient values, followed by the horn ice and the chord length ice was the minimum. From -2° to 1° and 16°to 20° of the attack angle, chord length ice had the largest lift coefficient values, followed by the rime ice and the horn ice was the minimum.

    Fig.7 shows that three ice-models at the same attack angle less than 12° had almost the same drag coefficient values and after 12°horn ice had the largest drag coefficient values, followed by the rime ice and the chord length ice was the minimum.

    At 10 mm icing thickness, the lift coefficient increased rapidly in a range of low attack angle while the drag coefficient increased sharply with the increase of attack angle. It can be concluded from the analysis of Table 2 that at the same thickness, the most evident reduction of lift-drag ratio was caused by horn ice and the stall of airfoil occurred ahead.

    Table 2 Comparison of aerodynamic force of different ice-models

    Ice-modelIce-free10mmrimeice10mmchordlengthice10mmhorniceMaximumlift-dragratio33.8683631.6963229.8148125.8786Lossoflift-dragratio06.41%11.97%22.04%Correspondingattackanglesofmaximumlift-dragratio8°8°8°6°

    5 The analysis of surface pressure and velocity field of icing airfoil

    The overall dimension of airfoil changed after icing which altered the speed and direction of the flow through blade [10]. Taking airfoil of three 10 mm thickness ice-model for study, velocity field and pressure on the different ice-model surface were obtained through analysis at 10° of attack angle, as shown in Fig.9 and Fig.10.

    Comparing Fig. 9 (a) and (b), it can be found that there was little difference between the separation area in trailing edge of rime icing airfoil and no ice airfoil. Although the rime ice made the upper surface velocity increase obviously, the lower surface increased accordingly which decreased the pressure difference on the whole.

    Fig.9 (d) indicates that there was a big separation bubble in flow field with the existence of horn ice. Because of the stagnation point on ice, boundary layer can’t coordinate the adverse pressure gradient appearing on the top of horn ice. The shape mutation in leading edge increased the flow velocity, changed the flow direction and separated flow on upper surface which gave birth to the low velocity area on near wall and vortex in trailing edge. Moreover, the big separation bubble redistributed pressure so the impulse changed, lift decreased and resistance increased.

    Fig.9 The flow field distribution of four icing airfoil types at attack angle of 10°

    Fig.9 (c) shows that in airfoil of chord length ice from leading edge to the one-third chord length the flow velocity decreased and flow direction became irregular. Also, after one-third chord length on the lower surface the flow separated and it led to the low velocity with vortex coming into being on near wall between the chord length ice and trailing edge while. Meanwhile, the flow velocity on far wall was greater than on no ice airfoil.

    In a word, velocity field of chord length ice airfoil is complex and this icing type lengthens the downward flow and it develops the bound layer along the chord length direction. The shape always was various in different position of the chord length which made it more complicated than horn ice on influence of coefficient of wind turbine power.

    From Fig.10 (a) and (b), it can be concluded that 10 mm rime ice almost had no effect on upper and lower pressure distributions and it just increased the pressure difference slightly. Comparing the 10mm chord length airfoil with no ice airfoil, the chord length ice had greatly changed the pressure distribution on airfoil surface especially when the upper surface pressure decreased suddenly after increase and the lower surface pressure distribution was irregular. After the fluid flowing through the chord length icing airfoil the pressure distribution gradually became steady but the upper and lower pressure difference was approximately a half than before.

    Fig.10 (a) and (d) shows that upper and lower surface pressure distributions with obvious fluctuations was extremely uneven in leading edge of horn ice airfoil. Specifically, upper pressure difference tended to be stable near one-third chord length of airfoil and it slowly increased similar to no-ice airfoil’s near trailing edge. From one-tenth of chord length the lower surface pressure distributions tended to be stable and to trailing edge surface pressure value remained the same. Thus, on account of the significant angularity of horn ice, static pressure of whole airfoil surface changed and vortex was formed in the rear airfoil.

