• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    2015-11-03 07:02:00JizheHAIWenleiSUNYujunZHOU
    機床與液壓 2015年3期
    關鍵詞:風力機氣動風機

    Ji-zhe HAI, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    Ji-zhe HAI*, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    Taking the S818 airfoil of 1.5 MW wind turbine blade as the research object. Model of the finite element of airfoil flow field was built in this paper. The non-viscous incompressible Navier-stokes equations are used as flow control equation, which conducted numerical simulation analysis on Ice-free airfoil, airfoil of rime ice, chord-length ice, and horn ice. The pressure distribution are obtained from the lift-drag ratio, velocity vector and surface pressure of different thickness of the blade airfoil in the angle of attack from -2° to 20°.The results showed that the thicker of the ice coating, the shaper maximum lift-drag ratio of airfoil are decreased. Moreover, certain thickness of chord length ice and horn ice leads to the mutation of the loss of lift-drag ratio. When ice thickness is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%, the chord length ice at 11.97% and rime ice at 6.14%. In addition, the airfoil after icing would enter stall area in advance which deteriorates aerodynamic performance of blade and reduces the power coefficient of wind turbine.

    Wind turbine, Airfoil, Ice coating, Aerodynamic performance

    1 Introduction

    As the wind power is one of the important strategic substitute energy, the research on wind turbine goes deeper both at home and abroad. Onshore wind energy resources in Xinjiang possessing nine large fetch accounts for 37% of the national total, only second to Inner Mongolia. But the climate in Xinjiang is so harsh, nearly half a year’s time in the snow-covered winter and great difference of day-night temperature that the wind turbine would be iced when runs under low temperature condition below zero especially meeting supercooled drops. blade of wind turbine prones to icing which changes the external shape and aerodynamic performance of blade. Thus it has negatively influence on transformation efficiency, may damage blade in severe case and causes accident. To improve the utilization efficiency of wind energy, it’s of great necessity to conduct a research on the effects of aerodynamic performance of icing wind turbine blades.

    A number of researches on icing wind turbine blades have been done internationally. For one thing, Montreuil [2] et al verified the variation about drops collection coefficient under various weather conditions through the calculation model adopted by theoretical analysis and experimental demonstration and they obtained good results. Forting [3] et al studied the effect of deice system especially by focusing on icing wind turbine and they described two theories about the formation of rime ice and glaze ice based on the experiments. For another, Zhang Dalin [4] etc. domestic scholars made a numerical simulation to calculate the air flow field of ice-forming surface impacted by supercooled droplets through applying Reynolds averagedN-Sequations andk-εtwo-equation turbulence model. Yi Xian [5] using Calculation model of Ice accretion process can predict the growth process of icing at the forefront of the wing.

    S818 of NREL airfoil was selected as the research object in this work. We established the finite element analysis model of Ice-free airfoil, rime ice, chord length ice and horn ice airfoil’s flow field and analyzed the variation of airfoil lift, drag and surface pressure characteristics of different thicknesses and different ice-model comparatively. Finally the mechanism of icing airfoil aerodynamic performance was obtained which provided fundamental basis for further valid measure of deicing.

    2 Icing airfoil and calculation model

    Due to the various temperature, air humidity and fluid speed, icing structure on the blade airfoil was different.The matted rime ice with poor transparency formed on the surface of airfoil when temperature was lower, below -15 degrees Celsius, because the droplets froze immediately and the inclusion of air in droplets had no chance to discharge. However, when the temperature was a little higher the droplets couldn’t freeze immediately and a part of droplet moved to rear airfoil so that groove formed in leading edge of airfoil and horn ice in rear. Moreover, chord length ice formed under the SLD (supercooled liquid drops) condition. The condensing droplets can’t evaporate completely with a heat protection system at leading edge and the backflow of droplets develops into ice covering on the upper and lower surfaces. As a result of above formation mechanism, the shape of chord length ice varies in different place which made the edge shape of chord length ice more complex than the horn ice’s. Airfoil with three icing shape was selected as research object. It was described in Fig.1.

    To begin with, the work chose Navier-Stokes equations of incompressible viscous based on Reynolds-averaged as flow-controlled equation, Spalart-Allmaras model which was suitable for airfoil flow as the turbulent model and SIMPLE pressure-velocity coupling equations as calculation methods [6]. Furthermore, the Convection Interpolation was second-order upwind scheme, Gradient Interpolation used least square method on a cell by cell basis and pressure interpolation was also second-order format. The sixth section of the S818 airfoil was selected as the research object. The chord length of Airfoil was 2.412 m, installation angle was 6.35°and the constant wind speed was 10 m/s. At this point, Reynolds number was 1.6×106. Divided airfoil flow field grid is shown in Fig.2.

