• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Car following model with consideration of the vehicle’s mechanical inertia effect and its stability analysis

    2015-11-03 07:08:07TongZHOUYuguangCHENYuxuanLI
    機(jī)床與液壓 2015年3期
    關(guān)鍵詞:前人交通流慣性

    Tong ZHOU, Yu-guang CHEN, Yu-xuan LI

    (1College of Information Engineering, Chongqing Institute of Engineering, Chongqing 402260, China)(2College of Computer Science, Chongqing University, Chongqing 400044, China)(3 College of Electronic Information & Automation, Chongqing University of Technology, Chongqing 400054, China)

    ?

    Car following model with consideration of the vehicle’s mechanical inertia effect and its stability analysis

    Tong ZHOU1, 2*, Yu-guang CHEN3, Yu-xuan LI1

    (1College of Information Engineering, Chongqing Institute of Engineering, Chongqing 402260, China)(2College of Computer Science, Chongqing University, Chongqing 400044, China)(3College of Electronic Information & Automation, Chongqing University of Technology, Chongqing 400054, China)

    In order to describe the car-following behavior more actually in real traffic, a new car following model by considering the vehicle’s mechanical inertia effect is proposed on the basis of the full velocity difference car following model. The stability condition is given by applying the control theory. The simulation results are compared with that of the previous models, and show that our model can overcome the deficiency that the acceleration of leading vehicle of motorcade instantly jumps in those models, and the traffic jam can be suppressed as the coefficient of vehicle’s mechanical inertia effect decreases. The simulation results are consistent with theoretical analysis.

    Traffic flow, Traffic congestion, Car following model, Vehicle’s mechanical inertia effect

    1 Introduction

    In recent years, the problems of traffic jam have been widely investigated. In order to understand the mechanism and properties of traffic jam, some traffic flow models have been presented, such as car-following models, cellular automaton models, gas kinetic models and hydrodynamic models [1-4]. Among these models, the current car-following model is an effective method to study the microscopic traffic flow. It is well known that the optimal velocity (OV) model proposed by Bando et al.[5], which is one of favorable car-following traffic models, has successfully described the formation of traffic jams in a simple way. Subsequently, inspired by the OV model, some new car-following models were put forward to describe the traffic nature successfully [6-14]. Some of them were extended by introducing multiple information of headway or relative velocity [6-9], and others were considered the two factors at the same time [10-15].

    These car-following models mentioned above can reproduce many complex actual traffic phenomena. However, these models cannot be used to study the complex phenomena resulted from the vehicle’s mechanical inertia effect since this effect is not considered in those models. In fact, the vehicle’s mechanical inertia can hinder the change of vehicle’s motion state, that is to say, the change of a car’s running state from one motion state to another motion state need a period of time due to the presence of the vehicle’s mechanical inertia effect rather than an instantly jump. In view of the above reasons, this research considers the influence of the vehicle’s mechanical inertia effect on traffic flow. Moreover, the present paper introduces a new car-following model considering the vehicle’s mechanical inertia effect.

    The paper is organized as follows: a new car-following model is introduced in the section 2; in section 3, the stability analysis is discussed; the starting process simulation and the traffic dynamics simulation are presented in section 4; section 5 presents the conclusions.

    2 Models

    In 1995, Bando et al. [5] proposed an optimal velocity model (OVM), and the motion equation is given as follows:

    (1)

    In order to overcome the deficiency, Helbing and Tilch [6] proposed a generalized force model (GFM), i.e.

    (2)

    WhereH(·) is the Heaviside function,λis a sensitivity coefficient, and Δvj(t) is the real velocity difference between the preceding carj+1 and the following carj. The simulation shows that the GF model is poor in the delay time of car motion. In view of the problem, Jiang et al. [7] modified the model by introducing the relative velocity, and the full velocity difference model (FVDM) was developed:

    (3)

    The results illustrate that FVDM has better agreement with the field data than OVM and GFM. These models mentioned above can reproduce some complex actual traffic phenomena but the models cannot be employed to study the effect of the vehicle’s mechanical inertia on traffic flow. In real traffic, the driving behavior is a process that a driver senses the information from the preceding vehicles and the ego-vehicle, and then analyzes and processes these information, and formulates an acceleration command to control his vehicle for achieving optimal state. In the possess, the acceleration command is just the driver’s desired acceleration which can change the state of the movement of his car, when it acts on the vehicle system, the desired acceleration will change to real acceleration due to the influence of the vehicle’s mechanical inertia effect. Therefore, a new car-following model considering the vehicle’s mechanical inertia effect is proposed

    (4)

    (5)

    Where thevmax=2 is the maximum velocity andhc=4 is the safe distance.

