• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    2015-11-03 07:02:00JizheHAIWenleiSUNYujunZHOU
    機床與液壓 2015年3期
    關鍵詞:風力機氣動風機

    Ji-zhe HAI, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    Ji-zhe HAI*, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    Taking the S818 airfoil of 1.5 MW wind turbine blade as the research object. Model of the finite element of airfoil flow field was built in this paper. The non-viscous incompressible Navier-stokes equations are used as flow control equation, which conducted numerical simulation analysis on Ice-free airfoil, airfoil of rime ice, chord-length ice, and horn ice. The pressure distribution are obtained from the lift-drag ratio, velocity vector and surface pressure of different thickness of the blade airfoil in the angle of attack from -2° to 20°.The results showed that the thicker of the ice coating, the shaper maximum lift-drag ratio of airfoil are decreased. Moreover, certain thickness of chord length ice and horn ice leads to the mutation of the loss of lift-drag ratio. When ice thickness is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%, the chord length ice at 11.97% and rime ice at 6.14%. In addition, the airfoil after icing would enter stall area in advance which deteriorates aerodynamic performance of blade and reduces the power coefficient of wind turbine.

    Wind turbine, Airfoil, Ice coating, Aerodynamic performance

    1 Introduction

    As the wind power is one of the important strategic substitute energy, the research on wind turbine goes deeper both at home and abroad. Onshore wind energy resources in Xinjiang possessing nine large fetch accounts for 37% of the national total, only second to Inner Mongolia. But the climate in Xinjiang is so harsh, nearly half a year’s time in the snow-covered winter and great difference of day-night temperature that the wind turbine would be iced when runs under low temperature condition below zero especially meeting supercooled drops. blade of wind turbine prones to icing which changes the external shape and aerodynamic performance of blade. Thus it has negatively influence on transformation efficiency, may damage blade in severe case and causes accident. To improve the utilization efficiency of wind energy, it’s of great necessity to conduct a research on the effects of aerodynamic performance of icing wind turbine blades.

    A number of researches on icing wind turbine blades have been done internationally. For one thing, Montreuil [2] et al verified the variation about drops collection coefficient under various weather conditions through the calculation model adopted by theoretical analysis and experimental demonstration and they obtained good results. Forting [3] et al studied the effect of deice system especially by focusing on icing wind turbine and they described two theories about the formation of rime ice and glaze ice based on the experiments. For another, Zhang Dalin [4] etc. domestic scholars made a numerical simulation to calculate the air flow field of ice-forming surface impacted by supercooled droplets through applying Reynolds averagedN-Sequations andk-εtwo-equation turbulence model. Yi Xian [5] using Calculation model of Ice accretion process can predict the growth process of icing at the forefront of the wing.

    S818 of NREL airfoil was selected as the research object in this work. We established the finite element analysis model of Ice-free airfoil, rime ice, chord length ice and horn ice airfoil’s flow field and analyzed the variation of airfoil lift, drag and surface pressure characteristics of different thicknesses and different ice-model comparatively. Finally the mechanism of icing airfoil aerodynamic performance was obtained which provided fundamental basis for further valid measure of deicing.

    2 Icing airfoil and calculation model

    Due to the various temperature, air humidity and fluid speed, icing structure on the blade airfoil was different.The matted rime ice with poor transparency formed on the surface of airfoil when temperature was lower, below -15 degrees Celsius, because the droplets froze immediately and the inclusion of air in droplets had no chance to discharge. However, when the temperature was a little higher the droplets couldn’t freeze immediately and a part of droplet moved to rear airfoil so that groove formed in leading edge of airfoil and horn ice in rear. Moreover, chord length ice formed under the SLD (supercooled liquid drops) condition. The condensing droplets can’t evaporate completely with a heat protection system at leading edge and the backflow of droplets develops into ice covering on the upper and lower surfaces. As a result of above formation mechanism, the shape of chord length ice varies in different place which made the edge shape of chord length ice more complex than the horn ice’s. Airfoil with three icing shape was selected as research object. It was described in Fig.1.

