• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Structure and Theoretical Thermodynamic Study of Folic Acid Based on the Computational Approach

    2015-10-13 23:53:18ShhlHmedniHosseinAghie
    結(jié)構(gòu)化學(xué) 2015年9期

    Shhl Hmedni Hossein Aghie

    ?

    Molecular Structure and Theoretical Thermodynamic Study of Folic Acid Based on the Computational Approach

    Shahla Hamedania①Hossein Aghaiea

    a()

    In our previous work, we studied the interaction of folic acid, FA, molecule with single-walled carbon nanotube and the related binding energies with other related parameters. Now, in order to extend our study with respect to the other structural properties offolic acid molecule and its thermodynamic properties, we optimized the structures of bothneutral and zwitteronic forms of this molecule by using the DFT/B3LYP method in the gas phase and then in different solvents. In addition, the electronic properties, such as the molecular orbital study (HOMO, LUMO, PDOS, and TDOS) and geometrical structure,were investigated by the above-mentioned method with 6-31G(d) basis set. The thermodynamic properties of both neutral and zwitterionic forms of the FA molecule at different temperaturehave been calculated. Natural bond orbital (NBO) analysis has been done to study the stability of the molecule arising from charge delocalization.

    folic acid, thermodynamic properties, DFT, NBO;

    1 INTRODUCTION

    Folic acid, N-[-{[(2-amino-4-hydroxy-t-pteridinyl) methyl] amino}benzoyl]-l-glutamic acid[1-3], is a water-soluble essential vitamin B and is necessary for the metabolism of amino acids and biosynthesis of DNA and RNA (Fig. 1). For reducing the risk of birth defects of the brain and spina (such as brain anencephaly), folic acid or its salt is used mainly as part of a healthy diet. It may also be used for the prevention of Alzheimer's disease, high blood pressure, protecting against neoplasia in ulcerative colitis and some psychiatric disorders. According to the research that was done in 1945, this drug is an effective material in the treatment of Gilbert's syndrome that is a common hereditary disorder, and the cause of Gilbert's syndrome is the high concentration of bilirubin. The folic acid deficiency is one of the causes of certain types of anemia, which is called macrocytic anemia[4].

    Fig. 1. Molecular structure of neutral form of folic acid

    The present research is an extend of our previous work related to theoretical study of folic acid properties[5-7].Now, the ground state properties of both zwitterionic and neutral forms of FA molecule have been investigated by using the DFT/B3LYP level of theory with 6-31G(d) basis set. Along with this investigation, molecular polarizability, energy gap, charge transfer within the molecule,thermodynamic parameter of FA molecule and so on were estimated respect to the ground state of studied molecule. Moreover, natural bonding orbital (NBO) calculations have been performed at the same level of theory in order to investigate the intramolecular charge transfer interactions and the delocalization of electron density within the molecule[8].

    2 COMPUTATIONAL METHODS

    In the first step, the molecular geometry optimiza-tion and electronic property calculations of both zwitterionic and neutral forms of FA without any symmetry constraints were performed on the basis of Gaussian 03 quantum chemistry package[9]and the results were visualized by Gauss View 5.0.8 graphical program[10](Fig.2).The geometry optimizationwas performed at the DFT level of theory, according to hybrid Becke’s three parameters and the Lee-Yang-Parr correlation functional (B3LYP)[11-14], with the 6-31G(d) basis set. NBO calculations are important for understanding the delocalization of the electron density between the lone pair (Lewis donor) NBO orbitals and anti-bonding (non-Lewis acceptor) NBO orbitals. For each donor (i) and acceptor (j), the stabilization energy E(2)related to the delocalization→is estimated using the second-order perturbation theory as:

    where niis the donor orbital occupancy,iandjare diagonal elements (orbital energies) and F(i,j) is the off diagonal NBO Fock or Kohn-Sham matrix element[15].The larger E(2)value depicts the stronger interaction between electron donors and acceptors i.e., the more donation tendency from electron donors to electron acceptors and the higher the amount of conjugation of the whole system.