    Fig.1 Solid model and two-dimensional trajectory of different ice-model

    Fig.2 S818 airfoil computing grid

    3 Basic theory of aerodynamics

    3.1 Wind turbine power coefficient

    The axial velocity inducing factoraand the radial velocity inducing factor b were stable value.

    (1)

    Where,λis tip speed ratio, combining with the knowledge of aerodynamics.CP, the power coefficient, can be calculated as follows.

    (2)

    Where,ζis lift-drag ratio andλtis the tip speed ratio of wind turbine design.

    It can be concluded from the above formula that coefficient of wind turbine power was irrelevant to lift and drag coefficient value but only relates to lift-drag ratio of airfoil. The greater the value of airfoil lift-drag ratio was, the higher power efficiency was.λtis a constant value for a running wind turbine so that only the airfoil lift-drag ratio affects the utilization efficiency of power.

    3.2 Fluid control equations

    This article studied on flow around of airfoil under low wind speed condition in which inflow parameters Reynolds number was 1×106-2×106and Mach number was 0.04-0.08. In general, the fluid with Mach number lower than 0.1 can be regarded as incompressible flows and heat transfers was out of consideration.

    The equations of numerical solution were Navier-Stokes equations of incompressible viscous based on Reynolds-averaged and it’s expressed in the Cartesian coordinate system[8] as follows:

    Mass equation:

    (3)

    Momentum equation:

    (4)

    Where,uis the average fluctuating velocity;xis the position vector;ρis the air density;Pis pressure;uefis the effective viscosity coefficient;u′ is the fluctuating instantaneous value;i,j,kis the three components of Cartesian coordinate system.

    3.3 Turbulence equations

    Taking the compressibility of fluid, feasibility of establishment, requirement of precision and the limit of time into consideration comprehensively, Spalart-Allmaras model was used as turbulence model to calculate boundary flux. This model was first used in flow calculations especially when adverse pressure gradient exists within the flow region. It did well in calculation of boundary layer which was often selected for calculation near the Flow separation area. Additionally, the model combined with wall function was applicable for low grid precision and we can get accurate solution. To solve the dynamic viscosity of the vortex, Spalart-Allmaras model is a simple equation relatively.

    The corresponding transport equation [9] is:

    (5)

    4 Icing airfoil lift and drag performance analysis

    Based on the different icing conditions, the work established aerodynamic analysis model on Ice-free airfoil, airfoil of rime ice, chord-length ice and horn ice.We analyzed and calculated the influence of icing thickness and different icing shape to the aerodynamic performance under the condition of inflow wind with attack angle from -2° to 20°.

    4.1 The influence of icing thickness to the aerodynamic performance

    It can be concluded from Fig.3 to Fig.5 that the lift-drag ratio of airfoil decreased with the increase of the thickness of three shapes of ice. What’s more, between -2° and 5° attack angle the lift-drag ratio of airfoil increased in a small range. After 5° attack angle it reduced greatly and the thicker ice was the greater amplitude reduction was. The calculation results are shown in Table 1.

    Fig.3 Lift-drag ratio curve of rime ice airfoil with different thickness

    Fig.4 Lift-drag ratio curve of chord length ice airfoil with different thickness

    Fig.5 Lift-drag ratio curve of horn ice airfoil with different thickness

    Table 1 Comparison of aerodynamic force of different icing thickness

    Icethickness0mm5mm10mm15mm20mmlossoflift-dragratioofrimeice/%05.466.419.8413.40lossoflift-dragratioofchordlengthice/%03.7911.9714.1216.50lossoflift-dragratioofhornice/%010.4711.2422.0422.91

    As is shown in Table 1, the change of the loss of maximum lift-drag ratio of rime ice appeared to be uniform. Nevertheless, reduction was three times than before when the thickness of chord length ice was 15 mm and it became uniform again at 15 or 20 mm thickness.

    There was a great mutation of reduction which was 10 times than the uniform when at 15 mm thickness of horn ice and reduction was back to uniform at 20 mm. Consequently, the increase of the horn ice thickness influenced coefficient of wind turbine power most.

    Besides, the maximum lift-drag ratio of ice-free airfoil appeared at 8° attack angle. However, when ice thickness of rime ice and horn ice was 15, 20 mm it appeared at 6° and 4° attack angle which led to the stall of airfoil in advance.