    Fig.10 Surface static pressure distribution curve of four kinds of airfoil at 10° attack angle

    6 Conclusions

    In summary, through the aerodynamic performance numerical simulation of three ice-model (rime ice, chord length ice and horn ice) airfoil, the work analyzed the effect of different ice-model on aerodynamic performance of the airfoil in three aspects from the lift and drag, the velocity field and surface pressure distribution.

    The results are as follows :

    1) With the increase of the thickness of three ice-models, the maximum lift-drag ratio of airfoil decreased and in different degree the stall occurred in advance. After 5° attack angle the lift-drag ratio comparing with the ice-free airfoil’s reduced greatly and the thicker ice was the greater amplitude reduction was. Certain thickness of chord length ice and horn ice led to the mutation of the loss of lift-drag ratio and the influence of horn ice was more significant for the amplitude reduction was 10 times than normal.

    2) When ice thickness of three ice-models is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%,the chord length ice at 11.97% and rime ice at 6.14%. All results above indicate that horn ice has the greatest impact on airfoil aerodynamic performance, followed by the rime ice and the chord length ice is the slightest.

    Those results provide theoretical basis for feasible deicing measure and efficient strategy of fan control in different season to guarantee the security and stability of fan operation.

    Acknowledgements

    This paper is supported by National Natural Science Foundation of China (No.51065026 and No.51465055) and the Natural Science Foundation of Xinjiang (No. 2014211A010).

    [1]Liu Xiong, Chen Yan, Ye Zhiquan. Analysis of the influence of aerodynamic performance enlarging the airfoil’s trailing edge thickness [J]. Solar Technology. 2006(27): 489-495.

    [2] Montreuil E, Chazottes A, Guffond D. Enhancement of Prediction Capability in Icing Accretion and related Performance Penalties Part I: Three-dimensional CFD Prediction of the Ice Accretion. 1st AIAA Atmospheric and Space Environments Conference.

    [3] Fortin G, Perron J. Wind Turbine Icing and De-Icing[C]// 47th AIAA Aerospace Sciences MeetingIncluding The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.

    [4]Zhang Dalin, Yang Xi, Haisong A. Numerical simulation of supercooled water droplets impingement on icing surface[J]. Journal of Aerospace Power, 2003 (1): 87-91.

    [5]Yi Xian, Zhu Guolin. Numerically simulating of ice accretion on airfoil[Z]. 2002, 20 (4):428-433.

    [6]Hai Jizhe, Sun Wenlei, Zhou Yujun. Study on Aerodynamic Characteristic of Blade Airfoil of Wind Turbine [J]. Fluid machinery, 2013, 41(8): 30-34.

    [7]Jiang Haibo, Cao Shuliang, Yang Ping. Power limit of horizontal axis wind turbine [J]. Chinese Journal of Mechanical Engineering, 2011(47): 112-118.

    [8]Tang Jin. Research of Improving Aerodynamic Performance of Wind Turbines Blade Profile [D]. Beijing: Tsinghua University, 2004.

    [9]Wang Fujun. Fluid dynamics analysis of computational[M]. Beijing: Tsinghua University Press, 2004.

    [10]Wang Wenlong, He Bin, et al. Numerical simulation of aerodynamic performance on icing airfoil of wind turbines blade [J]. Renewable energy resources, 2013(31): 60-64.

    風力機葉片覆冰翼型氣動性能的數(shù)值模擬

    海幾哲*,孫文磊,周玉俊

    新疆大學 機械工程學院,烏魯木齊830049

    以某1.5 MW風機葉片S818翼型為研究對象,建立了翼型流場有限元分析模型。采用基于Reynolds平均的Navier-Stokes不可壓縮粘性方程作為流動控制方程,對無冰翼型、霜冰、弦長冰及角冰翼型進行數(shù)值模擬分析,得到了-2°-20°攻角下不同厚度葉片翼型的升阻比、速度矢量和表面壓力分布。研究結果表明:覆冰越厚,翼型的最大升阻比降幅越大。對于弦長冰和角冰在厚度達到一定值時,使得升阻比損失產(chǎn)生較大的突變。在覆冰厚度都為10 mm時,角冰的最大升阻比減幅最大,達到22.04%;其次是弦長冰為11.97%,霜冰的最小為6.41%。同時結冰后的翼型會提前進入失速區(qū),導致槳葉氣動性能惡化,降低了風機的功率系數(shù)。

    風力機;翼型;覆冰;氣動性能

    8 March 2015; revised 11 May 2015;

    Ji-zhe HAI, Associate professor.