    (a)

    (b)

    Fig. 2. Optimized geometries of (a) neutral form, and (b) zwitterionic form of folic acid molecule estimated upon the B3LYP/6-31G (d) approach

    In order to investigate the solvent effect on the geometries of studied molecule, the structures of it were optimized in methanol, DMSO and in water as a high polar solvent. From the optimized geometries parameters, the global molecular descriptors such as energy gap,atomic charges,dipole moment () andpolarizability () of FA molecule were evaluated based on the finite field method by using DFT methods[16, 17]. Also, frequency calculations were performed using the B3LYP/6-31G(d) optimized geometries to achieve the thermodynamic values such as zero point vibrational energy, thermal energy (E), entropy (), and Gibbs free energy () of FA molecule. These calculations were done at the temperature range of 150 to 600 K at1atm.

    3 RESULTS AND DISCUSSION

    3.1 Geometrical parameters

    The final optimized geometries of both neutral and zwitterionic forms of folic acid molecule were investigated at the B3LYP/6-31G(d) level by using the Gaussian 03 program, with the resultsshown in Fig. 2 and the optimized parameterslisted in Table 1. The two C=O bond lengths in the zwitterionic form are different (1.227 ? and 1.246 ?) due to the charge delocalization as compared to the neutral form having one single and one double C=O bonds which form hydrogen bonding between the carboxyl and amino groups of neighboring molecules.

    Table 1. Selected Geometric Parameters of the Neutral and Zwitterionic Forms of Folic Acid Molecule upon the B3LYP/6-31G(d) Level

    3.2 Electronic properties

    Fully optimized ground state structures of FA mole-cule were used to estimate the total energies, HOMO and LUMO energies, the dipole moment () and the polarizability ()in the gas phase andthe solution media. The results are listed in Table 2 and Fig. 3 showthe related HOMO and LUMO energies and their difference. The HOMO energy characterizes the ability of electron giving, the LUMO energy charac-terizes the ability of electron accepting, and the gap between HOMO and LUMO specifies the molecular chemical stability[18-22].

    Based on the B3LYP/6-31G(d) calculation, the energy gap (transition from the ground state to the first excited state) for the neutral form of FA molecule in the gas phase is about 3.154 eV. This low value of the energy gap confirms charge transfer within the molecule. GaussSum 2.2 program[23]was used to calculate the molecular orbital HOMO and LUMO energies and evaluate the total density of the states (TDOS) and partial density of states (PDOS) plots, as shown in Fig. 4. The TDOS plot represents population analysis per orbital and a makeup of the molecular orbital in a special energy range, and also indicates that electrons transfer from the lone pair orbitals to*or*orbitals, while PDOS plot shows the percent contribution of a group to each molecular orbital.

    Fig. 3. HOMO and LUMO presentation for the neutral and zwitterionic forms of FA molecule in the gas phase at the B3LYP/6-31G(d) level of theory

    Fig. 4. TDOS and PDOS plots of the folic acid molecule

    Table 2. Calculated Total Energies, HOMO and LUMO Energies, Dipole Moment and Polarizability in the Gas Phase and in the Solution of the Neutral and Zwitterionic Forms of Folic Acid Molecule

    3.3 Molecular electrostatic potential

    Another important local descriptor for charge determining is the molecular electrostatic potential (MEP), which includes the potential of all nuclei and electrons in a molecule and is a very useful property for analyzing and predicting the molecular reactivity behavior. The different values of the electrostatic potentials are shown by different colors. In the majority ofMEPs, the negative electrostatic potential (red color) is related to the attraction ofproton toward the region where the rich electron density exists (subject to electrophilic attack). In turn, the positive electrostatic potential (blue color) corresponds to the repulsion of proton (subject to nucleophilic attack)[24-26].