    4.2 The impact of different shape ice-model on airfoil aerodynamic lift and drag characteristics

    To obtain a further understanding about the impact of different ice model on the coefficient of wind turbine power, three shapes with 10 mm thickness of icing airfoil were selected to have a comparative analysis, as shown from Fig.6 to Fig.8.

    Fig.6 Lift coefficient comparison chart of airfoil with different thickness

    Fig.7 Drag coefficient comparison chart of airfoil with different thickness

    Fig.8 Lift-drag ratio comparison chart of airfoil with different thickness

    Fig.6 indicates that the three ice-models with same ice thickness and attack angle from 1° to 16°, rime ice had the largest lift coefficient values, followed by the horn ice and the chord length ice was the minimum. From -2° to 1° and 16°to 20° of the attack angle, chord length ice had the largest lift coefficient values, followed by the rime ice and the horn ice was the minimum.

    Fig.7 shows that three ice-models at the same attack angle less than 12° had almost the same drag coefficient values and after 12°horn ice had the largest drag coefficient values, followed by the rime ice and the chord length ice was the minimum.

    At 10 mm icing thickness, the lift coefficient increased rapidly in a range of low attack angle while the drag coefficient increased sharply with the increase of attack angle. It can be concluded from the analysis of Table 2 that at the same thickness, the most evident reduction of lift-drag ratio was caused by horn ice and the stall of airfoil occurred ahead.

    Table 2 Comparison of aerodynamic force of different ice-models

    Ice-modelIce-free10mmrimeice10mmchordlengthice10mmhorniceMaximumlift-dragratio33.8683631.6963229.8148125.8786Lossoflift-dragratio06.41%11.97%22.04%Correspondingattackanglesofmaximumlift-dragratio8°8°8°6°

    5 The analysis of surface pressure and velocity field of icing airfoil

    The overall dimension of airfoil changed after icing which altered the speed and direction of the flow through blade [10]. Taking airfoil of three 10 mm thickness ice-model for study, velocity field and pressure on the different ice-model surface were obtained through analysis at 10° of attack angle, as shown in Fig.9 and Fig.10.

    Comparing Fig. 9 (a) and (b), it can be found that there was little difference between the separation area in trailing edge of rime icing airfoil and no ice airfoil. Although the rime ice made the upper surface velocity increase obviously, the lower surface increased accordingly which decreased the pressure difference on the whole.

    Fig.9 (d) indicates that there was a big separation bubble in flow field with the existence of horn ice. Because of the stagnation point on ice, boundary layer can’t coordinate the adverse pressure gradient appearing on the top of horn ice. The shape mutation in leading edge increased the flow velocity, changed the flow direction and separated flow on upper surface which gave birth to the low velocity area on near wall and vortex in trailing edge. Moreover, the big separation bubble redistributed pressure so the impulse changed, lift decreased and resistance increased.

    Fig.9 The flow field distribution of four icing airfoil types at attack angle of 10°

    Fig.9 (c) shows that in airfoil of chord length ice from leading edge to the one-third chord length the flow velocity decreased and flow direction became irregular. Also, after one-third chord length on the lower surface the flow separated and it led to the low velocity with vortex coming into being on near wall between the chord length ice and trailing edge while. Meanwhile, the flow velocity on far wall was greater than on no ice airfoil.

    In a word, velocity field of chord length ice airfoil is complex and this icing type lengthens the downward flow and it develops the bound layer along the chord length direction. The shape always was various in different position of the chord length which made it more complicated than horn ice on influence of coefficient of wind turbine power.

    From Fig.10 (a) and (b), it can be concluded that 10 mm rime ice almost had no effect on upper and lower pressure distributions and it just increased the pressure difference slightly. Comparing the 10mm chord length airfoil with no ice airfoil, the chord length ice had greatly changed the pressure distribution on airfoil surface especially when the upper surface pressure decreased suddenly after increase and the lower surface pressure distribution was irregular. After the fluid flowing through the chord length icing airfoil the pressure distribution gradually became steady but the upper and lower pressure difference was approximately a half than before.

    Fig.10 (a) and (d) shows that upper and lower surface pressure distributions with obvious fluctuations was extremely uneven in leading edge of horn ice airfoil. Specifically, upper pressure difference tended to be stable near one-third chord length of airfoil and it slowly increased similar to no-ice airfoil’s near trailing edge. From one-tenth of chord length the lower surface pressure distributions tended to be stable and to trailing edge surface pressure value remained the same. Thus, on account of the significant angularity of horn ice, static pressure of whole airfoil surface changed and vortex was formed in the rear airfoil.