    Doctor. E-mail: haijizhe@163.com

    10.3969/j.issn.1001-3881.2015.18.002 Document code: A

    TK83

    accepted 13 July 2015

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    風力機氣動風機
    中寰氣動執(zhí)行機構
    基于NACA0030的波紋狀翼型氣動特性探索
    基于UIOs的風力機傳動系統(tǒng)多故障診斷
    測控技術(2018年5期)2018-12-09 09:04:38
    基于反饋線性化的RLV氣動控制一體化設計
    測控技術(2018年9期)2018-11-25 07:44:24
    風機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    風機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    節(jié)能技術EPU在AV71風機上的應用
    TS3000系統(tǒng)防喘振控制在 AV80-14風機中的應用
    大型風力機整機氣動彈性響應計算
    小型風力機葉片快速建模方法
    太陽能(2015年6期)2015-02-28 17:09:35
    欧美中文综合在线视频| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 叶爱在线成人免费视频播放| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| 麻豆成人av在线观看| 亚洲国产精品999在线| 国产精品爽爽va在线观看网站 | av在线播放免费不卡| 亚洲狠狠婷婷综合久久图片| 在线观看日韩欧美| 怎么达到女性高潮| 午夜精品国产一区二区电影| 亚洲av日韩精品久久久久久密| 如日韩欧美国产精品一区二区三区| 两人在一起打扑克的视频| 欧美中文日本在线观看视频| 中文字幕色久视频| 夫妻午夜视频| 久久人妻av系列| 一级毛片女人18水好多| 淫妇啪啪啪对白视频| 国产伦一二天堂av在线观看| 精品国产亚洲在线| 久热爱精品视频在线9| 热re99久久精品国产66热6| 久久国产乱子伦精品免费另类| 黑人巨大精品欧美一区二区蜜桃| 777久久人妻少妇嫩草av网站| 国产成+人综合+亚洲专区| 欧美日韩精品网址| 亚洲精品成人av观看孕妇| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 亚洲国产欧美日韩在线播放| 国产午夜精品久久久久久| 国产av又大| 淫妇啪啪啪对白视频| 在线观看www视频免费| 亚洲视频免费观看视频| 欧美色视频一区免费| 久久午夜综合久久蜜桃| 身体一侧抽搐| 免费av毛片视频| 琪琪午夜伦伦电影理论片6080| 亚洲av片天天在线观看| 看片在线看免费视频| 国产av一区在线观看免费| 亚洲在线自拍视频| 精品高清国产在线一区| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色 视频免费看| 一级a爱视频在线免费观看| 欧美激情久久久久久爽电影 | x7x7x7水蜜桃| 超色免费av| 国产av又大| av片东京热男人的天堂| 91麻豆av在线| netflix在线观看网站| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美激情在线| 精品一区二区三卡| 国内毛片毛片毛片毛片毛片| 男女午夜视频在线观看| 91成人精品电影| 国产三级在线视频| 日本 av在线| 亚洲精品中文字幕一二三四区| 成人18禁在线播放| 两个人免费观看高清视频| 亚洲一区二区三区不卡视频| 可以免费在线观看a视频的电影网站| 少妇被粗大的猛进出69影院| 亚洲一区中文字幕在线| 校园春色视频在线观看| av网站免费在线观看视频| 亚洲成人免费av在线播放| 高清av免费在线| 视频区图区小说| 亚洲人成电影观看| 精品国产乱码久久久久久男人| 免费看十八禁软件| 国产成人av教育| 欧美中文综合在线视频| 一级a爱视频在线免费观看| 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 激情在线观看视频在线高清| 久久精品aⅴ一区二区三区四区| 99国产精品一区二区蜜桃av| 夫妻午夜视频| 亚洲五月色婷婷综合| 午夜免费观看网址| 亚洲国产精品一区二区三区在线| 91老司机精品| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区三| 最近最新免费中文字幕在线| 国产在线精品亚洲第一网站| 日本免费一区二区三区高清不卡 | 可以在线观看毛片的网站| 悠悠久久av| 女生性感内裤真人,穿戴方法视频| 国产熟女午夜一区二区三区| 国产亚洲精品综合一区在线观看 | 国产亚洲欧美98| 丝袜美足系列| 一a级毛片在线观看| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 久久香蕉精品热| 欧美老熟妇乱子伦牲交| 国产精品美女特级片免费视频播放器 | 亚洲五月婷婷丁香| 色播在线永久视频| 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 校园春色视频在线观看| 丝袜在线中文字幕| 天天添夜夜摸| 国产激情久久老熟女| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 亚洲专区字幕在线| 亚洲激情在线av| 1024视频免费在线观看| 久久国产亚洲av麻豆专区| 97碰自拍视频| 最近最新中文字幕大全免费视频| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看| 成在线人永久免费视频| 成人18禁在线播放| www.