    The MEP mesh and transparent plots of the folic acid moleculeclearly suggest that O6,O10andO31atoms have maximum negative electrostatic potential (electron rich region), whereas the other surfaces with maximum positive electrostatic potential may be suitable sites for nucleophilic reactions (Fig. 5). In addition, the calculated charges such as NBO and Mulliken were compared with MEP and the distribution of positive and negative charge values with color change was investigated (Fig. 6).

    Mesh

    Transparent

    Fig. 5. Molecular electrostatic potential plot of the FA molecule

    Fig. 6. Histogram of different atomic charges on FA molecule at the B3LYP/6-31G(d) level

    3.4 Polarizability descriptor

    The polarizability of a molecule is a measure of tendency of an electronic cloud of that molecule for distorting the molecule from normal shape by a weak external electric field[27]. The mean polarizability,, and the total electric dipole moment,, for both forms of FA molecule were calculated at the DFT level using the following equation:

    (3)

    whereα,αandαare diagonal components of the polarizability tensor. The average values of polarizabilities for neutral and zwitterionic forms of the FA molecule in the gas phase are286.7766 and 259.6588 a.u. respectively and in water solvent with the maximum amounts of polarization are 363.5177 and 387.2013 a.u. (see Table 2).

    3.5 Natural bond orbital analysis

    The NBO analysis was performed on the folic acid molecule (neutral and zwitterionic) to determine intermolecular charge transfer (ICT), delocalization of electron density and the direction and magnitude of donor-acceptor interactions. The energy gap between bonding (occupied Lewis) and anti-bonding (unoccupied non-Lewis) NBO’s determines the feasibility of interactions between the filled and vacant orbitals. The calculations were done according to a stabilizing donor-acceptor interactionon the basis of DFT level with the B3LYP/6-31G(d) basis set. The calculations of the second order interaction energies(2)between Lewis and non-Lewis orbitals, occupation numbers, stabilization energy and the valence space energy splittingEE(a.u.) of the interacting NBO’s are reported in Tables 3 and 4. The intramolecular interactions are formed by the orbitals’ overlap between the bonding(C–C),(C–H) and(C–N) with the anti-bonding*(C–C) and*(C–H) orbitals which resultin intramolecular charge transfer (ICT) causing stabilization of the system.

    As can be seen from Tables 3 and 4, the interaction (→*), related to the resonance in the molecule, is electron donation from LP (3) O6atom of the electron donating group to the anti-bonding acceptor*(C5–O7) and leads to a high stabilization energy 77.97 kcal/mol. Also, there is a strong intramolecular interaction of electrons from LP (3)O6atom with*(N24–H45) band of the pterin ring leading to the stabilization energy of 16.78 kcal/mol. Table 4 indicates the strong intramo-lecular interactions ofelectrons of (C11–C12) with*(C13–C16),*(C9–O10) and*(C14–C15), and(C13–C16) with*(C11–C12) and*(C14–C15) of the ring. From the NBO analysis, we could conclude that the maximum occupancies of 1.99668 and 1.99478 are obtained for C5–O7and C5–O6, respectively.

    3.6 Thermodynamic properties

    The calculationvibrational frequencies were performed in order to insure that the correct geometry optimization has been done. If all the studied structures correspond to the minima of the potential energy surface, the vibrational frequencies would not be imaginary and that is a reason for the stability of optimized structure. The results of these calculations revealed that the optimized geometries were stable. So, we attempted to calculate the thermodynamic properties of the studied molecule such as zero point energy, heat capacity at constant volume (C), enthalpy (), Gibbs free energy (), entropy (),. for FA molecule in the zwitterionic and neutral forms at various temperature. The computed values in the range of 150~600 K at 1atm are given in Table 5. The results show that the energy of neutral folic acid molecule is lower than zwitterionic form with an amount of 0.5334 Hartree. This clearly indicates that in zwitterion form the charge separation is not sta-bilized in the gas phase. Generally, observation thermo-dynamic parameters show the molecular vibrational intensities increase with the temperature[28, 29].