    To begin with, the work chose Navier-Stokes equations of incompressible viscous based on Reynolds-averaged as flow-controlled equation, Spalart-Allmaras model which was suitable for airfoil flow as the turbulent model and SIMPLE pressure-velocity coupling equations as calculation methods [6]. Furthermore, the Convection Interpolation was second-order upwind scheme, Gradient Interpolation used least square method on a cell by cell basis and pressure interpolation was also second-order format. The sixth section of the S818 airfoil was selected as the research object. The chord length of Airfoil was 2.412 m, installation angle was 6.35°and the constant wind speed was 10 m/s. At this point, Reynolds number was 1.6×106. Divided airfoil flow field grid is shown in Fig.2.

    Fig.1 Solid model and two-dimensional trajectory of different ice-model

    Fig.2 S818 airfoil computing grid

    3 Basic theory of aerodynamics

    3.1 Wind turbine power coefficient

    The axial velocity inducing factoraand the radial velocity inducing factor b were stable value.

    (1)

    Where,λis tip speed ratio, combining with the knowledge of aerodynamics.CP, the power coefficient, can be calculated as follows.

    (2)

    Where,ζis lift-drag ratio andλtis the tip speed ratio of wind turbine design.

    It can be concluded from the above formula that coefficient of wind turbine power was irrelevant to lift and drag coefficient value but only relates to lift-drag ratio of airfoil. The greater the value of airfoil lift-drag ratio was, the higher power efficiency was.λtis a constant value for a running wind turbine so that only the airfoil lift-drag ratio affects the utilization efficiency of power.

    3.2 Fluid control equations

    This article studied on flow around of airfoil under low wind speed condition in which inflow parameters Reynolds number was 1×106-2×106and Mach number was 0.04-0.08. In general, the fluid with Mach number lower than 0.1 can be regarded as incompressible flows and heat transfers was out of consideration.

    The equations of numerical solution were Navier-Stokes equations of incompressible viscous based on Reynolds-averaged and it’s expressed in the Cartesian coordinate system[8] as follows:

    Mass equation:

    (3)

    Momentum equation:

    (4)

    Where,uis the average fluctuating velocity;xis the position vector;ρis the air density;Pis pressure;uefis the effective viscosity coefficient;u′ is the fluctuating instantaneous value;i,j,kis the three components of Cartesian coordinate system.

    3.3 Turbulence equations

    Taking the compressibility of fluid, feasibility of establishment, requirement of precision and the limit of time into consideration comprehensively, Spalart-Allmaras model was used as turbulence model to calculate boundary flux. This model was first used in flow calculations especially when adverse pressure gradient exists within the flow region. It did well in calculation of boundary layer which was often selected for calculation near the Flow separation area. Additionally, the model combined with wall function was applicable for low grid precision and we can get accurate solution. To solve the dynamic viscosity of the vortex, Spalart-Allmaras model is a simple equation relatively.

    The corresponding transport equation [9] is:

    (5)

    4 Icing airfoil lift and drag performance analysis

    Based on the different icing conditions, the work established aerodynamic analysis model on Ice-free airfoil, airfoil of rime ice, chord-length ice and horn ice.We analyzed and calculated the influence of icing thickness and different icing shape to the aerodynamic performance under the condition of inflow wind with attack angle from -2° to 20°.

    4.1 The influence of icing thickness to the aerodynamic performance

    It can be concluded from Fig.3 to Fig.5 that the lift-drag ratio of airfoil decreased with the increase of the thickness of three shapes of ice. What’s more, between -2° and 5° attack angle the lift-drag ratio of airfoil increased in a small range. After 5° attack angle it reduced greatly and the thicker ice was the greater amplitude reduction was. The calculation results are shown in Table 1.

    Fig.3 Lift-drag ratio curve of rime ice airfoil with different thickness

    Fig.4 Lift-drag ratio curve of chord length ice airfoil with different thickness

    Fig.5 Lift-drag ratio curve of horn ice airfoil with different thickness

    Table 1 Comparison of aerodynamic force of different icing thickness

    Icethickness0mm5mm10mm15mm20mmlossoflift-dragratioofrimeice/%05.466.419.8413.40lossoflift-dragratioofchordlengthice/%03.7911.9714.1216.50lossoflift-dragratioofhornice/%010.4711.2422.0422.91

    As is shown in Table 1, the change of the loss of maximum lift-drag ratio of rime ice appeared to be uniform. Nevertheless, reduction was three times than before when the thickness of chord length ice was 15 mm and it became uniform again at 15 or 20 mm thickness.

    There was a great mutation of reduction which was 10 times than the uniform when at 15 mm thickness of horn ice and reduction was back to uniform at 20 mm. Consequently, the increase of the horn ice thickness influenced coefficient of wind turbine power most.