    Fig.10 Surface static pressure distribution curve of four kinds of airfoil at 10° attack angle

    6 Conclusions

    In summary, through the aerodynamic performance numerical simulation of three ice-model (rime ice, chord length ice and horn ice) airfoil, the work analyzed the effect of different ice-model on aerodynamic performance of the airfoil in three aspects from the lift and drag, the velocity field and surface pressure distribution.

    The results are as follows :

    1) With the increase of the thickness of three ice-models, the maximum lift-drag ratio of airfoil decreased and in different degree the stall occurred in advance. After 5° attack angle the lift-drag ratio comparing with the ice-free airfoil’s reduced greatly and the thicker ice was the greater amplitude reduction was. Certain thickness of chord length ice and horn ice led to the mutation of the loss of lift-drag ratio and the influence of horn ice was more significant for the amplitude reduction was 10 times than normal.

    2) When ice thickness of three ice-models is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%,the chord length ice at 11.97% and rime ice at 6.14%. All results above indicate that horn ice has the greatest impact on airfoil aerodynamic performance, followed by the rime ice and the chord length ice is the slightest.

    Those results provide theoretical basis for feasible deicing measure and efficient strategy of fan control in different season to guarantee the security and stability of fan operation.

    Acknowledgements

    This paper is supported by National Natural Science Foundation of China (No.51065026 and No.51465055) and the Natural Science Foundation of Xinjiang (No. 2014211A010).

    [1]Liu Xiong, Chen Yan, Ye Zhiquan. Analysis of the influence of aerodynamic performance enlarging the airfoil’s trailing edge thickness [J]. Solar Technology. 2006(27): 489-495.

    [2] Montreuil E, Chazottes A, Guffond D. Enhancement of Prediction Capability in Icing Accretion and related Performance Penalties Part I: Three-dimensional CFD Prediction of the Ice Accretion. 1st AIAA Atmospheric and Space Environments Conference.

    [3] Fortin G, Perron J. Wind Turbine Icing and De-Icing[C]// 47th AIAA Aerospace Sciences MeetingIncluding The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.

    [4]Zhang Dalin, Yang Xi, Haisong A. Numerical simulation of supercooled water droplets impingement on icing surface[J]. Journal of Aerospace Power, 2003 (1): 87-91.

    [5]Yi Xian, Zhu Guolin. Numerically simulating of ice accretion on airfoil[Z]. 2002, 20 (4):428-433.

    [6]Hai Jizhe, Sun Wenlei, Zhou Yujun. Study on Aerodynamic Characteristic of Blade Airfoil of Wind Turbine [J]. Fluid machinery, 2013, 41(8): 30-34.

    [7]Jiang Haibo, Cao Shuliang, Yang Ping. Power limit of horizontal axis wind turbine [J]. Chinese Journal of Mechanical Engineering, 2011(47): 112-118.

    [8]Tang Jin. Research of Improving Aerodynamic Performance of Wind Turbines Blade Profile [D]. Beijing: Tsinghua University, 2004.

    [9]Wang Fujun. Fluid dynamics analysis of computational[M]. Beijing: Tsinghua University Press, 2004.

    [10]Wang Wenlong, He Bin, et al. Numerical simulation of aerodynamic performance on icing airfoil of wind turbines blade [J]. Renewable energy resources, 2013(31): 60-64.

    風力機葉片覆冰翼型氣動性能的數(shù)值模擬

    海幾哲*,孫文磊,周玉俊

    新疆大學 機械工程學院,烏魯木齊830049

    以某1.5 MW風機葉片S818翼型為研究對象,建立了翼型流場有限元分析模型。采用基于Reynolds平均的Navier-Stokes不可壓縮粘性方程作為流動控制方程,對無冰翼型、霜冰、弦長冰及角冰翼型進行數(shù)值模擬分析,得到了-2°-20°攻角下不同厚度葉片翼型的升阻比、速度矢量和表面壓力分布。研究結果表明:覆冰越厚,翼型的最大升阻比降幅越大。對于弦長冰和角冰在厚度達到一定值時,使得升阻比損失產(chǎn)生較大的突變。在覆冰厚度都為10 mm時,角冰的最大升阻比減幅最大,達到22.04%;其次是弦長冰為11.97%,霜冰的最小為6.41%。同時結冰后的翼型會提前進入失速區(qū),導致槳葉氣動性能惡化,降低了風機的功率系數(shù)。

    風力機;翼型;覆冰;氣動性能

    8 March 2015; revised 11 May 2015;

    Ji-zhe HAI, Associate professor.