    Table 3. Occupation Numbers of the Interacting NBOs with Their Associated Energies

    a(2) means the energy of a hyper-conjugative interactions; cf. Eq. (1)

    bEnergy difference between donor and acceptorandNBO orbitals

    Table 5. Calculated Values of Thermodynamic Parameters at Different Temperature at 1 atm for Neutral and Zwitterionic Forms of FA Molecule in the Gas Phase

    4 CONCLUSION

    In the present investigation, molecular structures, bond lengths, bond angles, dihedral angles, thermodynamic parameters, energy gap, NBO and other important properties of FA molecule were studied by using ab initio DFT (B3LYP/6-31G(d)) calculations. The high value of energy gap for zwitterionic and neutral forms of FA molecule showed the FA molecule is more stable in water media. The possible electrophilic and nucleophilic sites in FA molecule were identified by MEP. In addition, the atomic charge analysis, such as NBO and Mulliken methods, strengthened the results of MEP. In turn, the NBO analysis showed that the important interactions related to the resonance in FA molecule involveelectron density transfer from lone pair LP(3) O6to anti-bonding*(C5–O7), resulting in the stability of 77.97 kcal/mol and also a strong intramolecular interaction of lone pair LP(3) O6to anti-bonding*(N24–H45) of the pterin ring,thus leading to the stabilization energy of 16.78 kcal/mol. Further, thermodynamic parameters like SCF energies, zero point vibrational energy, total thermal energies, entropies, enthalpies, Gibbs free energies and heat capacities were estimated at different temperaturefor both two forms of FA molecule. It was observed that the magnitude of thermodynamic functions increases with the temperature increasing because the intensity of the molecular vibration increases as the temperature rises.

    (1) Chahidi, C.; Aubailly, M.; Momzikoff, A.; Bazin, M. Photophysical and photosensitizing properties of 2-amino-4 pteridinone: a natural pigment.1981, 33, 641-649.

    (2) Gurira, R.; Montgomery, C.; Winston, R. Electrochemical reduction of folic acid reconsidered.1992, 333, 217-233.

    (3) Newbergen, H.; Taton, E. L.. North-Holland Publishing Co., Amsterdam 1968.

    (4) Hoegger, D. L.; Morier, P.; Vollet, C.; Heini, D.; Reymond, F.; Rossier, J. S. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products.2007, 387, 267-275.

    (5) Hamedani, S.; Aghaie, H.;Moradi, M. A DFT study of interaction of folic acid drug on functionalized single-walled carbon nanotubes.2014, 11, 20-26.

    (6) Hamedani, S.; Moradi, S.; Aghaie, H. Adsorption of Folic Acid on the Single-walled Carbon Nanotubes: AIM and NBO Analyses via DFT.. 2015, 34, 1161-1169.

    (7) Hamedani, S. Structural and Electronic Properties of Folic Acid Adsorption on the Carbon Nanotubes: A Density Functional Theory Study.2015, 31, 345-351.

    (8) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F., TCI. University of Wisconsin, Madison 1998.

    (9) Frisch, E.; Hratchian, H. P.; Dennington II, R. D.; Keith, T. A.; Millam, J.; Nielsen, B.; Holder, A. J.; Hiscocks, J. Gaussian, Inc., 2009,.

    (10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2004,

    (11) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects.. 1965, 140, A1133-A1138.

    (12) Becke, A. D. Density functional thermochemistry. III. The role of exact exchange1993, 98, 5648-5652.

    (13) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785-789.

    (14) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr.. 1989, 157, 200-206.

    (15) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint.1988,88, 899-926.

    (16) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity Index.2006, 106,2065-2091.

    (17) Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach.. 2009, 20, 1079-1085.

    (18) Seminario, J. M.. Elsevier, Amsterdam 1996.

    (19) Fukui, K. Role of frontier orbitals in chemical reactions.1982, 218, 747-754.

    (20) Karabacak, M.; Cinar, M.; Kurt, M. Molecular structure and vibrational assignments of hippuric acid: a detailed density functional theoretical study2009, 74, 1197-1203.

