• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Car following model with consideration of the vehicle’s mechanical inertia effect and its stability analysis

    2015-11-03 07:08:07TongZHOUYuguangCHENYuxuanLI
    機(jī)床與液壓 2015年3期
    關(guān)鍵詞:前人交通流慣性

    Tong ZHOU, Yu-guang CHEN, Yu-xuan LI

    (1College of Information Engineering, Chongqing Institute of Engineering, Chongqing 402260, China)(2College of Computer Science, Chongqing University, Chongqing 400044, China)(3 College of Electronic Information & Automation, Chongqing University of Technology, Chongqing 400054, China)

    ?

    Car following model with consideration of the vehicle’s mechanical inertia effect and its stability analysis

    Tong ZHOU1, 2*, Yu-guang CHEN3, Yu-xuan LI1

    (1College of Information Engineering, Chongqing Institute of Engineering, Chongqing 402260, China)(2College of Computer Science, Chongqing University, Chongqing 400044, China)(3College of Electronic Information & Automation, Chongqing University of Technology, Chongqing 400054, China)

    In order to describe the car-following behavior more actually in real traffic, a new car following model by considering the vehicle’s mechanical inertia effect is proposed on the basis of the full velocity difference car following model. The stability condition is given by applying the control theory. The simulation results are compared with that of the previous models, and show that our model can overcome the deficiency that the acceleration of leading vehicle of motorcade instantly jumps in those models, and the traffic jam can be suppressed as the coefficient of vehicle’s mechanical inertia effect decreases. The simulation results are consistent with theoretical analysis.

    Traffic flow, Traffic congestion, Car following model, Vehicle’s mechanical inertia effect

    1 Introduction

    In recent years, the problems of traffic jam have been widely investigated. In order to understand the mechanism and properties of traffic jam, some traffic flow models have been presented, such as car-following models, cellular automaton models, gas kinetic models and hydrodynamic models [1-4]. Among these models, the current car-following model is an effective method to study the microscopic traffic flow. It is well known that the optimal velocity (OV) model proposed by Bando et al.[5], which is one of favorable car-following traffic models, has successfully described the formation of traffic jams in a simple way. Subsequently, inspired by the OV model, some new car-following models were put forward to describe the traffic nature successfully [6-14]. Some of them were extended by introducing multiple information of headway or relative velocity [6-9], and others were considered the two factors at the same time [10-15].

    These car-following models mentioned above can reproduce many complex actual traffic phenomena. However, these models cannot be used to study the complex phenomena resulted from the vehicle’s mechanical inertia effect since this effect is not considered in those models. In fact, the vehicle’s mechanical inertia can hinder the change of vehicle’s motion state, that is to say, the change of a car’s running state from one motion state to another motion state need a period of time due to the presence of the vehicle’s mechanical inertia effect rather than an instantly jump. In view of the above reasons, this research considers the influence of the vehicle’s mechanical inertia effect on traffic flow. Moreover, the present paper introduces a new car-following model considering the vehicle’s mechanical inertia effect.

    The paper is organized as follows: a new car-following model is introduced in the section 2; in section 3, the stability analysis is discussed; the starting process simulation and the traffic dynamics simulation are presented in section 4; section 5 presents the conclusions.

    2 Models

    In 1995, Bando et al. [5] proposed an optimal velocity model (OVM), and the motion equation is given as follows:

    (1)

    In order to overcome the deficiency, Helbing and Tilch [6] proposed a generalized force model (GFM), i.e.