    Doctor. E-mail: haijizhe@163.com

    10.3969/j.issn.1001-3881.2015.18.002 Document code: A

    TK83

    accepted 13 July 2015

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    風力機氣動風機
    中寰氣動執(zhí)行機構
    基于NACA0030的波紋狀翼型氣動特性探索
    基于UIOs的風力機傳動系統(tǒng)多故障診斷
    測控技術(2018年5期)2018-12-09 09:04:38
    基于反饋線性化的RLV氣動控制一體化設計
    測控技術(2018年9期)2018-11-25 07:44:24
    風機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    風機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    節(jié)能技術EPU在AV71風機上的應用
    TS3000系統(tǒng)防喘振控制在 AV80-14風機中的應用
    大型風力機整機氣動彈性響應計算
    小型風力機葉片快速建模方法
    太陽能(2015年6期)2015-02-28 17:09:35
    天堂俺去俺来也www色官网| cao死你这个sao货| 精品亚洲成国产av| 国产视频一区二区在线看| 中文字幕高清在线视频| 人妻久久中文字幕网| 99热国产这里只有精品6| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区激情短视频| 国产主播在线观看一区二区| 村上凉子中文字幕在线| 国产无遮挡羞羞视频在线观看| 精品国产国语对白av| 亚洲欧洲精品一区二区精品久久久| 日韩一卡2卡3卡4卡2021年| 免费看十八禁软件| 最近最新中文字幕大全免费视频| 亚洲,欧美精品.| 丁香欧美五月| 亚洲精品在线美女| 韩国av一区二区三区四区| 久久ye,这里只有精品| 人妻久久中文字幕网| 女人精品久久久久毛片| 国产国语露脸激情在线看| 国产精华一区二区三区| 国产成人精品在线电影| 美女高潮喷水抽搐中文字幕| 巨乳人妻的诱惑在线观看| 在线观看66精品国产| 手机成人av网站| 欧美精品啪啪一区二区三区| 亚洲av片天天在线观看| 久久 成人 亚洲| 99久久综合精品五月天人人| 国产极品粉嫩免费观看在线| 久久性视频一级片| 操出白浆在线播放| 久久性视频一级片| 大香蕉久久成人网| 中国美女看黄片| 亚洲一码二码三码区别大吗| 免费女性裸体啪啪无遮挡网站| 深夜精品福利| 亚洲国产欧美日韩在线播放| 精品国产超薄肉色丝袜足j| 丰满饥渴人妻一区二区三| 777久久人妻少妇嫩草av网站| 中文字幕精品免费在线观看视频| 一本综合久久免费| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美网| 一级毛片高清免费大全| 在线观看舔阴道视频| 女人爽到高潮嗷嗷叫在线视频| 91在线观看av| 精品高清国产在线一区| 好看av亚洲va欧美ⅴa在| 亚洲av成人一区二区三| 我的亚洲天堂| 免费观看精品视频网站| 国产高清videossex| 男女高潮啪啪啪动态图| 日韩欧美在线二视频 | av国产精品久久久久影院| 国产高清videossex| 国产日韩一区二区三区精品不卡| 久久久国产一区二区| 91麻豆av在线| 黄色丝袜av网址大全| 久久午夜综合久久蜜桃| 国产日韩一区二区三区精品不卡| 怎么达到女性高潮| 香蕉久久夜色| 国产精品久久电影中文字幕 | 桃红色精品国产亚洲av| 欧美激情高清一区二区三区| av在线播放免费不卡| 欧美老熟妇乱子伦牲交| 女性生殖器流出的白浆| 交换朋友夫妻互换小说| 欧美日韩成人在线一区二区| 久久精品成人免费网站| 亚洲色图 男人天堂 中文字幕| 亚洲五月婷婷丁香| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 黑丝袜美女国产一区| 久久中文字幕一级| 狠狠狠狠99中文字幕| 在线观看午夜福利视频| 女警被强在线播放| 日韩一卡2卡3卡4卡2021年| 熟女少妇亚洲综合色aaa.| 黑人欧美特级aaaaaa片| 黑人操中国人逼视频| 又黄又粗又硬又大视频| 超碰成人久久| 黄色成人免费大全| 国产一区二区三区视频了| 变态另类成人亚洲欧美熟女 | 亚洲精品自拍成人| 亚洲一卡2卡3卡4卡5卡精品中文| 热99re8久久精品国产| 国产激情久久老熟女| 亚洲在线自拍视频| 色综合婷婷激情| 亚洲国产精品合色在线| 日本黄色视频三级网站网址 | 黄片大片在线免费观看| 在线观看免费午夜福利视频| 女人被狂操c到高潮| 日韩欧美在线二视频 | 99re6热这里在线精品视频| 久久国产精品大桥未久av| 精品福利永久在线观看| 成年人黄色毛片网站| 操美女的视频在线观看| 最近最新中文字幕大全电影3 | 欧美性长视频在线观看| 男人舔女人的私密视频| 久久亚洲精品不卡| av有码第一页| 亚洲国产欧美一区二区综合| 精品一区二区三区四区五区乱码| 亚洲avbb在线观看| 亚洲午夜理论影院| 丰满饥渴人妻一区二区三| 亚洲精品在线观看二区| 