    (21) Zhou, Z.; Parr, R. G. Activation hardness: new index for describing the orientation of electrophilic aromatic substitution.1990, 112, 5720-5724.

    (22) Fleming, I.. John Wiley & SonsNew York 1976.

    (23) O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: a library for package-independent computational chemistry algorithms.2008, 29, 839-845.

    (24) Alkorta, I.; Perez, J. J. Molecular polarization potential maps of the nucleic acid bases.1996, 57, 123-135.

    (25) Luque, F. J.; Orozco, M.; Bhadane, P. K.; Gadre, S. R. SCRF calculation of the effect of water on the topology of the molecular electrostatic potential. 1993, 97, 9380-9384.

    (26) Pathak, R. K.; Gadre, S. R. Maximal and minimal characteristics of molecular electrostatic potentials.1990, 93, 1770-1773.

    (27) Kurtz, H.A.; Dudis, D. S. Quantum mechanical methods for predicting nonlinear optical properties.. 1998, 12, 241-280.

    (28) McQuarrie, D. A.; Simon, J. D.. University Science Book, Sausalito, CA 1999.

    (29) Cooper, A.; Johnson, C. M.; Lakey, J. H.; Nollmann, M. Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions.2001, 93, 215-230.

    ① Corresponding author. E-mail: sh_hamedani2004@yahoo.com (S. Hamedani)