    3 Stability analyses

    This paper rewrites the dynamics equation of new car following model from the perspective of the control system as follows:

    (6)

    (7)

    To analyze the stability of steady-state solution (7), one can check the following linearization of Eq. (6) at solution (7).

    (8)

    The state-space expression of the new model can be obtained at the steady state (7):

    (9)

    From the frequency domain viewpoint, the linearized system can be written as:

    (10)

    WhereVj(s)=L(δvj+1(t)),Vj+1(s)=L(δvj+1(t)),L(·) denotes the Laplace transform (the Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems). The transform functionG(s) is given by

    (11)

    Where the characteristic polynomiald(s)=τλ(s3+τs2+(τk+τλ)s+τkΛ).

    Definition 1 Assumingd(s) is stable, ifH∞-norm of G(s) is less than 1, that is:

    (12)

    the traffic jams does not occur in our model. From the analysis above, the stability condition can be obtained as follow:

    (13)

    When small perturbations are added to the uniform traffic flow, traffic flow is stable and robust for low density because the condition (13) holds. When the density exceeds the critical density (namely, the condition (13) is unsatisfied), the uniform traffic flow becomes unstable and makes a phase transition to a congested flow [13,14]. This paper chooses the parameters according to the simulations in reference [0] and [11], where the sensitivity coefficient of the velocity differenceλ=0.8, the gain curve of |G(jw)| can be obtained as the figure in the below. It can be seen from Fig. 1 that whenτ=1,0.6,0.4, the stability condition (13) of our model is not satisfied, |G(jw)| has a peak greater than 1, which means that the perturbation in the process of the transmission will not damp to zeros. It is noted that with the decrease of the valueτ, the stability performance of our model become better. Whenτ=0.2, the gain of |G(jw)| keeps not greater than 1 which indicates the traffic system is stable. Whenτ=0, the stability condition of our model is the same as that of FVDM.

    Fig.1 The gain curve of theG(s)

    4 Simulation

    On the basis of the stability analysis, several numerical simulations are carried out to verify the performance of the model.

    4.1 The starting up process

    This research carry out the starting process simulation as that in reference [6] to compare physical properties of our model with those of FVDM under a traffic signal. Firstly, the traffic signal is red and all vehicles (10 cars in the simulation) are waiting with aheadway of 7.4 m, where the optimal velocity is zero. The coefficient of the vehicles’ mechanical delay chooses asτ=0.2. Then, the signal changes to green and vehicles start to move. The simulation results of these two models are shown in Fig.2 and Fig.3.

    From Fig.2, it can be found that when 10 vehicles start to move, the phenomenon that the leading vehicle’s acceleration instantly jump does not appear in traffic system. The acceleration of unobstructed leading vehicle of our model changes slowly, and the maximum acceleration of the leading vehicle of our model is lower than that of the FVDM at the beginning time since our model considers the vehicle’s mechanical inertia effect. In Fig.3, the velocities of the 10 vehicles in our model slowly increase to stable velocity, and the delay time of vehicles is bigger than that of FVD model. The simulation results show that the vehicle’s mechanical inertia effect plays an important role in the vehicle dynamic driving behavior.

    Fig.2 The acceleration of unobstructed leading vehicle in two models

    Fig.3 Motion of vehicles 1-10 starting from a traffic signal for FVDM and our model

    4.2 Verification of the stability analysis

    Now a numerical simulation is carried out to check the stability analysis and verification of the traffic phenomenon under a periodic boundary condition, the optimal velocity function is chosen as in [0]. The parameters are chosen asτ=0.5,k=0.41 andλ=0.8. It is assumed that there areN=100 cars running on the road with the lengthL=1 500 m,and the initial disturbance is the same as that in Ref. [7].