    (2)

    WhereH(·) is the Heaviside function,λis a sensitivity coefficient, and Δvj(t) is the real velocity difference between the preceding carj+1 and the following carj. The simulation shows that the GF model is poor in the delay time of car motion. In view of the problem, Jiang et al. [7] modified the model by introducing the relative velocity, and the full velocity difference model (FVDM) was developed:

    (3)

    The results illustrate that FVDM has better agreement with the field data than OVM and GFM. These models mentioned above can reproduce some complex actual traffic phenomena but the models cannot be employed to study the effect of the vehicle’s mechanical inertia on traffic flow. In real traffic, the driving behavior is a process that a driver senses the information from the preceding vehicles and the ego-vehicle, and then analyzes and processes these information, and formulates an acceleration command to control his vehicle for achieving optimal state. In the possess, the acceleration command is just the driver’s desired acceleration which can change the state of the movement of his car, when it acts on the vehicle system, the desired acceleration will change to real acceleration due to the influence of the vehicle’s mechanical inertia effect. Therefore, a new car-following model considering the vehicle’s mechanical inertia effect is proposed

    (4)

    (5)

    Where thevmax=2 is the maximum velocity andhc=4 is the safe distance.

    3 Stability analyses

    This paper rewrites the dynamics equation of new car following model from the perspective of the control system as follows:

    (6)

    (7)

    To analyze the stability of steady-state solution (7), one can check the following linearization of Eq. (6) at solution (7).

    (8)

    The state-space expression of the new model can be obtained at the steady state (7):

    (9)

    From the frequency domain viewpoint, the linearized system can be written as:

    (10)

    WhereVj(s)=L(δvj+1(t)),Vj+1(s)=L(δvj+1(t)),L(·) denotes the Laplace transform (the Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems). The transform functionG(s) is given by

    (11)

    Where the characteristic polynomiald(s)=τλ(s3+τs2+(τk+τλ)s+τkΛ).

    Definition 1 Assumingd(s) is stable, ifH∞-norm of G(s) is less than 1, that is:

    (12)

    the traffic jams does not occur in our model. From the analysis above, the stability condition can be obtained as follow:

    (13)

    When small perturbations are added to the uniform traffic flow, traffic flow is stable and robust for low density because the condition (13) holds. When the density exceeds the critical density (namely, the condition (13) is unsatisfied), the uniform traffic flow becomes unstable and makes a phase transition to a congested flow [13,14]. This paper chooses the parameters according to the simulations in reference [0] and [11], where the sensitivity coefficient of the velocity differenceλ=0.8, the gain curve of |G(jw)| can be obtained as the figure in the below. It can be seen from Fig. 1 that whenτ=1,0.6,0.4, the stability condition (13) of our model is not satisfied, |G(jw)| has a peak greater than 1, which means that the perturbation in the process of the transmission will not damp to zeros. It is noted that with the decrease of the valueτ, the stability performance of our model become better. Whenτ=0.2, the gain of |G(jw)| keeps not greater than 1 which indicates the traffic system is stable. Whenτ=0, the stability condition of our model is the same as that of FVDM.

    Fig.1 The gain curve of theG(s)

    4 Simulation

    On the basis of the stability analysis, several numerical simulations are carried out to verify the performance of the model.

    4.1 The starting up process

    This research carry out the starting process simulation as that in reference [6] to compare physical properties of our model with those of FVDM under a traffic signal. Firstly, the traffic signal is red and all vehicles (10 cars in the simulation) are waiting with aheadway of 7.4 m, where the optimal velocity is zero. The coefficient of the vehicles’ mechanical delay chooses asτ=0.2. Then, the signal changes to green and vehicles start to move. The simulation results of these two models are shown in Fig.2 and Fig.3.

    From Fig.2, it can be found that when 10 vehicles start to move, the phenomenon that the leading vehicle’s acceleration instantly jump does not appear in traffic system. The acceleration of unobstructed leading vehicle of our model changes slowly, and the maximum acceleration of the leading vehicle of our model is lower than that of the FVDM at the beginning time since our model considers the vehicle’s mechanical inertia effect. In Fig.3, the velocities of the 10 vehicles in our model slowly increase to stable velocity, and the delay time of vehicles is bigger than that of FVD model. The simulation results show that the vehicle’s mechanical inertia effect plays an important role in the vehicle dynamic driving behavior.