    Besides, the maximum lift-drag ratio of ice-free airfoil appeared at 8° attack angle. However, when ice thickness of rime ice and horn ice was 15, 20 mm it appeared at 6° and 4° attack angle which led to the stall of airfoil in advance.

    4.2 The impact of different shape ice-model on airfoil aerodynamic lift and drag characteristics

    To obtain a further understanding about the impact of different ice model on the coefficient of wind turbine power, three shapes with 10 mm thickness of icing airfoil were selected to have a comparative analysis, as shown from Fig.6 to Fig.8.

    Fig.6 Lift coefficient comparison chart of airfoil with different thickness

    Fig.7 Drag coefficient comparison chart of airfoil with different thickness

    Fig.8 Lift-drag ratio comparison chart of airfoil with different thickness

    Fig.6 indicates that the three ice-models with same ice thickness and attack angle from 1° to 16°, rime ice had the largest lift coefficient values, followed by the horn ice and the chord length ice was the minimum. From -2° to 1° and 16°to 20° of the attack angle, chord length ice had the largest lift coefficient values, followed by the rime ice and the horn ice was the minimum.

    Fig.7 shows that three ice-models at the same attack angle less than 12° had almost the same drag coefficient values and after 12°horn ice had the largest drag coefficient values, followed by the rime ice and the chord length ice was the minimum.

    At 10 mm icing thickness, the lift coefficient increased rapidly in a range of low attack angle while the drag coefficient increased sharply with the increase of attack angle. It can be concluded from the analysis of Table 2 that at the same thickness, the most evident reduction of lift-drag ratio was caused by horn ice and the stall of airfoil occurred ahead.

    Table 2 Comparison of aerodynamic force of different ice-models

    Ice-modelIce-free10mmrimeice10mmchordlengthice10mmhorniceMaximumlift-dragratio33.8683631.6963229.8148125.8786Lossoflift-dragratio06.41%11.97%22.04%Correspondingattackanglesofmaximumlift-dragratio8°8°8°6°

    5 The analysis of surface pressure and velocity field of icing airfoil

    The overall dimension of airfoil changed after icing which altered the speed and direction of the flow through blade [10]. Taking airfoil of three 10 mm thickness ice-model for study, velocity field and pressure on the different ice-model surface were obtained through analysis at 10° of attack angle, as shown in Fig.9 and Fig.10.

    Comparing Fig. 9 (a) and (b), it can be found that there was little difference between the separation area in trailing edge of rime icing airfoil and no ice airfoil. Although the rime ice made the upper surface velocity increase obviously, the lower surface increased accordingly which decreased the pressure difference on the whole.

    Fig.9 (d) indicates that there was a big separation bubble in flow field with the existence of horn ice. Because of the stagnation point on ice, boundary layer can’t coordinate the adverse pressure gradient appearing on the top of horn ice. The shape mutation in leading edge increased the flow velocity, changed the flow direction and separated flow on upper surface which gave birth to the low velocity area on near wall and vortex in trailing edge. Moreover, the big separation bubble redistributed pressure so the impulse changed, lift decreased and resistance increased.

    Fig.9 The flow field distribution of four icing airfoil types at attack angle of 10°

    Fig.9 (c) shows that in airfoil of chord length ice from leading edge to the one-third chord length the flow velocity decreased and flow direction became irregular. Also, after one-third chord length on the lower surface the flow separated and it led to the low velocity with vortex coming into being on near wall between the chord length ice and trailing edge while. Meanwhile, the flow velocity on far wall was greater than on no ice airfoil.

    In a word, velocity field of chord length ice airfoil is complex and this icing type lengthens the downward flow and it develops the bound layer along the chord length direction. The shape always was various in different position of the chord length which made it more complicated than horn ice on influence of coefficient of wind turbine power.

    From Fig.10 (a) and (b), it can be concluded that 10 mm rime ice almost had no effect on upper and lower pressure distributions and it just increased the pressure difference slightly. Comparing the 10mm chord length airfoil with no ice airfoil, the chord length ice had greatly changed the pressure distribution on airfoil surface especially when the upper surface pressure decreased suddenly after increase and the lower surface pressure distribution was irregular. After the fluid flowing through the chord length icing airfoil the pressure distribution gradually became steady but the upper and lower pressure difference was approximately a half than before.