自偷自拍.com| av超薄肉色丝袜交足视频| 国产片内射在线| 麻豆久久精品国产亚洲av | 欧美日韩瑟瑟在线播放| 亚洲男人天堂网一区| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 国产真人三级小视频在线观看| av网站免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜 | 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 亚洲国产欧美网| 亚洲成人精品中文字幕电影 | 国产亚洲精品一区二区www| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| netflix在线观看网站| 国产精品久久久av美女十八| 久久性视频一级片| 午夜福利影视在线免费观看| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 99国产精品免费福利视频| 精品无人区乱码1区二区| 免费在线观看视频国产中文字幕亚洲| 午夜福利,免费看| 很黄的视频免费| 欧美精品啪啪一区二区三区| 亚洲av成人av| 亚洲一区高清亚洲精品| 亚洲精品在线美女| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 无人区码免费观看不卡| 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 国产精品永久免费网站| 午夜免费成人在线视频| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 亚洲欧美日韩无卡精品| av福利片在线| 国产精品一区二区精品视频观看| 久久久久久久午夜电影 | 男女床上黄色一级片免费看| av网站在线播放免费| 亚洲 欧美 日韩 在线 免费| 久久人妻熟女aⅴ| 久久影院123| 最好的美女福利视频网| 久9热在线精品视频| 精品卡一卡二卡四卡免费| 国产主播在线观看一区二区| av片东京热男人的天堂| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 午夜日韩欧美国产| 午夜福利,免费看| 久久久国产成人精品二区 | 老司机午夜十八禁免费视频| 亚洲精品国产区一区二| 欧美在线一区亚洲| 精品卡一卡二卡四卡免费| 另类亚洲欧美激情| 日韩一卡2卡3卡4卡2021年| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 三级毛片av免费| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 国产高清videossex| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看 | 夫妻午夜视频| 国产成人系列免费观看| 女警被强在线播放| 欧美成人午夜精品| av网站免费在线观看视频| 国产成人精品久久二区二区免费| 亚洲av美国av| 国产激情久久老熟女| 久久欧美精品欧美久久欧美| 成人手机av| 一本大道久久a久久精品| 美女高潮喷水抽搐中文字幕| 免费av中文字幕在线| 亚洲少妇的诱惑av| 99香蕉大伊视频| 亚洲av五月六月丁香网| 一夜夜www| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 18禁黄网站禁片午夜丰满| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 国产激情欧美一区二区| 国产一卡二卡三卡精品| 国产免费现黄频在线看| 久久久久久久久免费视频了| 一进一出好大好爽视频| 人妻久久中文字幕网| 三上悠亚av全集在线观看| 一个人观看的视频www高清免费观看 | 人妻丰满熟妇av一区二区三区| 免费少妇av软件| av福利片在线| 亚洲国产欧美日韩在线播放| 欧美精品一区二区免费开放| 激情在线观看视频在线高清| 露出奶头的视频| 久久久久久久久免费视频了| 欧美老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 日韩精品中文字幕看吧| 日韩欧美免费精品| 午夜日韩欧美国产| 久久久久久久午夜电影 | 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 国产精品 欧美亚洲| 新久久久久国产一级毛片| 在线观看午夜福利视频| 亚洲专区国产一区二区| av超薄肉色丝袜交足视频| 一本大道久久a久久精品| av有码第一页| 日日摸夜夜添夜夜添小说| 国产精品国产av在线观看| 国产97色在线日韩免费| 国产一区二区激情短视频| 国产片内射在线| 免费少妇av软件| 性少妇av在线| 黑人巨大精品欧美一区二区蜜桃| 午夜精品久久久久久毛片777| 