    Fig.2 The acceleration of unobstructed leading vehicle in two models

    Fig.3 Motion of vehicles 1-10 starting from a traffic signal for FVDM and our model

    4.2 Verification of the stability analysis

    Now a numerical simulation is carried out to check the stability analysis and verification of the traffic phenomenon under a periodic boundary condition, the optimal velocity function is chosen as in [0]. The parameters are chosen asτ=0.5,k=0.41 andλ=0.8. It is assumed that there areN=100 cars running on the road with the lengthL=1 500 m,and the initial disturbance is the same as that in Ref. [7].

    Fig.4 shows the space-time evolution of the velocity aftert=0 time steps under the different parameterτ. The patterns (a)-(d) in Fig.4 exhibit the time evolution of the velocity forτ=1,0.6,0.4,0.2 respectively. In patterns (a)-(c), it can be seen clearly that the traffic flow is unstable and the speed fluctuation appears because the linear instability condition (14) is unsatisfied. At the same time, with the value ofτincreasing, the amplitude of velocity fluctuation will be amplified gradually with time, and the propagating backward stop-and-go traffic jam appears. However, under the same sensitivity, the limit case ofτ=0.2, due to the stability condition is satisfied, the stop-and-go phenomenon disappears and traffic flow turns uniform over the whole space in Fig.4(d). The results demonstrate that the vehicle’s mechanical inertia effect has an important effect upon the property of traffic flow, which means that the stability effect is weakened gradually, and the stop-and-go traffic jam becomes more serious in the traffic system with the increase ofτ.

    Fig.4 Space-time evolution of the headways aftert= 0 under the different value ofτ

    5 Conclusions

    In this paper, a new car following model is developed by taking the vehicle’s mechanical inertia effect into account on the basis of FVDM. The stability analyses have been conducted and the stable criterion is given by applying control theory. The comparisons between FVDM and our model are carried out in several simulations. The results of the starting up process show that the driving behaviors in our model are closer to the actual traffic phenomen. Finally the simulation of the vehicles’ dynamic evolution process indicates that the vehicle’s mechanical inertia has an important influence on the traffic flow.

    Acknowledgements

    This work was financially supported by Key scientific research project of the Chongqing Institute of Engineering (KJA201402), the Natural Science Foundation of China(61462008).

    [1]Pipes L A.An operational analysis of traffic dynamics[J].Journal of Applied Physics, 1953, 24(3): 274-281.

    [2]Chandler R E, Herman R, Montroll E W.Traffic dynamics: studies in car following[J].Operations Research, 1958, 6(2):165-184.

    [3]Newell G F.Nonlinear effects in the dynamics of car following[J].Operations Research, 1961, 9(2):209-229.

    [4]Gazis D C, Herman R, Rothery R W.Nonlinear follow-the-leader models of traffic flow[J].Operations Research, 1961, 9(4):545-567.

    [5]Bando M, Hasebe K, Nakayama A, et al.Dynamical model of traffic congestion and numerical simulation[J].Physical Review E,1995, 51: 1035-1042.

    [6]Helbing D, Tilch B.Generalized force model of traffic dynamics[J].Physical Review E, 1998, 58(1):133.

    [7]Jiang R, Wu Q, Zhu Z.Full velocity difference model for a car-following theory[J].Physical Review E, 2001, 64(1):017101.

    [8]Zhao X&Gao Z.A new car-following model: full velocity and acceleration difference model[J].The European Physical Journal B, 2005, 47(1):145-150.

    [9]Ge H X, Cui Y, Cheng R J.A car-following model with considering control signals from front and rear[J].Acta Phys.Sin., 2014, 63: 110504-7.

    [10]Yu S, Liu Q, Li X.Full velocity difference and acceleration model for a car-following theory[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(5), 1229-1234.

    [11]Tang T Q, Li C Y, Huang H J.A new car-following model with the consideration of the driver’s forecast effect[J].Phys.Lett.A, 2010, 374:1668-1672.