    10.14102/j.cnki.0254-5861.2011-0688

    14 February 2015; accepted 10 August 2015

    一级毛片久久久久久久久女| 男女国产视频网站| 婷婷色综合www| av一本久久久久| 搡女人真爽免费视频火全软件| 国产午夜福利久久久久久| a级一级毛片免费在线观看| 成人鲁丝片一二三区免费| 亚洲va在线va天堂va国产| 听说在线观看完整版免费高清| 国产精品国产三级国产av玫瑰| 黄片无遮挡物在线观看| 全区人妻精品视频| 国产精品国产av在线观看| 国产精品久久久久久精品古装| 国产亚洲精品久久久com| 亚洲色图综合在线观看| 女人十人毛片免费观看3o分钟| 激情五月婷婷亚洲| 亚洲欧美日韩无卡精品| 高清午夜精品一区二区三区| 在线播放无遮挡| 亚洲人成网站在线播| 丝袜脚勾引网站| 久久97久久精品| 97超视频在线观看视频| 亚洲精品久久久久久婷婷小说| 伦理电影大哥的女人| 久久久精品免费免费高清| 久热久热在线精品观看| 插阴视频在线观看视频| 噜噜噜噜噜久久久久久91| 精品久久久久久电影网| 日本免费在线观看一区| 成年版毛片免费区| 国产成人一区二区在线| av专区在线播放| 欧美一级a爱片免费观看看| 亚洲人成网站高清观看| 久久99热6这里只有精品| 2021少妇久久久久久久久久久| 久久久久九九精品影院| 嫩草影院入口| 视频中文字幕在线观看| 综合色av麻豆| 国产一区二区亚洲精品在线观看| 日韩三级伦理在线观看| 亚洲av.av天堂| 亚洲成人中文字幕在线播放| 国产亚洲5aaaaa淫片| 亚洲欧美一区二区三区黑人 | 欧美成人一区二区免费高清观看| 欧美精品国产亚洲| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠久久av| 国产高清不卡午夜福利| 久久精品熟女亚洲av麻豆精品| 国产久久久一区二区三区| 国产一级毛片在线| 午夜爱爱视频在线播放| 18禁在线无遮挡免费观看视频| 综合色av麻豆| 久久久久久久午夜电影| 精品久久久久久久久av| 久久久久精品久久久久真实原创| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区黑人 | 亚洲自偷自拍三级| av播播在线观看一区| 插逼视频在线观看| 九草在线视频观看| 赤兔流量卡办理| 日韩一区二区视频免费看| 女的被弄到高潮叫床怎么办| 少妇 在线观看| 国产精品一区www在线观看| 精品久久久久久久末码| 国产综合精华液| 狂野欧美激情性xxxx在线观看| 国产av不卡久久| 精品午夜福利在线看| 少妇人妻久久综合中文| 亚洲美女视频黄频| 亚洲精品亚洲一区二区| 国内精品美女久久久久久| 身体一侧抽搐| 久久久久久久久久人人人人人人| 另类亚洲欧美激情| 欧美潮喷喷水| 日日啪夜夜爽| 亚洲精品乱码久久久v下载方式| 中文字幕亚洲精品专区| 中文字幕制服av| 下体分泌物呈黄色| 亚洲av一区综合| 国产精品爽爽va在线观看网站| 一级片'在线观看视频| 久久国产乱子免费精品| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 搡女人真爽免费视频火全软件| 国产真实伦视频高清在线观看| 亚洲激情五月婷婷啪啪| 五月伊人婷婷丁香| 日韩不卡一区二区三区视频在线| 日日撸夜夜添| 菩萨蛮人人尽说江南好唐韦庄| 亚洲自拍偷在线| 国产永久视频网站| 一级毛片黄色毛片免费观看视频| 日本免费在线观看一区| 精品国产一区二区三区久久久樱花 | 国产毛片在线视频| av专区在线播放| 亚洲欧美成人精品一区二区| 人妻制服诱惑在线中文字幕| av天堂中文字幕网| 久久女婷五月综合色啪小说 | 精品人妻视频免费看| 2021天堂中文幕一二区在线观| 国产女主播在线喷水免费视频网站| 欧美xxⅹ黑人| 国产免费一级a男人的天堂| 亚洲激情五月婷婷啪啪| av在线蜜桃| 国产永久视频网站| 亚洲激情五月婷婷啪啪| 国内少妇人妻偷人精品xxx网站| 日韩欧美 国产精品| 婷婷色麻豆天堂久久| 少妇人妻一区二区三区视频| 亚洲综合色惰| 一区二区av电影网| 七月丁香在线播放| 97超视频在线观看视频| 国产精品人妻久久久影院| 日韩大片免费观看网站| 在线观看三级黄色| 亚洲内射少妇av| 嫩草影院精品99| 99九九线精品视频在线观看视频| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 综合色av麻豆| 青春草亚洲视频在线观看| 亚洲最大成人av| 视频中文字幕在线观看| 欧美zozozo另类| 日韩免费高清中文字幕av| 国产淫片久久久久久久久| 亚洲精品国产av蜜桃| 波多野结衣巨乳人妻| 寂寞人妻少妇视频99o| 亚洲熟女精品中文字幕| 亚洲精品乱久久久久久| 亚洲av成人精品一二三区| 中国国产av一级| 国产亚洲av嫩草精品影院| 欧美xxxx性猛交bbbb| 日韩一区二区三区影片| 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 