久久精品国产清高在天天线| 成人亚洲精品一区在线观看| 亚洲黑人精品在线| 久99久视频精品免费| 精品国产乱子伦一区二区三区| 国产在视频线精品| 久久久久久免费高清国产稀缺| 国产亚洲精品第一综合不卡| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 黄片大片在线免费观看| 日本wwww免费看| 欧美中文综合在线视频| 高潮久久久久久久久久久不卡| 黑人操中国人逼视频| 又紧又爽又黄一区二区| 精品一品国产午夜福利视频| 久久久久久久久久久久大奶| 欧洲精品卡2卡3卡4卡5卡区| 男男h啪啪无遮挡| 韩国精品一区二区三区| 岛国毛片在线播放| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 中文字幕色久视频| 亚洲精品久久午夜乱码| 热99国产精品久久久久久7| 日韩免费av在线播放| 国产蜜桃级精品一区二区三区 | av网站在线播放免费| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 久久狼人影院| 成人亚洲精品一区在线观看| 久久久久久久精品吃奶| 无人区码免费观看不卡| www.熟女人妻精品国产| 91在线观看av| 黄网站色视频无遮挡免费观看| 男女午夜视频在线观看| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区黑人| 黄片大片在线免费观看| 女人被狂操c到高潮| 一级毛片高清免费大全| 精品少妇一区二区三区视频日本电影| 午夜福利视频在线观看免费| 人人妻人人爽人人添夜夜欢视频| 国产av精品麻豆| 免费人成视频x8x8入口观看| 久99久视频精品免费| 美女扒开内裤让男人捅视频| 91老司机精品| 超碰成人久久| 国产高清视频在线播放一区| 国产不卡一卡二| 亚洲av日韩精品久久久久久密| 电影成人av| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区在线不卡| 亚洲专区字幕在线| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲| 捣出白浆h1v1| 国产免费现黄频在线看| 老鸭窝网址在线观看| 18禁黄网站禁片午夜丰满| 大片电影免费在线观看免费| 热re99久久国产66热| 激情视频va一区二区三区| 亚洲第一av免费看| 亚洲熟妇中文字幕五十中出 | 精品久久久久久久毛片微露脸| 国产黄色免费在线视频| 亚洲免费av在线视频| 我的亚洲天堂| 欧美日韩瑟瑟在线播放| 亚洲精品中文字幕在线视频| 精品亚洲成a人片在线观看| 一区二区日韩欧美中文字幕| av有码第一页| 午夜福利在线观看吧| 老司机午夜十八禁免费视频| 多毛熟女@视频| 欧美最黄视频在线播放免费 | 免费不卡黄色视频| 夫妻午夜视频| 国产激情欧美一区二区| 国产精品乱码一区二三区的特点 | 午夜精品在线福利| 国产成人欧美在线观看 | 人妻 亚洲 视频| 亚洲久久久国产精品| 久久中文字幕一级| 久久精品91无色码中文字幕| 一区在线观看完整版| 欧美黄色淫秽网站| 男女高潮啪啪啪动态图| 看片在线看免费视频| 国产亚洲精品第一综合不卡| 麻豆av在线久日| 精品第一国产精品| 99久久人妻综合| cao死你这个sao货| 脱女人内裤的视频| 韩国精品一区二区三区| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 色播在线永久视频| 国产男靠女视频免费网站| 美女高潮到喷水免费观看| 男女免费视频国产| 搡老乐熟女国产| 欧美+亚洲+日韩+国产| 免费高清在线观看日韩| 狂野欧美激情性xxxx| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 欧美国产精品一级二级三级| 亚洲五月色婷婷综合| 久久天堂一区二区三区四区| 欧美激情高清一区二区三区| 国产欧美日韩综合在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 999久久久精品免费观看国产| 80岁老熟妇乱子伦牲交| 俄罗斯特黄特色一大片| 夫妻午夜视频| 老汉色∧v一级毛片| 啦啦啦 在线观看视频| 欧美乱妇无乱码| 国产精品欧美亚洲77777| 又黄又爽又免费观看的视频| av天堂在线播放| 久久精品aⅴ一区二区三区四区| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 两个人看的免费小视频| a级毛片黄视频| 午夜福利视频在线观看免费| 日韩熟女老妇一区二区性免费视频| 久久精品成人免费网站| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 国产精品偷伦视频观看了| 免费久久久久久久精品成人欧美视频| 亚洲av成人一区二区三| 18禁观看日本| 欧美日本中文国产一区发布| 大香蕉久久成人网| 最新美女视频免费是黄的| 美国免费a级毛片| 亚洲av成人不卡在线观看播放网| 高清视频免费观看一区二区| 18在线观看网站| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 91国产中文字幕| 黄色丝袜av网址大全| 成年版毛片免费区| 国产野战对白在线观看| 