    [12]Jin S, Wang D H, Tao P F, Li P F.Non-lane-based full velocity difference car following model[J].Physica A, 2010, 389:4654-4662.

    [13]Zhou T, Sun D H, Kang Y R, Li H M,Tian C.A new car-following model with consideration of the prevision driving behavior[J].Commun.Nonlinear Sci.Numer.Simulat., 2014, 19:3820-3826.

    [14]Zhou T, Sun D H, Li H M, et al.A new coupled map car-following model considering drivers’ steady desired speed[J].Chin.Phys.B, 2014, 23: 050203-5.

    [15]Yu S, Liu Q, Li X.Full velocity difference and acceleration model for a car-following theory[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 1229-1234.

    考慮車輛機(jī)械慣性效應(yīng)的跟馳模型及其穩(wěn)定性分析

    周桐1,2*,陳渝光3,李雨宣1

    1.重慶工程職業(yè)技術(shù)學(xué)院 信息工程學(xué)院, 重慶402260 2.重慶大學(xué) 計(jì)算機(jī)學(xué)院, 重慶400044 3.重慶理工大學(xué) 電子信息與自動(dòng)化學(xué)院, 重慶400054

    為了更加真實(shí)地描述在實(shí)際交通中的跟馳行為,基于全速度差模型,提出一個(gè)考慮車輛機(jī)械慣性的跟馳模型。應(yīng)用線性控制理論給出模型的穩(wěn)定性條件。與前人提出的模型仿真結(jié)果對(duì)比,理論結(jié)果與數(shù)值仿真一致,表明本文提出的模型能夠克服前人模型中靜止車隊(duì)啟動(dòng)過程中頭車加速度出現(xiàn)瞬間跳躍現(xiàn)象,同時(shí)隨著車輛機(jī)械慣性系數(shù)的增加,交通擁堵更加容易發(fā)生。