精品少妇黑人巨大在线播放| 国产精品国产av在线观看| 国产伦理片在线播放av一区| 色5月婷婷丁香| tube8黄色片| 国产大屁股一区二区在线视频| 亚洲天堂国产精品一区在线| 成人美女网站在线观看视频| 青春草视频在线免费观看| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区视频9| 久久久成人免费电影| 亚洲自偷自拍三级| 国产av不卡久久| 欧美性猛交╳xxx乱大交人| 美女国产视频在线观看| 99久久中文字幕三级久久日本| 日韩大片免费观看网站| 麻豆国产97在线/欧美| 久久久久久久午夜电影| 亚洲国产精品成人综合色| 在线免费十八禁| 中文字幕免费在线视频6| 在线观看人妻少妇| 欧美日本视频| 日韩国内少妇激情av| 久久久久久久久久人人人人人人| 天堂中文最新版在线下载 | 国产成人91sexporn| 一级a做视频免费观看| 久久99热这里只频精品6学生| 美女内射精品一级片tv| 狂野欧美激情性bbbbbb| 晚上一个人看的免费电影| 在线观看人妻少妇| 赤兔流量卡办理| 五月开心婷婷网| 午夜福利高清视频| 精华霜和精华液先用哪个| 日韩av免费高清视频| 插阴视频在线观看视频| 一级av片app| 黄色欧美视频在线观看| 国产精品99久久久久久久久| 99精国产麻豆久久婷婷| 国产极品天堂在线| 草草在线视频免费看| 一边亲一边摸免费视频| 校园人妻丝袜中文字幕| 在线免费十八禁| 久久久久久久大尺度免费视频| 国产免费又黄又爽又色| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 丰满人妻一区二区三区视频av| 成人特级av手机在线观看| 久久97久久精品| 日本欧美国产在线视频| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久久久| h日本视频在线播放| 身体一侧抽搐| 日本午夜av视频| 亚洲精品乱久久久久久| 狂野欧美激情性xxxx在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲国产日韩一区二区| 在线看a的网站| 日韩欧美精品v在线| 国产一区二区在线观看日韩| xxx大片免费视频| 六月丁香七月| 少妇 在线观看| 尤物成人国产欧美一区二区三区| 特级一级黄色大片| 大话2 男鬼变身卡| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 久久6这里有精品| 国产黄色视频一区二区在线观看| 亚洲av成人精品一区久久| 日韩欧美一区视频在线观看 | 欧美少妇被猛烈插入视频| 色播亚洲综合网| 午夜激情福利司机影院| 亚洲天堂国产精品一区在线| 免费看不卡的av| 午夜福利在线观看免费完整高清在| 亚洲成人精品中文字幕电影| 黑人高潮一二区| 国产成人a∨麻豆精品| 国产黄色视频一区二区在线观看| 国产日韩欧美亚洲二区| 中文资源天堂在线| 寂寞人妻少妇视频99o| 各种免费的搞黄视频| 在线观看免费高清a一片| 男人和女人高潮做爰伦理| 亚洲久久久久久中文字幕| 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 亚洲精品日韩在线中文字幕| 久久久成人免费电影| 午夜免费鲁丝| 青春草亚洲视频在线观看| 国产免费一区二区三区四区乱码| 久久久久性生活片| 欧美97在线视频| 色综合色国产| 日韩av不卡免费在线播放| 七月丁香在线播放| 一级毛片久久久久久久久女| 在线免费十八禁| 直男gayav资源| 麻豆成人av视频| 欧美精品一区二区大全| 久久久成人免费电影| 欧美性感艳星| 黄色视频在线播放观看不卡| 中文字幕人妻熟人妻熟丝袜美| 日日摸夜夜添夜夜添av毛片| 制服丝袜香蕉在线| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 日韩欧美精品免费久久| 国产精品国产三级国产专区5o| 免费少妇av软件| www.av在线官网国产| 国产乱人视频| 各种免费的搞黄视频| 色播亚洲综合网| 国产69精品久久久久777片| 黄色欧美视频在线观看| 天天一区二区日本电影三级| 日韩一本色道免费dvd| 18禁裸乳无遮挡动漫免费视频 | 中文字幕久久专区| 国产老妇女一区| 又大又黄又爽视频免费| 日本av手机在线免费观看| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 全区人妻精品视频| 美女国产视频在线观看| 欧美zozozo另类| 亚洲精品国产av蜜桃| 九草在线视频观看| 国产精品成人在线| 噜噜噜噜噜久久久久久91| 免费在线观看成人毛片| kizo精华| 精品人妻偷拍中文字幕| 美女国产视频在线观看| 免费观看的影片在线观看| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 青春草视频在线免费观看| 精品熟女少妇av免费看| 