    Fig.4 shows the space-time evolution of the velocity aftert=0 time steps under the different parameterτ. The patterns (a)-(d) in Fig.4 exhibit the time evolution of the velocity forτ=1,0.6,0.4,0.2 respectively. In patterns (a)-(c), it can be seen clearly that the traffic flow is unstable and the speed fluctuation appears because the linear instability condition (14) is unsatisfied. At the same time, with the value ofτincreasing, the amplitude of velocity fluctuation will be amplified gradually with time, and the propagating backward stop-and-go traffic jam appears. However, under the same sensitivity, the limit case ofτ=0.2, due to the stability condition is satisfied, the stop-and-go phenomenon disappears and traffic flow turns uniform over the whole space in Fig.4(d). The results demonstrate that the vehicle’s mechanical inertia effect has an important effect upon the property of traffic flow, which means that the stability effect is weakened gradually, and the stop-and-go traffic jam becomes more serious in the traffic system with the increase ofτ.

    Fig.4 Space-time evolution of the headways aftert= 0 under the different value ofτ

    5 Conclusions

    In this paper, a new car following model is developed by taking the vehicle’s mechanical inertia effect into account on the basis of FVDM. The stability analyses have been conducted and the stable criterion is given by applying control theory. The comparisons between FVDM and our model are carried out in several simulations. The results of the starting up process show that the driving behaviors in our model are closer to the actual traffic phenomen. Finally the simulation of the vehicles’ dynamic evolution process indicates that the vehicle’s mechanical inertia has an important influence on the traffic flow.

    Acknowledgements

    This work was financially supported by Key scientific research project of the Chongqing Institute of Engineering (KJA201402), the Natural Science Foundation of China(61462008).

    [1]Pipes L A.An operational analysis of traffic dynamics[J].Journal of Applied Physics, 1953, 24(3): 274-281.

    [2]Chandler R E, Herman R, Montroll E W.Traffic dynamics: studies in car following[J].Operations Research, 1958, 6(2):165-184.

    [3]Newell G F.Nonlinear effects in the dynamics of car following[J].Operations Research, 1961, 9(2):209-229.

    [4]Gazis D C, Herman R, Rothery R W.Nonlinear follow-the-leader models of traffic flow[J].Operations Research, 1961, 9(4):545-567.

    [5]Bando M, Hasebe K, Nakayama A, et al.Dynamical model of traffic congestion and numerical simulation[J].Physical Review E,1995, 51: 1035-1042.

    [6]Helbing D, Tilch B.Generalized force model of traffic dynamics[J].Physical Review E, 1998, 58(1):133.

    [7]Jiang R, Wu Q, Zhu Z.Full velocity difference model for a car-following theory[J].Physical Review E, 2001, 64(1):017101.

    [8]Zhao X&Gao Z.A new car-following model: full velocity and acceleration difference model[J].The European Physical Journal B, 2005, 47(1):145-150.

    [9]Ge H X, Cui Y, Cheng R J.A car-following model with considering control signals from front and rear[J].Acta Phys.Sin., 2014, 63: 110504-7.

    [10]Yu S, Liu Q, Li X.Full velocity difference and acceleration model for a car-following theory[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(5), 1229-1234.

    [11]Tang T Q, Li C Y, Huang H J.A new car-following model with the consideration of the driver’s forecast effect[J].Phys.Lett.A, 2010, 374:1668-1672.

    [12]Jin S, Wang D H, Tao P F, Li P F.Non-lane-based full velocity difference car following model[J].Physica A, 2010, 389:4654-4662.

    [13]Zhou T, Sun D H, Kang Y R, Li H M,Tian C.A new car-following model with consideration of the prevision driving behavior[J].Commun.Nonlinear Sci.Numer.Simulat., 2014, 19:3820-3826.

    [14]Zhou T, Sun D H, Li H M, et al.A new coupled map car-following model considering drivers’ steady desired speed[J].Chin.Phys.B, 2014, 23: 050203-5.

    [15]Yu S, Liu Q, Li X.Full velocity difference and acceleration model for a car-following theory[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 1229-1234.