    交通流; 交通擁堵; 跟馳模型; 車輛機(jī)械慣性

    9 March 2015; revised 7 June 2015;

    Tong ZHOU, Lecturer, Post-doctor,

    graduated from Chongqing University. E-mail: zhoutong

    10.3969/j.issn.1001-3881.2015.18.024 Document code: A

    U491.112

    accepted 5 August 2015

    851217@163.com

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    前人交通流慣性
    你真的了解慣性嗎
    沖破『慣性』 看慣性
    打漁人
    趣味古文
    無處不在的慣性
    陽光(2017年7期)2017-07-18 18:46:03
    普遍存在的慣性
    交通流隨機(jī)行為的研究進(jìn)展
    路內(nèi)停車對(duì)交通流延誤影響的定量分析
    具有負(fù)壓力的Aw-Rascle交通流的Riemann問題
    别揉我奶头~嗯~啊~动态视频| 免费少妇av软件| 两性午夜刺激爽爽歪歪视频在线观看 | 真人做人爱边吃奶动态| 日韩大尺度精品在线看网址 | 国产成人欧美| 曰老女人黄片| 亚洲色图av天堂| 精品不卡国产一区二区三区| 亚洲熟女毛片儿| 手机成人av网站| 咕卡用的链子| 亚洲国产欧美网| 一区二区三区激情视频| 人人妻人人澡欧美一区二区 | 国产亚洲欧美98| 亚洲欧美激情综合另类| 视频在线观看一区二区三区| 久久精品成人免费网站| 如日韩欧美国产精品一区二区三区| 欧美日韩一级在线毛片| 日本撒尿小便嘘嘘汇集6| 亚洲五月婷婷丁香| 俄罗斯特黄特色一大片| 一进一出好大好爽视频| avwww免费| 一a级毛片在线观看| 黄色女人牲交| 亚洲精品国产精品久久久不卡| 久久精品人人爽人人爽视色| 大陆偷拍与自拍| a级毛片在线看网站| 99在线视频只有这里精品首页| 99久久精品国产亚洲精品| 国产精品久久电影中文字幕| 窝窝影院91人妻| 欧美日韩精品网址| 欧美一区二区精品小视频在线| tocl精华| 在线播放国产精品三级| 在线观看www视频免费| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 一二三四在线观看免费中文在| av欧美777| 午夜亚洲福利在线播放| 亚洲人成电影观看| 亚洲av电影在线进入| 日韩三级视频一区二区三区| 美女高潮喷水抽搐中文字幕| 午夜免费成人在线视频| 久久婷婷人人爽人人干人人爱 | 久久久久精品国产欧美久久久| 成人欧美大片| 女性被躁到高潮视频| 不卡av一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲专区中文字幕在线| 欧美+亚洲+日韩+国产| 亚洲国产看品久久| 久久精品影院6| 高清黄色对白视频在线免费看| 国内精品久久久久久久电影| 日本在线视频免费播放| 久久青草综合色| av天堂久久9| 男女午夜视频在线观看| 美女大奶头视频| 国产一卡二卡三卡精品| 国产精品av久久久久免费| 制服诱惑二区| 久9热在线精品视频| 欧美大码av| 亚洲专区国产一区二区| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| 人妻久久中文字幕网| 热re99久久国产66热| 国产精品98久久久久久宅男小说| www日本在线高清视频| 亚洲精品在线美女| 波多野结衣高清无吗| 一a级毛片在线观看| 99热只有精品国产| 女性生殖器流出的白浆| 给我免费播放毛片高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 神马国产精品三级电影在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 两个人看的免费小视频| 黑人操中国人逼视频| 精品不卡国产一区二区三区| 久久婷婷成人综合色麻豆| 久久香蕉精品热| 久久人人精品亚洲av| 欧美日本中文国产一区发布| 嫩草影院精品99| 精品免费久久久久久久清纯| 亚洲黑人精品在线| 性少妇av在线| 黄色丝袜av网址大全| 99国产精品一区二区三区| 亚洲 国产 在线| 午夜福利欧美成人| 国产精品久久久久久亚洲av鲁大| 久久人人97超碰香蕉20202| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品合色在线| 久久精品国产综合久久久| 亚洲五月色婷婷综合| 成人特级黄色片久久久久久久| 成人国产综合亚洲| 亚洲国产欧美网| 精品国产乱子伦一区二区三区| av电影中文网址| 男人舔女人的私密视频| 男人舔女人下体高潮全视频| 亚洲熟妇熟女久久| 午夜免费激情av| av片东京热男人的天堂| 啪啪无遮挡十八禁网站| 亚洲一区高清亚洲精品| 亚洲国产欧美网| 麻豆久久精品国产亚洲av| 宅男免费午夜| 久久久久国内视频| 久久久久国产一级毛片高清牌| 91精品国产国语对白视频| 不卡一级毛片| 国产av一区二区精品久久| 亚洲人成77777在线视频| 久9热在线精品视频| 日本在线视频免费播放| 久久久久国产精品人妻aⅴ院| 纯流量卡能插随身wifi吗| 