欧美激情极品国产一区二区三区| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美一区二区三区| 欧美日韩国产mv在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情综合另类| 黄色毛片三级朝国网站| 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 久久人妻福利社区极品人妻图片| 欧美日韩福利视频一区二区| 91老司机精品| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 国产精品久久视频播放| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区| 亚洲成人免费av在线播放| 国产精品av久久久久免费| 99香蕉大伊视频| 国产激情欧美一区二区| 免费在线观看影片大全网站| 亚洲精品美女久久av网站| 久久午夜亚洲精品久久| 看免费av毛片| 在线观看www视频免费| 免费在线观看完整版高清| 丝袜人妻中文字幕| 久久国产精品人妻蜜桃| 国产亚洲av高清不卡| 丰满的人妻完整版| 久久久久国内视频| 免费av中文字幕在线| 欧美日韩av久久| 成年动漫av网址| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 中文字幕av电影在线播放| 中文字幕制服av| 久久香蕉国产精品| 18禁黄网站禁片午夜丰满| 亚洲av成人一区二区三| 国产亚洲精品第一综合不卡| 一夜夜www| 免费久久久久久久精品成人欧美视频| 老熟妇乱子伦视频在线观看| 人妻 亚洲 视频| 最新的欧美精品一区二区| 国产精品永久免费网站| 在线观看www视频免费| 日本黄色日本黄色录像| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 大香蕉久久网| 色婷婷av一区二区三区视频| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品sss在线观看 | 三级毛片av免费| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 国产精品久久电影中文字幕 | 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91| 久久人妻av系列| 老司机靠b影院| 一个人免费在线观看的高清视频| 在线观看日韩欧美| 中文字幕av电影在线播放| 中文字幕制服av| 国产av精品麻豆| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 久热这里只有精品99| 99riav亚洲国产免费| 亚洲色图综合在线观看| av线在线观看网站| 一个人免费在线观看的高清视频| 国产区一区二久久| av不卡在线播放| 精品视频人人做人人爽| 一边摸一边抽搐一进一小说 | 国产又爽黄色视频| 18禁裸乳无遮挡免费网站照片 | 老鸭窝网址在线观看| 中文字幕最新亚洲高清| 一进一出抽搐gif免费好疼 | 色94色欧美一区二区| 亚洲免费av在线视频| 亚洲一区中文字幕在线| 国产精品免费一区二区三区在线 | 国产人伦9x9x在线观看| 超碰97精品在线观看| 成人亚洲精品一区在线观看| 久久久久视频综合| 一级a爱视频在线免费观看| 日韩欧美三级三区| 一级作爱视频免费观看| 丝袜美足系列| 国产精品久久久av美女十八| 欧美在线一区亚洲| 9色porny在线观看| 欧美+亚洲+日韩+国产| 久久人妻福利社区极品人妻图片| 大片电影免费在线观看免费| 国产视频一区二区在线看| 亚洲av成人av| av片东京热男人的天堂| 在线观看66精品国产| 高清视频免费观看一区二区| 日韩有码中文字幕| 又黄又粗又硬又大视频| 久久精品国产亚洲av香蕉五月 | 下体分泌物呈黄色| 亚洲久久久国产精品| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| a级片在线免费高清观看视频| 在线观看日韩欧美| 一本大道久久a久久精品| 国产蜜桃级精品一区二区三区 | 国产精品98久久久久久宅男小说| 免费在线观看完整版高清| 美女 人体艺术 gogo| 下体分泌物呈黄色| www.999成人在线观看| 在线av久久热| 国产精品免费视频内射| 日韩三级视频一区二区三区| 在线av久久热| 在线观看免费视频日本深夜| 欧美日本中文国产一区发布| 一级毛片女人18水好多| 国产精品综合久久久久久久免费 | 国产成人av教育| 激情在线观看视频在线高清 | 老司机午夜福利在线观看视频| 亚洲欧美激情在线| 香蕉丝袜av| 久久热在线av| 国产男靠女视频免费网站| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 国产亚洲一区二区精品| 黄色视频,在线免费观看| 制服人妻中文乱码| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 校园春色视频在线观看| 日韩免费av在线播放| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 女人久久www免费人成看片| 