    考慮車輛機(jī)械慣性效應(yīng)的跟馳模型及其穩(wěn)定性分析

    周桐1,2*,陳渝光3,李雨宣1

    1.重慶工程職業(yè)技術(shù)學(xué)院 信息工程學(xué)院, 重慶402260 2.重慶大學(xué) 計(jì)算機(jī)學(xué)院, 重慶400044 3.重慶理工大學(xué) 電子信息與自動(dòng)化學(xué)院, 重慶400054

    為了更加真實(shí)地描述在實(shí)際交通中的跟馳行為,基于全速度差模型,提出一個(gè)考慮車輛機(jī)械慣性的跟馳模型。應(yīng)用線性控制理論給出模型的穩(wěn)定性條件。與前人提出的模型仿真結(jié)果對(duì)比,理論結(jié)果與數(shù)值仿真一致,表明本文提出的模型能夠克服前人模型中靜止車隊(duì)啟動(dòng)過程中頭車加速度出現(xiàn)瞬間跳躍現(xiàn)象,同時(shí)隨著車輛機(jī)械慣性系數(shù)的增加,交通擁堵更加容易發(fā)生。

    交通流; 交通擁堵; 跟馳模型; 車輛機(jī)械慣性

    9 March 2015; revised 7 June 2015;

    Tong ZHOU, Lecturer, Post-doctor,

    graduated from Chongqing University. E-mail: zhoutong

    10.3969/j.issn.1001-3881.2015.18.024 Document code: A

    U491.112

    accepted 5 August 2015

    851217@163.com

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    前人交通流慣性
    你真的了解慣性嗎
    沖破『慣性』 看慣性
    打漁人
    趣味古文
    無處不在的慣性
    陽光(2017年7期)2017-07-18 18:46:03
    普遍存在的慣性
    交通流隨機(jī)行為的研究進(jìn)展
    路內(nèi)停車對(duì)交通流延誤影響的定量分析
    具有負(fù)壓力的Aw-Rascle交通流的Riemann問題
    av有码第一页| 999久久久国产精品视频| 高清在线国产一区| 国产成人影院久久av| 天天添夜夜摸| 一进一出好大好爽视频| 亚洲片人在线观看| 听说在线观看完整版免费高清| 亚洲激情在线av| 亚洲美女黄片视频| 欧美三级亚洲精品| 欧美不卡视频在线免费观看 | 国产精品亚洲一级av第二区| 好看av亚洲va欧美ⅴa在| 国产伦在线观看视频一区| 欧美日本视频| 精品高清国产在线一区| 日日摸夜夜添夜夜添小说| www.熟女人妻精品国产| 在线播放国产精品三级| 国产成人av激情在线播放| 亚洲在线自拍视频| 一本精品99久久精品77| 亚洲欧洲精品一区二区精品久久久| 欧美一级毛片孕妇| 成年女人毛片免费观看观看9| 好男人在线观看高清免费视频| 国产亚洲av嫩草精品影院| 一级片免费观看大全| 国产高清有码在线观看视频 | 日韩有码中文字幕| 久9热在线精品视频| 青草久久国产| 一本久久中文字幕| 午夜免费激情av| 国产亚洲av嫩草精品影院| 欧美日韩福利视频一区二区| 日本一区二区免费在线视频| aaaaa片日本免费| 国产日本99.免费观看| 免费看日本二区| 可以免费在线观看a视频的电影网站| 99久久综合精品五月天人人| 熟女少妇亚洲综合色aaa.| 色综合欧美亚洲国产小说| 欧美中文综合在线视频| 亚洲黑人精品在线| 日韩欧美免费精品| 我要搜黄色片| 亚洲精品中文字幕一二三四区| 欧美在线一区亚洲| 亚洲精品久久国产高清桃花| av视频在线观看入口| 日韩欧美免费精品| 夜夜爽天天搞| 国产熟女午夜一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲一区高清亚洲精品| 熟女少妇亚洲综合色aaa.| 日韩欧美在线二视频| 色尼玛亚洲综合影院| 亚洲人成网站高清观看| 可以在线观看毛片的网站| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 一级毛片女人18水好多| 99国产精品99久久久久| 日韩欧美在线乱码| 国产精品乱码一区二三区的特点| 少妇熟女aⅴ在线视频| 白带黄色成豆腐渣| 亚洲电影在线观看av| 身体一侧抽搐| 男人舔奶头视频| 人人妻,人人澡人人爽秒播| 国产在线观看jvid| 国产免费av片在线观看野外av| 婷婷六月久久综合丁香| www.999成人在线观看| 国产三级黄色录像| 在线观看美女被高潮喷水网站 | 一进一出好大好爽视频| 变态另类丝袜制服| 欧美日韩亚洲综合一区二区三区_| 欧美zozozo另类| 毛片女人毛片| 99热6这里只有精品| 特大巨黑吊av在线直播| 黄色丝袜av网址大全| 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 国语自产精品视频在线第100页| 欧美精品亚洲一区二区| 日本黄色视频三级网站网址| 久久久久久人人人人人| 波多野结衣高清无吗| 中文字幕人成人乱码亚洲影| 国产黄片美女视频| 精品一区二区三区视频在线观看免费| 免费观看精品视频网站| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| 亚洲,欧美精品.