午夜福利18| 日韩视频一区二区在线观看| 黄片大片在线免费观看| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 啦啦啦免费观看视频1| 日韩三级视频一区二区三区| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看 | 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 亚洲五月婷婷丁香| 90打野战视频偷拍视频| 日本精品一区二区三区蜜桃| 在线观看一区二区三区| 国产三级在线视频| 女人被躁到高潮嗷嗷叫费观| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 中文字幕高清在线视频| 黄色a级毛片大全视频| 国产aⅴ精品一区二区三区波| 色尼玛亚洲综合影院| 最新在线观看一区二区三区| 欧美国产日韩亚洲一区| 亚洲欧美日韩高清在线视频| 亚洲中文日韩欧美视频| 中文字幕久久专区| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 校园春色视频在线观看| 亚洲自偷自拍图片 自拍| 女同久久另类99精品国产91| 国产高清视频在线播放一区| 亚洲国产精品999在线| 日韩国内少妇激情av| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看 | 亚洲美女黄片视频| 日本黄色视频三级网站网址| 久久香蕉精品热| 大型黄色视频在线免费观看| 亚洲伊人色综图| 欧美黑人精品巨大| 琪琪午夜伦伦电影理论片6080| 18禁裸乳无遮挡免费网站照片 | 成人av一区二区三区在线看| 999精品在线视频| 久久久国产欧美日韩av| 国产免费av片在线观看野外av| av有码第一页| а√天堂www在线а√下载| 亚洲精品久久国产高清桃花| 久久天躁狠狠躁夜夜2o2o| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频 | 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 女人精品久久久久毛片| 色av中文字幕| 正在播放国产对白刺激| 亚洲精品国产一区二区精华液| 亚洲色图综合在线观看| 成人永久免费在线观看视频| 一级a爱视频在线免费观看| 国产精品98久久久久久宅男小说| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 欧美黑人精品巨大| 巨乳人妻的诱惑在线观看| 午夜福利欧美成人| 国产一区在线观看成人免费| 男女床上黄色一级片免费看| 一个人观看的视频www高清免费观看 | 亚洲精品久久成人aⅴ小说| 国产真人三级小视频在线观看| 免费av毛片视频| 黄片小视频在线播放| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 午夜成年电影在线免费观看| 咕卡用的链子| 亚洲人成网站在线播放欧美日韩| 纯流量卡能插随身wifi吗| 老熟妇仑乱视频hdxx| 乱人伦中国视频| 久久人人精品亚洲av| 国产在线观看jvid| 男女下面进入的视频免费午夜 | 高清在线国产一区| 99精品在免费线老司机午夜| 亚洲午夜理论影院| 男人舔女人的私密视频| 1024香蕉在线观看| 久久久久久久精品吃奶| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧洲精品一区二区精品久久久| 亚洲五月婷婷丁香| 久久精品成人免费网站| 国产精品一区二区三区四区久久 | 欧美精品啪啪一区二区三区| 欧美国产精品va在线观看不卡| 成人国产综合亚洲| av免费在线观看网站| 国产精品98久久久久久宅男小说| 欧美成人午夜精品| 身体一侧抽搐| 亚洲 国产 在线| avwww免费| 最好的美女福利视频网| 国产主播在线观看一区二区| 亚洲中文av在线| 亚洲国产精品成人综合色| 精品无人区乱码1区二区| 极品人妻少妇av视频| 美女扒开内裤让男人捅视频| 精品久久久精品久久久| 999久久久精品免费观看国产| 国产高清激情床上av| 亚洲欧美一区二区三区黑人| 久久久国产成人精品二区| 欧美久久黑人一区二区| 国产激情欧美一区二区| 亚洲最大成人中文| 身体一侧抽搐| 欧美老熟妇乱子伦牲交| 国产成人精品无人区| 欧美中文日本在线观看视频| 在线国产一区二区在线| 无限看片的www在线观看| 亚洲午夜理论影院| 91在线观看av| 日本三级黄在线观看| 成人亚洲精品av一区二区| 9191精品国产免费久久| 亚洲精品中文字幕在线视频| 他把我摸到了高潮在线观看| 久久久精品欧美日韩精品| 国产一区二区激情短视频| 免费观看人在逋| 青草久久国产| 国产单亲对白刺激| 国产av一区在线观看免费| 咕卡用的链子| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 久久久精品欧美日韩精品| 老司机午夜十八禁免费视频| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 日韩欧美一区二区三区在线观看| 久久精品国产清高在天天线| 日韩欧美免费精品| 日韩有码中文字幕| 久久人人爽av亚洲精品天堂| 91精品国产国语对白视频| 国产精品乱码一区二三区的特点 | 久热这里只有精品99| 