    Fig.10 (a) and (d) shows that upper and lower surface pressure distributions with obvious fluctuations was extremely uneven in leading edge of horn ice airfoil. Specifically, upper pressure difference tended to be stable near one-third chord length of airfoil and it slowly increased similar to no-ice airfoil’s near trailing edge. From one-tenth of chord length the lower surface pressure distributions tended to be stable and to trailing edge surface pressure value remained the same. Thus, on account of the significant angularity of horn ice, static pressure of whole airfoil surface changed and vortex was formed in the rear airfoil.

    Fig.10 Surface static pressure distribution curve of four kinds of airfoil at 10° attack angle

    6 Conclusions

    In summary, through the aerodynamic performance numerical simulation of three ice-model (rime ice, chord length ice and horn ice) airfoil, the work analyzed the effect of different ice-model on aerodynamic performance of the airfoil in three aspects from the lift and drag, the velocity field and surface pressure distribution.

    The results are as follows :

    1) With the increase of the thickness of three ice-models, the maximum lift-drag ratio of airfoil decreased and in different degree the stall occurred in advance. After 5° attack angle the lift-drag ratio comparing with the ice-free airfoil’s reduced greatly and the thicker ice was the greater amplitude reduction was. Certain thickness of chord length ice and horn ice led to the mutation of the loss of lift-drag ratio and the influence of horn ice was more significant for the amplitude reduction was 10 times than normal.

    2) When ice thickness of three ice-models is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%,the chord length ice at 11.97% and rime ice at 6.14%. All results above indicate that horn ice has the greatest impact on airfoil aerodynamic performance, followed by the rime ice and the chord length ice is the slightest.

    Those results provide theoretical basis for feasible deicing measure and efficient strategy of fan control in different season to guarantee the security and stability of fan operation.

    Acknowledgements

    This paper is supported by National Natural Science Foundation of China (No.51065026 and No.51465055) and the Natural Science Foundation of Xinjiang (No. 2014211A010).

    [1]Liu Xiong, Chen Yan, Ye Zhiquan. Analysis of the influence of aerodynamic performance enlarging the airfoil’s trailing edge thickness [J]. Solar Technology. 2006(27): 489-495.

    [2] Montreuil E, Chazottes A, Guffond D. Enhancement of Prediction Capability in Icing Accretion and related Performance Penalties Part I: Three-dimensional CFD Prediction of the Ice Accretion. 1st AIAA Atmospheric and Space Environments Conference.

    [3] Fortin G, Perron J. Wind Turbine Icing and De-Icing[C]// 47th AIAA Aerospace Sciences MeetingIncluding The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.

    [4]Zhang Dalin, Yang Xi, Haisong A. Numerical simulation of supercooled water droplets impingement on icing surface[J]. Journal of Aerospace Power, 2003 (1): 87-91.

    [5]Yi Xian, Zhu Guolin. Numerically simulating of ice accretion on airfoil[Z]. 2002, 20 (4):428-433.

    [6]Hai Jizhe, Sun Wenlei, Zhou Yujun. Study on Aerodynamic Characteristic of Blade Airfoil of Wind Turbine [J]. Fluid machinery, 2013, 41(8): 30-34.

    [7]Jiang Haibo, Cao Shuliang, Yang Ping. Power limit of horizontal axis wind turbine [J]. Chinese Journal of Mechanical Engineering, 2011(47): 112-118.

    [8]Tang Jin. Research of Improving Aerodynamic Performance of Wind Turbines Blade Profile [D]. Beijing: Tsinghua University, 2004.

    [9]Wang Fujun. Fluid dynamics analysis of computational[M]. Beijing: Tsinghua University Press, 2004.

    [10]Wang Wenlong, He Bin, et al. Numerical simulation of aerodynamic performance on icing airfoil of wind turbines blade [J]. Renewable energy resources, 2013(31): 60-64.