亚洲人成网站在线播放欧美日韩| av网站免费在线观看视频| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女 | 香蕉丝袜av| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人爽人人添夜夜欢视频| 亚洲情色 制服丝袜| 精品一品国产午夜福利视频| 美女扒开内裤让男人捅视频| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 午夜视频精品福利| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 日韩大码丰满熟妇| 9热在线视频观看99| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 91大片在线观看| 新久久久久国产一级毛片| 亚洲五月天丁香| 色综合婷婷激情| 国产一卡二卡三卡精品| 丰满迷人的少妇在线观看| 在线观看免费视频网站a站| 精品欧美一区二区三区在线| 国产xxxxx性猛交| 操美女的视频在线观看| 精品人妻1区二区| 国产成人av教育| 一进一出抽搐gif免费好疼 | 在线观看一区二区三区激情| 首页视频小说图片口味搜索| 午夜影院日韩av| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 超色免费av| 国产精品一区二区精品视频观看| 天堂动漫精品| 777久久人妻少妇嫩草av网站| 视频区欧美日本亚洲| 人人澡人人妻人| 亚洲视频免费观看视频| 国产av一区在线观看免费| 搡老岳熟女国产| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 性欧美人与动物交配| 午夜免费成人在线视频| 性欧美人与动物交配| 村上凉子中文字幕在线| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 婷婷精品国产亚洲av在线| bbb黄色大片| 一进一出抽搐gif免费好疼 | 纯流量卡能插随身wifi吗| 两性夫妻黄色片| 亚洲三区欧美一区| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 久久久精品国产亚洲av高清涩受| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 成熟少妇高潮喷水视频| 在线观看免费视频网站a站| 精品久久久久久成人av| 两个人免费观看高清视频| 国内久久婷婷六月综合欲色啪| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 日韩欧美一区视频在线观看| 黄色丝袜av网址大全| 亚洲视频免费观看视频| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久成人av| 精品国产美女av久久久久小说| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 午夜久久久在线观看| av欧美777| 成人18禁在线播放| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看| 国产一区二区激情短视频| 一级毛片高清免费大全| 中文字幕人妻丝袜制服| 国产乱人伦免费视频| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 最近最新免费中文字幕在线| 久久久久久免费高清国产稀缺| 久久精品亚洲av国产电影网| 亚洲国产欧美日韩在线播放| 极品人妻少妇av视频| 亚洲成人免费av在线播放| 中出人妻视频一区二区| 国产主播在线观看一区二区| 久久人妻av系列| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 亚洲精品一区av在线观看| 桃色一区二区三区在线观看| 国产又色又爽无遮挡免费看| 免费av中文字幕在线| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 国产精品爽爽va在线观看网站 | 久热这里只有精品99| 最新在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 69精品国产乱码久久久| 999久久久国产精品视频| 色婷婷av一区二区三区视频| 美女大奶头视频| 成人三级做爰电影| 丰满的人妻完整版| 黄色a级毛片大全视频| 美女高潮到喷水免费观看| 丝袜美足系列| 高清黄色对白视频在线免费看| 国产精品1区2区在线观看.