两个人视频免费观看高清| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 午夜福利高清视频| 一级a爱片免费观看的视频| 悠悠久久av| 在线视频色国产色| 欧美激情 高清一区二区三区| 中国美女看黄片| svipshipincom国产片| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 一区福利在线观看| 变态另类丝袜制服| 欧美日韩亚洲综合一区二区三区_| 一级,二级,三级黄色视频| 性少妇av在线| 最新美女视频免费是黄的| 久久久久久久久中文| 一级黄色大片毛片| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜一区二区| 亚洲黑人精品在线| 精品无人区乱码1区二区| 午夜免费鲁丝| 亚洲欧美日韩另类电影网站| 婷婷六月久久综合丁香| 美女高潮喷水抽搐中文字幕| a在线观看视频网站| 亚洲男人的天堂狠狠| 亚洲欧美日韩高清在线视频| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷人人爽人人干人人爱 | 久久草成人影院| 久久 成人 亚洲| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品999在线| 亚洲精品粉嫩美女一区| 欧美成人一区二区免费高清观看 | 日韩大码丰满熟妇| 久久久久久亚洲精品国产蜜桃av| 9色porny在线观看| 9热在线视频观看99| 久久欧美精品欧美久久欧美| 91麻豆精品激情在线观看国产| 亚洲男人天堂网一区| 欧美黑人欧美精品刺激| 精品国产乱码久久久久久男人| 久久九九热精品免费| 18美女黄网站色大片免费观看| 99在线视频只有这里精品首页| 国产色视频综合| 两人在一起打扑克的视频| 精品国内亚洲2022精品成人| 黑人巨大精品欧美一区二区mp4| 美女大奶头视频| 琪琪午夜伦伦电影理论片6080| 欧美人与性动交α欧美精品济南到| 中文字幕色久视频| 看片在线看免费视频| 日本黄色视频三级网站网址| 久久久水蜜桃国产精品网| 一进一出抽搐动态| 亚洲国产日韩欧美精品在线观看 | 波多野结衣一区麻豆| 成人精品一区二区免费| 自线自在国产av| 大陆偷拍与自拍| 欧美日韩亚洲国产一区二区在线观看| 一级a爱视频在线免费观看| 亚洲av美国av| 国产精品亚洲av一区麻豆| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 9色porny在线观看| 美女国产高潮福利片在线看| 亚洲伊人色综图| 成在线人永久免费视频| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 欧美人与性动交α欧美精品济南到| 欧美大码av| 亚洲va日本ⅴa欧美va伊人久久| 久久人人精品亚洲av| 美女免费视频网站| 国产三级黄色录像| e午夜精品久久久久久久| 亚洲国产精品合色在线| 午夜福利一区二区在线看| 午夜福利视频1000在线观看 | 一进一出抽搐gif免费好疼| 日韩成人在线观看一区二区三区| 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 天堂影院成人在线观看| 九色亚洲精品在线播放| 97人妻精品一区二区三区麻豆 | 在线观看66精品国产| 免费在线观看完整版高清| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久欧美精品欧美久久欧美| 国产精品av久久久久免费| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 50天的宝宝边吃奶边哭怎么回事| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频 | 日日夜夜操网爽| 国产精品一区二区精品视频观看| 精品电影一区二区在线| 精品乱码久久久久久99久播| av视频在线观看入口| 成人18禁在线播放| 老汉色∧v一级毛片| 男女之事视频高清在线观看| 午夜福利成人在线免费观看| 99国产精品一区二区三区| 亚洲国产精品sss在线观看| 1024香蕉在线观看| 香蕉国产在线看| 日韩大尺度精品在线看网址 | 国产成人精品久久二区二区91| 99久久精品国产亚洲精品| 日日爽夜夜爽网站| 精品人妻1区二区| 99国产综合亚洲精品| 婷婷丁香在线五月| 侵犯人妻中文字幕一二三四区| 免费高清视频大片| 99久久精品国产亚洲精品| 亚洲国产精品合色在线| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品影院| 天堂√8在线中文| 无人区码免费观看不卡| 91九色精品人成在线观看| 国产精品久久久av美女十八| 久久国产亚洲av麻豆专区| 不卡av一区二区三区| 国产成年人精品一区二区| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 视频在线观看一区二区三区| 日本在线视频免费播放| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲真实| 99久久综合精品五月天人人| 悠悠久久av| 欧美日韩乱码在线| 级片在线观看| 午夜视频精品福利| 欧美日韩乱码在线| 中文字幕最新亚洲高清| 动漫黄色视频在线观看| av在线天堂中文字幕| 