劉 牮,夏敏芳
(上海理工大學光電信息與計算機工程學院,上海200093)
模擬電路軟故障與LM算法的結合應用研究
劉 牮,夏敏芳
(上海理工大學光電信息與計算機工程學院,上海200093)
在模擬電路故障診斷中,由于標準的BP神經網絡算法在訓練樣本時存在著收斂速度慢、分布不均勻、效率不高等缺點,導致電路的整體診斷性能下降。提出了一種將Levenberg-Marquardt(LM)算法與神經網絡相結合的方法,對電路的脈沖信號進行多尺度分解,提取故障特征作為神經網絡的輸入對網絡進行訓練。實驗仿真表明,Pspice與Matlab相結合的樣本訓練方法的穩(wěn)定性高于傳統(tǒng)方法,證明了該方法的實用性與可行性。
模擬電路;BP神經網絡;LM算法;Matlab
模擬電路的故障診斷技術自20世紀60年代開始便一直受到許多研究學者的青睞,也取得了眾多成就[1]。由于模擬電路的復雜度和密集度的不斷增長,故障類型的多樣性以及元件容差等因素的存在,直接制約著電子設備的可靠性[2]。
隨著人工智能的快速發(fā)展,促使神經網絡方法在模擬電路的故障診斷中的應用變得越為廣泛[3]。當前雖然BP神經網絡作為應用最多的一種模型,但由于其自身存在如訓練時間過長、診斷效率低、輸入數目多等缺點,因此在實際電路中很難勝任。為了克服這些缺陷,現(xiàn)提出一種快速穩(wěn)定的Levenberg-Marquardt算法[4]與神經網絡相結合的方法來改進標準的BP算法。通過實驗仿真分析,LM算法不但有效縮短了訓練時間,并且具有較高的診斷準確率。
BP神經網絡是一種多層前饋型神經網絡,其網絡拓撲結構的模型主要包括輸入層(input layer)、輸出層(output layer)和隱含層(hide layer)。由于BP算法具有良好的逼近能力和成熟的訓練方法而受到廣泛的應用[5]。
仿真成敗的關鍵主要取決于隱層節(jié)點的個數,Sigmoid為BP網絡隱層中的神經元所采用的傳遞函數。由于隱層節(jié)點數的確立相對比較復雜[6],一般的選擇原則是:在能有效反映網絡訓練準確率的基礎上,網絡結構應盡量簡單,隱層節(jié)點數越少越好。而輸出層的神經元則由logsig傳遞函數擔當,整個網絡的輸出則任意。
傳統(tǒng)的BP神經網絡作為一種按梯度下降的算法,誤差函數梯度下降的原理是其重要組成部分,由于收斂速度慢,誤差函數值易收斂于極值附近,而得不到全局最優(yōu)等缺點,使得BP神經網絡在實際應用中的局限性有增無減。
LM算法應用了近似的二階導數信息,比BP神經網絡穩(wěn)定且收斂速度快[7],避免了矩陣求逆的計算量。其原則是通過誤差不斷減小來調整網絡權值及閾值,從而實現(xiàn)最優(yōu)目標的一個過程。
設誤差指標函數為:
式中:ti,oi為期望輸出與實際輸出;N為輸出向量的維數,若設E(ω)=[E1(ω)E2(ω)…EN(ω)]T,則有:
式中:▽2E(w)表示誤差指標函數E(w)的Hessian矩陣;▽E(w)表示梯度;J(w)表示Jacobian矩陣,即
對于牛頓法則有:
當接近一個解時,通常有S(w)?0,這時得到高斯—牛頓法的計算規(guī)則:
而LM算法是一種改進的高斯—牛頓法,它的形式為:
式中:單位矩陣為I;比例系數μ為大于0的常數。
當權值近似于高斯—牛頓法時,μ逐漸減小,此時接近一個解;當權值近似于梯度下降法時,μ逐漸增大,此時遠離一個解。LM作為一種近似二階導的算法比梯度下降法快,因此在具體操作中,μ成了一個試探性參數,若μ已給定,求得的Δw能夠使誤差指示函數E(w)降低,則μ減?。环粗淘黾?。實驗仿真表明,LM算法不但具有高斯—牛頓法的局部收斂性,而且還有梯度下降法的全局特性。
本文以圖1的Sallen-Key帶通濾波器為診斷電路,在Pspice仿真軟件中搭建電路原理圖。表1為各元器件的故障值及其標稱值,其中故障狀態(tài)為偏離標稱值的±50%,電阻容差為5%,電容容差為10%,且為單軟故障。經靈敏度測試,當R2、R3、C1、C2發(fā)生變化時,對輸出點的電壓波形影響較為明顯,因此將這4個元器件作為故障元件進行分析。
圖1 Sallen—Key帶通濾波器
表1 電路中元器件的標稱值與故障值
利用PSpice中的蒙特卡羅分析可以獲得各類故障類型的輸出脈沖響應,其中電路正常時的30次蒙特卡羅輸出響應分析如圖2所示。
圖2 電路正常情況下30次蒙特卡羅分析
對作為沖激信號的被測電路和激勵進行5層Haar小波分解[8],產生低頻系數和高頻系數。其中高頻部分代表信號的細微差別,低頻部分為信號本身的特征。然后采用同樣的方法,將分解所得的低頻部分再次分解,其特征向量為各層小波系數的最大值。
由于神經網絡的輸入和輸出個數與所提取特征向量的維數和故障類型有關[9],因此,令故障類型有n種,對采樣信號進行m層小波分解。則(m+1)與log2n就為神經網絡的輸入和輸出數目。隱層數目為M+N +a(M為輸入數目,N為輸出數目,a則取1到10之間的自然數)。在本文中,當輸入層數為6,輸出層數為4,隱層神經元數目為13時訓練誤差最小,電路的分辨率最高。
若要對神經網絡的權值、閾值和誤差進行存儲[10],需要利用測得的樣本對神經網絡進行訓練,直到誤差小于等于期望誤差即可。本文將各種故障模式所對應的30次樣本輸入神經網絡進行訓練,網絡經過303次訓練達到目標要求,如圖3所示。