    風力機葉片覆冰翼型氣動性能的數(shù)值模擬

    海幾哲*,孫文磊,周玉俊

    新疆大學 機械工程學院,烏魯木齊830049

    以某1.5 MW風機葉片S818翼型為研究對象,建立了翼型流場有限元分析模型。采用基于Reynolds平均的Navier-Stokes不可壓縮粘性方程作為流動控制方程,對無冰翼型、霜冰、弦長冰及角冰翼型進行數(shù)值模擬分析,得到了-2°-20°攻角下不同厚度葉片翼型的升阻比、速度矢量和表面壓力分布。研究結果表明:覆冰越厚,翼型的最大升阻比降幅越大。對于弦長冰和角冰在厚度達到一定值時,使得升阻比損失產(chǎn)生較大的突變。在覆冰厚度都為10 mm時,角冰的最大升阻比減幅最大,達到22.04%;其次是弦長冰為11.97%,霜冰的最小為6.41%。同時結冰后的翼型會提前進入失速區(qū),導致槳葉氣動性能惡化,降低了風機的功率系數(shù)。

    風力機;翼型;覆冰;氣動性能

    8 March 2015; revised 11 May 2015;

    Ji-zhe HAI, Associate professor.

    Doctor. E-mail: haijizhe@163.com

    10.3969/j.issn.1001-3881.2015.18.002 Document code: A

    TK83

    accepted 13 July 2015

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    風力機氣動風機
    中寰氣動執(zhí)行機構
    基于NACA0030的波紋狀翼型氣動特性探索
    基于UIOs的風力機傳動系統(tǒng)多故障診斷
    測控技術(2018年5期)2018-12-09 09:04:38
    基于反饋線性化的RLV氣動控制一體化設計
    測控技術(2018年9期)2018-11-25 07:44:24
    風機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    風機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    節(jié)能技術EPU在AV71風機上的應用
    TS3000系統(tǒng)防喘振控制在 AV80-14風機中的應用
    大型風力機整機氣動彈性響應計算
    小型風力機葉片快速建模方法
    太陽能(2015年6期)2015-02-28 17:09:35
    国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 女警被强在线播放| 一个人免费在线观看电影| 18禁在线播放成人免费| 黄色视频,在线免费观看| 久久中文看片网| 国产真实伦视频高清在线观看 | 免费观看的影片在线观看| 老鸭窝网址在线观看| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 伊人久久精品亚洲午夜| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 麻豆国产av国片精品| 一本精品99久久精品77| 动漫黄色视频在线观看| 亚洲国产欧洲综合997久久,| 在线观看免费午夜福利视频| 波多野结衣巨乳人妻| 悠悠久久av| 99热只有精品国产| 午夜精品久久久久久毛片777| 国产综合懂色| 亚洲一区二区三区色噜噜| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 中文在线观看免费www的网站| 少妇高潮的动态图| 国产精品久久久人人做人人爽| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 岛国在线观看网站| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 亚洲av不卡在线观看| 欧美日韩国产亚洲二区| 亚洲乱码一区二区免费版| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 啦啦啦观看免费观看视频高清| 精品国产超薄肉色丝袜足j| 香蕉av资源在线| 一边摸一边抽搐一进一小说| 夜夜躁狠狠躁天天躁| 亚洲中文字幕日韩| 长腿黑丝高跟| 欧美日韩一级在线毛片| 一级毛片高清免费大全| av天堂在线播放| 一个人免费在线观看的高清视频| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| 麻豆久久精品国产亚洲av| 国产成年人精品一区二区| 桃红色精品国产亚洲av| 在线播放国产精品三级| 三级国产精品欧美在线观看| 久久久久久大精品| 老司机午夜福利在线观看视频| 欧美+日韩+精品| 亚洲真实伦在线观看| 亚洲av电影在线进入| 午夜激情福利司机影院| 日韩欧美在线乱码| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲,欧美精品.