成人18禁在线播放| 亚洲全国av大片| 久久久久久久精品吃奶| 精品国产国语对白av| 黄色女人牲交| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 人人妻人人澡欧美一区二区 | 亚洲最大成人中文| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 少妇熟女aⅴ在线视频| 美女高潮到喷水免费观看| 多毛熟女@视频| 亚洲伊人色综图| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| 乱人伦中国视频| a在线观看视频网站| 曰老女人黄片| 久久久精品欧美日韩精品| 久久热在线av| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 国语自产精品视频在线第100页| 亚洲精品美女久久av网站| 精品日产1卡2卡| 午夜福利高清视频| 久久亚洲真实| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频| 少妇熟女aⅴ在线视频| 成人免费观看视频高清| 久久热在线av| 日韩 欧美 亚洲 中文字幕| 欧美色欧美亚洲另类二区 | 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 夜夜看夜夜爽夜夜摸| 亚洲人成77777在线视频| 国产片内射在线| 亚洲精品在线观看二区| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看 | 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| 最近最新中文字幕大全电影3 | 99国产精品99久久久久| 国产成年人精品一区二区| 午夜久久久久精精品| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 中文亚洲av片在线观看爽| 一级,二级,三级黄色视频| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 性欧美人与动物交配| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 亚洲av片天天在线观看| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 动漫黄色视频在线观看| а√天堂www在线а√下载| 窝窝影院91人妻| 少妇被粗大的猛进出69影院| 亚洲成a人片在线一区二区| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清 | 两性午夜刺激爽爽歪歪视频在线观看 | 色综合站精品国产| 级片在线观看| 美女大奶头视频| 好男人在线观看高清免费视频 | 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 在线av久久热| 欧美一区二区精品小视频在线| 中亚洲国语对白在线视频| 香蕉久久夜色| 黄色视频不卡| 最新美女视频免费是黄的| 久久国产精品男人的天堂亚洲| 69精品国产乱码久久久| 在线观看66精品国产| 久久人妻熟女aⅴ| 国产激情欧美一区二区| 国产精品久久久久久精品电影 | 女警被强在线播放| 亚洲三区欧美一区| а√天堂www在线а√下载| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 亚洲 欧美一区二区三区| 人人妻人人爽人人添夜夜欢视频| 法律面前人人平等表现在哪些方面| 美女大奶头视频| 成年女人毛片免费观看观看9| 最好的美女福利视频网| 美女 人体艺术 gogo| www.自偷自拍.com| 在线观看日韩欧美| 国产高清视频在线播放一区| 波多野结衣一区麻豆| 国产精品98久久久久久宅男小说| 免费观看人在逋| 在线观看舔阴道视频| 女性生殖器流出的白浆| 脱女人内裤的视频| 中文字幕人妻丝袜一区二区| xxx96com| 午夜福利,免费看| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 精品不卡国产一区二区三区| av网站免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 免费看美女性在线毛片视频| 一本综合久久免费| 18禁美女被吸乳视频| 欧美乱色亚洲激情| 午夜福利,免费看| 性欧美人与动物交配| 人人妻人人澡欧美一区二区 | 午夜福利影视在线免费观看| or卡值多少钱| 亚洲 欧美一区二区三区| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 日本免费一区二区三区高清不卡 | 制服人妻中文乱码| av欧美777| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 美女扒开内裤让男人捅视频| 久久婷婷人人爽人人干人人爱 | 无遮挡黄片免费观看| 操美女的视频在线观看| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 我的亚洲天堂| 老汉色av国产亚洲站长工具| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| 午夜福利,免费看|