圖3 神經網絡的訓練曲線
神經網絡訓練樣本的輸出回歸直線如圖4所示,其中網絡模型經訓練后計算所要得到的輸出值為Y,網絡訓練所要達到的目標值為T。由圖可知,其相關系數為0.978 2,非常接近于1,回歸直線與斜率為1的直線幾乎重合,說明網絡的輸出能很好地逼近目標值,網絡是極其有效的。
圖4 訓練樣本網絡輸出回歸直線
本文在Pspice的蒙特卡羅仿真完成的基礎上,將LM算法與神經網絡相結合,有效發(fā)揮了神經網絡的非線性映射和學習推理的能力,基本能夠實現(xiàn)模擬電路故障狀態(tài)的診斷。
LM算法在網絡的結構規(guī)模合理、訓練樣本大小合適時具有較高的分類精度和穩(wěn)定性,不但有效提高了網絡的學習速度、減少了運行次數,并且其分類精度在一定程度上高于傳統(tǒng)方法,適用于神經網絡。
[1] 張蓉暉.小波神經網絡及其在模擬電路故障診斷中的應用[D].武漢:華中科技大學,2008.
[2] Pease R A.模擬電路故障診斷[M].王希勤,譯.北京:人民郵電出版社,2007.
[3] 曾濤,趙嵐.基于人工蜂群支持向量機的模擬電路故障診斷[J].電力科學與工程,2013,29(8): 16-19.
[4] 陳悅,張少白.LM算法在神經網絡腦電信號分類中的研究[J].計算機技術與發(fā)展,2013,23(2):119-122.
[5] 張德豐.MATLAB神經網絡應用設計[M].北京:機械工業(yè)出版社,2009.
[6] 閻平凡,張長水.人工神經網絡與模擬進化計算[M].北京:清華大學出版社,2005.
[7] 李慧玲,李春明.一種基于遺傳算法和神經網絡的故障診斷方法[J].電力科學與工程,2011,27(4):43-47.
[8] Liu X,Decun D,Luo Y F.Fault diagnosis of trainground wireless communication unit based on Fuzzy Neural Network[C].ICIEA 2009 4th IEEE Conference on Industrial Electronics and Applications,Xi’an,China, 25-27 May,2009:348-352.
[9] 李璐怡,李志華.一種基于小波預處理的模擬電路故障診斷方法[J].電子設計工程,2014,22(14):146-148.
[10] 亢少將.螢火蟲優(yōu)化算法的研究與改進[D].廣州:廣東工業(yè)大學,2013:4-15.
Research on the Combined Application of Analog Circuits Soft Faults and LM Algorithm
Liu Jian,Xia Minfang
(Department of Electrical Engineering School of Optical-Electrical and Computer Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China)
When analog circuit faults are diagnosed,the disadvantages concerning the standard BP neural network algokithm such as slow convergence,uneven distribution and lower efficiency when training sample result in decreased overall diagnostic performance of the circuit.This paper proposed a method combining neural network algorithm and the Levenberg-marquardt(LM)algorithm to decompose the pulse signal of the circuit from multiple scales and extract fault features as the input of neural network to train the network.The simulation results showed that the stability of sample training method combining Pspice and Matlab was higher than traditional methods,and that the practicability and feasibility of this method were verified.
analog circuit;BP neural network;LM algorithm;Matlab
TP183
A DOI:10.3969/j.issn.1672-0792.2015.05.008
2015-03-03。
劉牮(1961-),男,副教授,研究方向為電子技術及計算機控制。通信作者:夏敏芳,E-mail:xmf6211 @sina.com。