| 国产精华一区二区三区| 看片在线看免费视频| 精品人妻偷拍中文字幕| 欧美性感艳星| 免费看日本二区| 国产精品亚洲美女久久久| 日本与韩国留学比较| 99国产综合亚洲精品| 最新在线观看一区二区三区| 欧美3d第一页| 久久久久久久亚洲中文字幕 | 最新美女视频免费是黄的| 九九久久精品国产亚洲av麻豆| 日韩免费av在线播放| 夜夜看夜夜爽夜夜摸| 欧美日韩黄片免| 91久久精品电影网| 欧美日本亚洲视频在线播放| 最新中文字幕久久久久| 欧美黑人欧美精品刺激| 有码 亚洲区| 两个人视频免费观看高清| 性色avwww在线观看| 老司机午夜十八禁免费视频| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 欧美不卡视频在线免费观看| 88av欧美| 桃色一区二区三区在线观看| 手机成人av网站| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久 | 内射极品少妇av片p| 亚洲精品成人久久久久久| 亚洲av熟女| 亚洲男人的天堂狠狠| 亚洲精品一卡2卡三卡4卡5卡| 国产私拍福利视频在线观看| aaaaa片日本免费| 特级一级黄色大片| 亚洲激情在线av| 久久久色成人| 国产伦在线观看视频一区| 97碰自拍视频| 精品国产亚洲在线| 亚洲内射少妇av| a级毛片a级免费在线| 久久国产精品影院| 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 久久久久久九九精品二区国产| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| 国产精品日韩av在线免费观看| 免费看美女性在线毛片视频| 一个人观看的视频www高清免费观看| 欧美色视频一区免费| 首页视频小说图片口味搜索| 精品久久久久久久久久免费视频| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| ponron亚洲| 草草在线视频免费看| 他把我摸到了高潮在线观看| 成人特级av手机在线观看| 欧美色视频一区免费| 看黄色毛片网站| 国产真实伦视频高清在线观看 | 一二三四社区在线视频社区8| bbb黄色大片| 成人永久免费在线观看视频| 国产精品一区二区三区四区久久| 99久久综合精品五月天人人| 三级国产精品欧美在线观看| 欧美成人性av电影在线观看| 国产综合懂色| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 一a级毛片在线观看| 美女cb高潮喷水在线观看| 一级毛片高清免费大全| 色综合亚洲欧美另类图片| 99精品久久久久人妻精品| 无限看片的www在线观看| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| 久久精品夜夜夜夜夜久久蜜豆| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看 | 国产激情欧美一区二区| 在线观看一区二区三区| 女警被强在线播放| 搞女人的毛片| 熟女电影av网| 日本在线视频免费播放| 欧美日本视频| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 国产精品 国内视频| www国产在线视频色| 99热精品在线国产| 大型黄色视频在线免费观看| 成人特级av手机在线观看| 国产成人aa在线观看| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 黄片小视频在线播放| 午夜免费激情av| xxx96com| 三级国产精品欧美在线观看| 亚洲自拍偷在线| 亚洲精品国产精品久久久不卡| 欧美成人性av电影在线观看| 久久草成人影院| 天天一区二区日本电影三级| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| aaaaa片日本免费| 在线播放无遮挡| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| 热99re8久久精品国产| 亚洲av中文字字幕乱码综合| 国产精品综合久久久久久久免费| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| tocl精华| 一进一出抽搐动态| 99热这里只有是精品50| 午夜两性在线视频| 97超视频在线观看视频| 午夜福利视频1000在线观看| 中文字幕人妻熟人妻熟丝袜美 | 久久久久久国产a免费观看| 一进一出抽搐动态| 亚洲国产欧美网| 欧美日本亚洲视频在线播放| 观看美女的网站| 欧美一级毛片孕妇| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 一夜夜www| 婷婷丁香在线五月| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 欧美成人一区二区免费高清观看| 欧美极品一区二区三区四区| 手机成人av网站| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 中文在线观看免费www的网站| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 一级毛片高清免费大全| 免费看a级黄色片| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 在线a可以看的网站| 丰满的人妻完整版| 亚洲av电影在线进入| 悠悠久久av| 国产精品一及| 久久精品91无色码中文字幕| 午夜亚洲福利在线播放| 国产精品免费一区二区三区在线| 禁无遮挡网站| av专区在线播放| 97碰自拍视频| 午夜亚洲福利在线播放| 国产在视频线在精品| 国产高潮美女av| 亚洲无线在线观看| 国产日本99.