| 久久精品影院6| 十八禁网站免费在线| 亚洲中文av在线| 露出奶头的视频| 夜夜爽天天搞| 欧美色视频一区免费| 国产成人aa在线观看| 色综合欧美亚洲国产小说| 国产高清videossex| 久久久久久久久免费视频了| netflix在线观看网站| 91九色精品人成在线观看| 岛国在线观看网站| 三级男女做爰猛烈吃奶摸视频| 日韩中文字幕欧美一区二区| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 亚洲精品久久成人aⅴ小说| 在线免费观看的www视频| av在线天堂中文字幕| 亚洲五月天丁香| 久久香蕉激情| 国产v大片淫在线免费观看| 最新美女视频免费是黄的| 精品一区二区三区av网在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费视频内射| 大型黄色视频在线免费观看| 美女免费视频网站| 88av欧美| 婷婷亚洲欧美| 99热这里只有是精品50| 在线国产一区二区在线| 国产黄片美女视频| 久久婷婷成人综合色麻豆| 日本五十路高清| 婷婷六月久久综合丁香| 国产一区二区激情短视频| 色精品久久人妻99蜜桃| 别揉我奶头~嗯~啊~动态视频| 女人被狂操c到高潮| 99热这里只有是精品50| 又黄又粗又硬又大视频| 日韩中文字幕欧美一区二区| 男女午夜视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲中文av在线| 夜夜爽天天搞| 操出白浆在线播放| 欧美中文综合在线视频| 窝窝影院91人妻| av福利片在线观看| 亚洲av成人不卡在线观看播放网| 在线永久观看黄色视频| videosex国产| 99riav亚洲国产免费| 中出人妻视频一区二区| 窝窝影院91人妻| 日韩精品中文字幕看吧| 亚洲 国产 在线| 久久天堂一区二区三区四区| 久久久久久大精品| 高清毛片免费观看视频网站| 亚洲成a人片在线一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美日韩国产亚洲二区| 国产午夜福利久久久久久| 亚洲精品在线观看二区| 日本精品一区二区三区蜜桃| 国产精品 国内视频| e午夜精品久久久久久久| 亚洲精品av麻豆狂野| 成年版毛片免费区| 亚洲自拍偷在线| 国产高清视频在线观看网站| 99久久无色码亚洲精品果冻| 午夜激情福利司机影院| 亚洲欧美日韩高清在线视频| 亚洲色图av天堂| 中文亚洲av片在线观看爽| 亚洲自拍偷在线| 麻豆国产97在线/欧美 | 国产av一区在线观看免费| 好看av亚洲va欧美ⅴa在| 少妇粗大呻吟视频| 色综合亚洲欧美另类图片| 日本免费a在线| 午夜激情福利司机影院| 看免费av毛片| 亚洲电影在线观看av| av在线播放免费不卡| 久久中文字幕人妻熟女| 久久久国产成人免费| 中文在线观看免费www的网站 | 99国产综合亚洲精品| 毛片女人毛片| 级片在线观看| 国内精品一区二区在线观看| www.自偷自拍.com| 日韩三级视频一区二区三区| 国产亚洲精品久久久久5区| 一进一出抽搐动态| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 美女免费视频网站| 老汉色av国产亚洲站长工具| 91国产中文字幕| 亚洲男人的天堂狠狠| 黑人操中国人逼视频| 亚洲成人久久爱视频| 亚洲国产精品久久男人天堂| 一本综合久久免费| 大型黄色视频在线免费观看| 亚洲av成人av| 日本 欧美在线| 老司机福利观看| 女人爽到高潮嗷嗷叫在线视频| 悠悠久久av| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 色综合婷婷激情| 日韩免费av在线播放| 国产欧美日韩一区二区三| 亚洲av熟女| 最新在线观看一区二区三区| 国产探花在线观看一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品sss在线观看| 亚洲中文av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜综合久久蜜桃| 国产熟女xx| 嫩草影视91久久| 日韩三级视频一区二区三区| 1024视频免费在线观看| 日本三级黄在线观看| 精品福利观看| 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 午夜福利成人在线免费观看| 亚洲自偷自拍图片 自拍| 美女免费视频网站| 国产伦人伦偷精品视频| 99热6这里只有精品| 午夜精品一区二区三区免费看| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 在线观看美女被高潮喷水网站 | 精品久久久久久久毛片微露脸| 欧美日韩福利视频一区二区| 欧美一级a爱片免费观看看 | 俺也久久电影网| 男女那种视频在线观看| 一区二区三区国产精品乱码| 午夜福利高清视频| 国产精品av视频在线免费观看| 最近最新中文字幕大全免费视频| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 男人舔奶头视频| 亚洲av电影在线进入| 午夜激情福利司机影院| 亚洲精品av麻豆狂野| 欧美三级亚洲精品| 中文字幕人妻丝袜一区二区| 一边摸一边抽搐一进一小说| 99热这里只有精品一区 | www.