午夜久久久在线观看| 国产精品综合久久久久久久免费 | 亚洲成国产人片在线观看| 欧美日韩黄片免| 亚洲av熟女| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 日本撒尿小便嘘嘘汇集6| 黄网站色视频无遮挡免费观看| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 在线天堂中文资源库| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 亚洲色图 男人天堂 中文字幕| 高清欧美精品videossex| 国产一区二区三区综合在线观看| 淫妇啪啪啪对白视频| 欧美黑人欧美精品刺激| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 制服人妻中文乱码| 他把我摸到了高潮在线观看| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区| 满18在线观看网站| 久久精品亚洲熟妇少妇任你| 亚洲九九香蕉| 亚洲欧美一区二区三区久久| 亚洲av电影在线进入| 国产1区2区3区精品| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 久热这里只有精品99| 大片电影免费在线观看免费| 波多野结衣av一区二区av| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 视频在线观看一区二区三区| 不卡av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 高清在线国产一区| av在线播放免费不卡| 女人被狂操c到高潮| 国产在线一区二区三区精| av福利片在线| 亚洲中文字幕日韩| 人成视频在线观看免费观看| 色综合婷婷激情| 一二三四社区在线视频社区8| 在线播放国产精品三级| 搡老岳熟女国产| 精品无人区乱码1区二区| 亚洲全国av大片| 免费观看a级毛片全部| 在线观看www视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲专区国产一区二区| 在线看a的网站| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 日日夜夜操网爽| 天堂动漫精品| 免费在线观看日本一区| 国产精品二区激情视频| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 婷婷精品国产亚洲av在线 | 亚洲一区中文字幕在线| 欧美日韩乱码在线| 精品国产国语对白av| 久久国产精品大桥未久av| 丝袜美足系列| 久久久国产精品麻豆| 99国产精品99久久久久| 女性生殖器流出的白浆| 怎么达到女性高潮| av在线播放免费不卡| 777米奇影视久久| 精品久久久久久,| 国产成人欧美在线观看 | 国产精品美女特级片免费视频播放器 | 国产激情欧美一区二区| 国产欧美日韩精品亚洲av| av国产精品久久久久影院| 日本黄色日本黄色录像| 色尼玛亚洲综合影院| 丝袜在线中文字幕| 十八禁人妻一区二区| 国产免费男女视频| 国产精品免费一区二区三区在线 | 搡老熟女国产l中国老女人| 久久精品人人爽人人爽视色| 精品国内亚洲2022精品成人 | 一区在线观看完整版| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 黄色 视频免费看| 国产精品美女特级片免费视频播放器 | 国产1区2区3区精品| 亚洲熟妇熟女久久| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 亚洲精品粉嫩美女一区| 啦啦啦在线免费观看视频4| 日韩三级视频一区二区三区| 看片在线看免费视频| 露出奶头的视频| 国产成+人综合+亚洲专区| 狠狠婷婷综合久久久久久88av| 岛国在线观看网站| 一级,二级,三级黄色视频| a级毛片黄视频| 久久久久久久久久久久大奶| 一二三四在线观看免费中文在| 中国美女看黄片| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 不卡一级毛片| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 国产麻豆69| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 精品一品国产午夜福利视频| 国产激情久久老熟女| 欧美午夜高清在线| 精品国内亚洲2022精品成人 | 嫁个100分男人电影在线观看| 久久久精品区二区三区| 一级作爱视频免费观看| 18禁观看日本| 操美女的视频在线观看| 在线观看一区二区三区激情| 高清av免费在线| 宅男免费午夜| 日日爽夜夜爽网站| 天天添夜夜摸| 欧美激情久久久久久爽电影 | 国产精品亚洲一级av第二区| 国产精品成人在线| 日韩免费av在线播放| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 涩涩av久久男人的天堂| 欧美成人免费av一区二区三区 | 亚洲国产欧美一区二区综合| 又紧又爽又黄一区二区| 欧美人与性动交α欧美精品济南到| 99国产极品粉嫩在线观看|