免费观看| h日本视频在线播放| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看| 中文在线观看免费www的网站| 午夜久久久久精精品| 欧美中文综合在线视频| 国产精品一区二区三区四区免费观看 | 国产真实乱freesex| 欧美最黄视频在线播放免费| 久久国产精品影院| 国产精品三级大全| 99热6这里只有精品| 国产精品99久久久久久久久| av欧美777| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产在视频线在精品| h日本视频在线播放| 久久久久久久久久黄片| 亚洲精华国产精华精| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 久久香蕉国产精品| 黄色片一级片一级黄色片| 亚洲最大成人中文| 欧美日韩乱码在线| 国产亚洲精品av在线| 亚洲国产欧洲综合997久久,| 久久久久久久亚洲中文字幕 | 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 国产伦在线观看视频一区| 亚洲国产欧美人成| 成人欧美大片| 免费高清视频大片| 男女那种视频在线观看| 午夜免费观看网址| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 亚洲真实伦在线观看| 熟女人妻精品中文字幕| 精品一区二区三区视频在线观看免费| 男插女下体视频免费在线播放| 欧美日韩精品网址| 色播亚洲综合网| 特级一级黄色大片| 天美传媒精品一区二区| 老司机深夜福利视频在线观看| 国产精品三级大全| 国产精品野战在线观看| 亚洲av日韩精品久久久久久密| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 色在线成人网| 国产单亲对白刺激| 一级a爱片免费观看的视频| 国内精品久久久久久久电影| 此物有八面人人有两片| 三级毛片av免费| 日本黄大片高清| 最后的刺客免费高清国语| 国产乱人伦免费视频| 两个人视频免费观看高清| 国产午夜精品论理片| 琪琪午夜伦伦电影理论片6080| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 哪里可以看免费的av片| 国产欧美日韩精品一区二区| 床上黄色一级片| 久久久久久久亚洲中文字幕 | 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 成人无遮挡网站| 欧美激情久久久久久爽电影| 51午夜福利影视在线观看| 91九色精品人成在线观看| 午夜福利免费观看在线| 搡老熟女国产l中国老女人| 国产精品日韩av在线免费观看| 脱女人内裤的视频| 久久香蕉国产精品| 少妇的逼水好多| 国产亚洲欧美在线一区二区| 精品久久久久久久人妻蜜臀av| 99精品欧美一区二区三区四区| av黄色大香蕉| 亚洲欧美激情综合另类| 亚洲中文字幕一区二区三区有码在线看| 亚洲狠狠婷婷综合久久图片| 国产成人aa在线观看| 成年女人永久免费观看视频| 久久午夜亚洲精品久久| 国产亚洲精品一区二区www| 美女大奶头视频| a在线观看视频网站| 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 美女 人体艺术 gogo| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 免费看十八禁软件| 久久久久免费精品人妻一区二区| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| a级毛片a级免费在线| 黄色丝袜av网址大全| 午夜福利在线在线| 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 国产成人啪精品午夜网站| 亚洲美女视频黄频| 国产综合懂色| 99在线人妻在线中文字幕| 怎么达到女性高潮| 19禁男女啪啪无遮挡网站| 国产伦精品一区二区三区四那| 女生性感内裤真人,穿戴方法视频| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 亚洲在线自拍视频| 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 少妇的逼好多水| 两个人看的免费小视频| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 老熟妇乱子伦视频在线观看| 18禁裸乳无遮挡免费网站照片| 小说图片视频综合网站| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| tocl精华| 午夜福利在线在线| 精品日产1卡2卡| 国产精品av视频在线免费观看| 国产高清videossex| 亚洲av美国av| 亚洲中文日韩欧美视频| 国产黄色小视频在线观看| 国产伦在线观看视频一区| а√天堂www在线а√下载| 男女那种视频在线观看| 色在线成人网| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 少妇人妻精品综合一区二区 | 亚洲精品一区av在线观看| xxxwww97欧美| 国产真人三级小视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品乱码久久久久久99久播| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 我要搜黄色片| 亚洲色图av天堂| www.www免费av| av在线蜜桃| 美女 人体艺术 gogo| 村上凉子中文字幕在线| 99热这里只有精品一区| 久久中文看片网| 99精品在免费线老司机午夜| 免费大片18禁| 免费无遮挡裸体视频| www.www免费av| 每晚都被弄得嗷嗷叫到高潮| 桃色一区二区三区在线观看| 