精华液| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 国产成人精品无人区| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍图片 自拍| 美女免费视频网站| 色播亚洲综合网| 国产av一区在线观看免费| 全区人妻精品视频| 国产91精品成人一区二区三区| 毛片女人毛片| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 99久久综合精品五月天人人| 日韩精品中文字幕看吧| 久久精品国产亚洲av香蕉五月| 亚洲精品久久国产高清桃花| 91老司机精品| 国产一区二区三区视频了| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 国产激情欧美一区二区| 亚洲av成人不卡在线观看播放网| 一二三四社区在线视频社区8| 99精品久久久久人妻精品| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| xxxwww97欧美| 不卡av一区二区三区| 一级a爱片免费观看的视频| 搡老妇女老女人老熟妇| 久久久国产成人精品二区| 在线观看舔阴道视频| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 亚洲国产精品久久男人天堂| 777久久人妻少妇嫩草av网站| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 亚洲精品美女久久av网站| 最近在线观看免费完整版| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 91av网站免费观看| 91麻豆av在线| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 黄片大片在线免费观看| 91老司机精品| 亚洲专区中文字幕在线| 听说在线观看完整版免费高清| 国产区一区二久久| 欧美性长视频在线观看| 国产精品久久久久久精品电影| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 一级毛片高清免费大全| 亚洲中文字幕日韩| 成人国语在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 一区福利在线观看| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 成人午夜高清在线视频| 精品国内亚洲2022精品成人| 国产一区在线观看成人免费| 免费在线观看成人毛片| 国产精品久久久久久久电影 | 日韩成人在线观看一区二区三区| 久久久久国内视频| 好看av亚洲va欧美ⅴa在| 国产男靠女视频免费网站| 在线a可以看的网站| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| netflix在线观看网站| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 国产人伦9x9x在线观看| 久久久久久人人人人人| 九九热线精品视视频播放| 少妇的丰满在线观看| 久久国产精品影院| 亚洲精品粉嫩美女一区| 国产区一区二久久| 亚洲色图av天堂| 床上黄色一级片| 久久久国产成人精品二区| av福利片在线观看| 亚洲av美国av| 欧美色欧美亚洲另类二区| 麻豆成人av在线观看| 国产亚洲欧美在线一区二区| 99热6这里只有精品| 757午夜福利合集在线观看| 丰满人妻一区二区三区视频av | 亚洲人成网站高清观看| 日本五十路高清| 国产成人精品无人区| 中文在线观看免费www的网站 | 亚洲人成伊人成综合网2020| 国产亚洲精品一区二区www| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 亚洲一区二区三区不卡视频| 国产精品一及| 免费在线观看亚洲国产| 国产视频一区二区在线看| 国产午夜精品久久久久久| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 又爽又黄无遮挡网站| 熟女电影av网| 亚洲九九香蕉| 国产69精品久久久久777片 | 国产黄片美女视频| 国产一区二区在线av高清观看| 久久久国产成人精品二区| 一二三四在线观看免费中文在| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 国产乱人伦免费视频| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| videosex国产| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 少妇人妻一区二区三区视频| 欧美成狂野欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 变态另类丝袜制服| 免费看日本二区| 亚洲av五月六月丁香网| 中文字幕人妻丝袜一区二区| www国产在线视频色| 亚洲一区二区三区色噜噜| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| av国产免费在线观看| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 精品乱码久久久久久99久播| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| www.www免费av| 超碰成人久久| 久久香蕉国产精品| 在线播放国产精品三级| 国产三级在线视频| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 午夜免费激情av| 免费在线观看视频国产中文字幕亚洲| 