| av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院| 琪琪午夜伦伦电影理论片6080| 午夜久久久在线观看| 国产精品久久久av美女十八| 午夜老司机福利片| 妹子高潮喷水视频| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 亚洲七黄色美女视频| 欧美日韩av久久| 1024视频免费在线观看| 老汉色∧v一级毛片| 99热国产这里只有精品6| 99国产极品粉嫩在线观看| 亚洲成国产人片在线观看| 久热这里只有精品99| 人人澡人人妻人| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 一夜夜www| 麻豆成人av在线观看| 69精品国产乱码久久久| 波多野结衣av一区二区av| 美女扒开内裤让男人捅视频| 国产精品二区激情视频| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 亚洲欧美激情在线| 日本一区二区免费在线视频| 久久国产精品男人的天堂亚洲| 国产人伦9x9x在线观看| 国产黄a三级三级三级人| 国产亚洲精品综合一区在线观看 | 欧美亚洲日本最大视频资源| 性少妇av在线| 久热这里只有精品99| xxxhd国产人妻xxx| 久久中文字幕人妻熟女| 欧美日韩av久久| 丝袜人妻中文字幕| 国产精品亚洲一级av第二区| cao死你这个sao货| 热re99久久国产66热| 国产亚洲精品久久久久久毛片| 亚洲av第一区精品v没综合| 9色porny在线观看| 男女做爰动态图高潮gif福利片 | 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 日本黄色视频三级网站网址| 欧美黄色片欧美黄色片| 日日干狠狠操夜夜爽| 咕卡用的链子| 午夜福利在线免费观看网站| 精品高清国产在线一区| 成人三级黄色视频| 午夜老司机福利片| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 亚洲精品久久午夜乱码| 五月开心婷婷网| 丁香六月欧美| videosex国产| 香蕉久久夜色| 亚洲精品中文字幕一二三四区| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕一二三四区| 成人永久免费在线观看视频| 我的亚洲天堂| 久久狼人影院| 精品午夜福利视频在线观看一区| 91九色精品人成在线观看| 国产成人欧美| 国产精品久久久久久人妻精品电影| 欧美性长视频在线观看| 91av网站免费观看| 无限看片的www在线观看| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 男女做爰动态图高潮gif福利片 | 久久伊人香网站| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区| www.熟女人妻精品国产| 波多野结衣av一区二区av| 少妇的丰满在线观看| 在线观看一区二区三区激情| 欧美一级毛片孕妇| 欧美日韩精品网址| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 黑人猛操日本美女一级片| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 99精品欧美一区二区三区四区| 9色porny在线观看| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 成人特级黄色片久久久久久久| 久久精品亚洲av国产电影网| 日韩免费av在线播放| 中文字幕色久视频| 91麻豆精品激情在线观看国产 | 国产精品香港三级国产av潘金莲| 欧美大码av| 天堂√8在线中文| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 一边摸一边做爽爽视频免费| 日韩有码中文字幕| 新久久久久国产一级毛片| 日韩欧美在线二视频| 亚洲男人天堂网一区| 亚洲国产欧美网| 亚洲国产精品一区二区三区在线| 曰老女人黄片| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 一个人观看的视频www高清免费观看 | 波多野结衣av一区二区av| 两人在一起打扑克的视频| 新久久久久国产一级毛片| 国产97色在线日韩免费| 亚洲成人免费av在线播放| 操美女的视频在线观看| 99国产极品粉嫩在线观看| 99久久精品国产亚洲精品| 国产av在哪里看| bbb黄色大片| 乱人伦中国视频| 美女 人体艺术 gogo| 午夜免费成人在线视频| 国产区一区二久久| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 亚洲男人的天堂狠狠| 黄色女人牲交| 成人18禁高潮啪啪吃奶动态图| 日韩欧美三级三区| 人妻丰满熟妇av一区二区三区| 成年人免费黄色播放视频| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 老司机在亚洲福利影院| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 久久香蕉激情| 无遮挡黄片免费观看| 成熟少妇高潮喷水视频| 两个人免费观看高清视频| 久久人妻av系列| 久久香蕉国产精品| 成年女人毛片免费观看观看9| www日本在线高清视频| 久久人妻熟女aⅴ| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 黄色 视频免费看| 老司机午夜十八禁免费视频| 一a级毛片在线观看| 黄片播放在线免费| 久久久久久大精品| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 欧美黄色淫秽网站| 男人舔女人下体高潮全视频| 国产aⅴ精品一区二区三区波| 国产亚洲欧美在线一区二区| 欧美乱码精品一区二区三区| 在线看a的网站| 久久久久久免费高清国产稀缺| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 国内久久婷婷六月综合欲色啪|