中文资源天堂在线| 观看美女的网站| 欧美日韩精品网址| 免费观看的影片在线观看| 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 国产高清三级在线| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 日韩欧美精品免费久久 | 国产一区二区亚洲精品在线观看| 又黄又粗又硬又大视频| 亚洲黑人精品在线| 久久香蕉精品热| 成年人黄色毛片网站| 97碰自拍视频| 色综合欧美亚洲国产小说| 国产精品久久久人人做人人爽| 亚洲欧美日韩高清在线视频| 偷拍熟女少妇极品色| 免费无遮挡裸体视频| 毛片女人毛片| 午夜福利在线在线| 法律面前人人平等表现在哪些方面| 搡女人真爽免费视频火全软件 | 精品国产美女av久久久久小说| 国内精品久久久久精免费| 国产精品自产拍在线观看55亚洲| 网址你懂的国产日韩在线| 青草久久国产| 成人国产一区最新在线观看| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 色综合婷婷激情| 欧美在线一区亚洲| 国产一级毛片七仙女欲春2| 操出白浆在线播放| av国产免费在线观看| 最新美女视频免费是黄的| 欧美一区二区国产精品久久精品| www日本在线高清视频| www.www免费av| 好男人电影高清在线观看| 欧美一级毛片孕妇| 天堂动漫精品| 国产伦一二天堂av在线观看| 中国美女看黄片| 日韩人妻高清精品专区| 99久国产av精品| 99热只有精品国产| 国产亚洲精品一区二区www| 久久精品91无色码中文字幕| 精品人妻偷拍中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲18禁久久av| 免费av观看视频| 免费人成视频x8x8入口观看| 99久久久亚洲精品蜜臀av| 又爽又黄无遮挡网站| 国产精品一及| 国产亚洲精品综合一区在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品综合久久久久久久免费| 欧美一级毛片孕妇| 十八禁网站免费在线| 亚洲无线观看免费| 高清毛片免费观看视频网站| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 99在线人妻在线中文字幕| 免费看光身美女| 国产亚洲精品久久久com| 欧美日本亚洲视频在线播放| 最新美女视频免费是黄的| 久久久精品欧美日韩精品| 黄色日韩在线| 午夜激情欧美在线| 日韩欧美一区二区三区在线观看| 中文字幕av在线有码专区| 亚洲国产精品成人综合色| 不卡一级毛片| 国产精品久久久久久久久免 | 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| 欧美黄色淫秽网站| 国产成年人精品一区二区| 90打野战视频偷拍视频| 午夜免费男女啪啪视频观看 | 舔av片在线| 在线国产一区二区在线| 欧美一区二区国产精品久久精品| 免费一级毛片在线播放高清视频| 亚洲无线在线观看| 国产熟女xx| 亚洲欧美一区二区三区黑人| 婷婷亚洲欧美| 色播亚洲综合网| 在线天堂最新版资源| 午夜福利视频1000在线观看| 我的老师免费观看完整版| 国产真实乱freesex| 亚洲av成人不卡在线观看播放网| 夜夜夜夜夜久久久久| 国产午夜精品久久久久久一区二区三区 | 极品教师在线免费播放| 国产亚洲精品综合一区在线观看| 听说在线观看完整版免费高清| 香蕉久久夜色| 欧美zozozo另类| 波野结衣二区三区在线 | 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 亚洲色图av天堂| 在线天堂最新版资源| 国产精品自产拍在线观看55亚洲| 一本综合久久免费| 久久久久久久精品吃奶| 九九在线视频观看精品| 一级作爱视频免费观看| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 国产视频内射| 丁香欧美五月| 欧洲精品卡2卡3卡4卡5卡区| 亚洲,欧美精品.| 日日夜夜操网爽| 国产精品自产拍在线观看55亚洲| 欧美绝顶高潮抽搐喷水| 亚洲aⅴ乱码一区二区在线播放| 日本成人三级电影网站| 好男人在线观看高清免费视频| 久久精品人妻少妇| 女人被狂操c到高潮| 午夜a级毛片| 久久人妻av系列| 国产黄a三级三级三级人| 中文资源天堂在线| 色播亚洲综合网| 国产午夜福利久久久久久| 无人区码免费观看不卡| 美女免费视频网站| av黄色大香蕉| 国产一区二区在线av高清观看| 亚洲国产日韩欧美精品在线观看 | 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 伊人久久精品亚洲午夜| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 日韩亚洲欧美综合| 国产三级中文精品| aaaaa片日本免费| 91av网一区二区| e午夜精品久久久久久久| 色在线成人网| 欧洲精品卡2卡3卡4卡5卡区| 色吧在线观看| 亚洲av中文字字幕乱码综合| 深爱激情五月婷婷| 色老头精品视频在线观看| 午夜老司机福利剧场| av在线蜜桃| 最新在线观看一区二区三区| 亚洲美女视频黄频| 免费观看精品视频网站| 偷拍熟女少妇极品色| av天堂中文字幕网| 欧美日韩福利视频一区二区| 少妇人妻一区二区三区视频| svipshipincom国产片| www.999成人在线观看| 欧美日本视频| 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 少妇的丰满在线观看|