男女床上黄色一级片免费看| 人妻久久中文字幕网| 999久久久国产精品视频| 色精品久久人妻99蜜桃| 欧美日韩国产亚洲二区| 老汉色av国产亚洲站长工具| 国产精品久久电影中文字幕| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 91九色精品人成在线观看| 亚洲18禁久久av| 制服人妻中文乱码| 国产av在哪里看| 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 中文在线观看免费www的网站 | 桃色一区二区三区在线观看| 三级国产精品欧美在线观看 | 好男人在线观看高清免费视频| 手机成人av网站| 午夜亚洲福利在线播放| 亚洲国产欧美网| 亚洲男人天堂网一区| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日本成人三级电影网站| 香蕉丝袜av| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 亚洲国产精品sss在线观看| 久久香蕉激情| 成人特级黄色片久久久久久久| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲| 精品第一国产精品| 国产不卡一卡二| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| av福利片在线| 精品一区二区三区视频在线观看免费| 国产成人精品无人区| 色综合婷婷激情| 久久久水蜜桃国产精品网| 久久人妻av系列| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| 午夜福利高清视频| tocl精华| 亚洲精品在线美女| 精品久久久久久久末码| 亚洲欧美日韩东京热| 我要搜黄色片| 国产成人精品久久二区二区免费| 亚洲精品色激情综合| www国产在线视频色| 日本五十路高清| 三级毛片av免费| 好男人电影高清在线观看| tocl精华| 国产99白浆流出| 青草久久国产| 一二三四在线观看免费中文在| cao死你这个sao货| 天天一区二区日本电影三级| 少妇裸体淫交视频免费看高清 | 日韩欧美 国产精品| 欧美黑人巨大hd| www日本在线高清视频| 日本a在线网址| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 亚洲午夜理论影院| 我要搜黄色片| 日日夜夜操网爽| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 天堂动漫精品| 久久午夜综合久久蜜桃| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 国产精品av视频在线免费观看| 99热这里只有精品一区 | 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 熟女电影av网| 久久久久国内视频| 在线观看66精品国产| 欧美成人一区二区免费高清观看 | 欧美三级亚洲精品| 男人的好看免费观看在线视频 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲aⅴ乱码一区二区在线播放 | 人成视频在线观看免费观看| 成人高潮视频无遮挡免费网站| 午夜亚洲福利在线播放| 搞女人的毛片| 亚洲av熟女| 国产精品98久久久久久宅男小说| 免费人成视频x8x8入口观看| 精品福利观看| 亚洲精华国产精华精| 国产亚洲av高清不卡| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 妹子高潮喷水视频| 欧美乱妇无乱码| 黄色 视频免费看| 一级作爱视频免费观看| ponron亚洲| 精品一区二区三区四区五区乱码| 免费看a级黄色片| 国产成人欧美在线观看| 一级a爱片免费观看的视频| 人妻久久中文字幕网| av在线播放免费不卡| 日本三级黄在线观看| 两个人免费观看高清视频| 国产av一区在线观看免费| 一进一出好大好爽视频| 午夜久久久久精精品| 美女黄网站色视频| 夜夜躁狠狠躁天天躁| 亚洲精品国产精品久久久不卡| 久久 成人 亚洲| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 午夜激情av网站| 午夜免费激情av| 99久久久亚洲精品蜜臀av| 久久这里只有精品19| 欧美av亚洲av综合av国产av| 欧美日韩亚洲国产一区二区在线观看| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 亚洲18禁久久av| 看黄色毛片网站| 男女之事视频高清在线观看| 欧美日韩精品网址| 青草久久国产| 亚洲 国产 在线| 两人在一起打扑克的视频| 中文字幕人成人乱码亚洲影| 伦理电影免费视频| 哪里可以看免费的av片| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线观看二区| 久久久国产成人精品二区| 99久久精品热视频| 久久久久久久久免费视频了| 国产三级黄色录像| 特级一级黄色大片| 久久天躁狠狠躁夜夜2o2o| 色哟哟哟哟哟哟| 99久久国产精品久久久| 国产成人系列免费观看| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 黑人操中国人逼视频| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 麻豆成人午夜福利视频|