亚洲av.av天堂| 好男人视频免费观看在线| 成年免费大片在线观看| 国产午夜精品一二区理论片| 高清午夜精品一区二区三区| 久久99热这里只有精品18| 久久精品久久精品一区二区三区| 建设人人有责人人尽责人人享有的 | freevideosex欧美| 狂野欧美激情性xxxx在线观看| 韩国av在线不卡| 99久久精品一区二区三区| 国产成人精品久久久久久| 一级毛片 在线播放| 日韩免费高清中文字幕av| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 国产伦精品一区二区三区视频9| 欧美激情在线99| 亚洲不卡免费看| 国产熟女欧美一区二区| 国产成人精品婷婷| 乱系列少妇在线播放| 99久久精品一区二区三区| 国产精品无大码| 2021少妇久久久久久久久久久| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 欧美激情国产日韩精品一区| 亚洲天堂av无毛| 视频中文字幕在线观看| 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 中文欧美无线码| 少妇裸体淫交视频免费看高清| 建设人人有责人人尽责人人享有的 | 亚洲av中文av极速乱| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 国产伦理片在线播放av一区| 精品国产三级普通话版| 欧美成人a在线观看| 直男gayav资源| 国产高潮美女av| 色哟哟·www| 免费黄色在线免费观看| 亚洲欧美成人精品一区二区| 3wmmmm亚洲av在线观看| 欧美zozozo另类| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 日本午夜av视频| 偷拍熟女少妇极品色| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 亚洲成人精品中文字幕电影| 国产成人91sexporn| 99九九线精品视频在线观看视频| 久久精品国产亚洲网站| 人人妻人人爽人人添夜夜欢视频 | 高清av免费在线| 亚洲欧美日韩另类电影网站 | 一级黄片播放器| 成人鲁丝片一二三区免费| 久久精品熟女亚洲av麻豆精品| 久久热精品热| 我要看日韩黄色一级片| 欧美 日韩 精品 国产| av.在线天堂| 久久久久久久午夜电影| a级毛色黄片| 日韩,欧美,国产一区二区三区| 日韩伦理黄色片| 欧美日韩国产mv在线观看视频 | 热re99久久精品国产66热6| 高清视频免费观看一区二区| 亚洲精品日韩av片在线观看| 欧美zozozo另类| 亚洲人成网站在线播| 欧美最新免费一区二区三区| 成人国产av品久久久| 一本久久精品| 晚上一个人看的免费电影| 亚洲成色77777| 一级片'在线观看视频| 国产精品伦人一区二区| 国产免费福利视频在线观看| 男男h啪啪无遮挡| 久久久欧美国产精品| 在线观看三级黄色| 国产久久久一区二区三区| av在线蜜桃| 一区二区三区免费毛片| 欧美老熟妇乱子伦牲交| 一区二区av电影网| 禁无遮挡网站| 黄色一级大片看看| 日韩强制内射视频| 成年av动漫网址| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 大香蕉久久网| 日韩三级伦理在线观看| 一级黄片播放器| 看十八女毛片水多多多| 各种免费的搞黄视频| 亚洲国产色片| 伦精品一区二区三区| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 成人午夜精彩视频在线观看| 街头女战士在线观看网站| 色婷婷久久久亚洲欧美| 人人妻人人看人人澡| 777米奇影视久久| 亚洲精品乱码久久久v下载方式| 最近中文字幕2019免费版| 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 国产成年人精品一区二区| 一级黄片播放器| 久久久久久久久久久免费av| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的 | 日韩制服骚丝袜av| 老司机影院成人| av一本久久久久| 久久综合国产亚洲精品| 日本三级黄在线观看| www.av在线官网国产| 国产精品人妻久久久影院| 久久99热6这里只有精品| 国产v大片淫在线免费观看| 在线精品无人区一区二区三 | 国产 一区精品| 美女cb高潮喷水在线观看| 尾随美女入室| 免费av毛片视频| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看 | 高清午夜精品一区二区三区| 国产精品爽爽va在线观看网站| 熟妇人妻不卡中文字幕| av网站免费在线观看视频| 免费观看无遮挡的男女| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 大香蕉97超碰在线| 日韩国内少妇激情av| 亚州av有码| 蜜桃亚洲精品一区二区三区| 国产免费福利视频在线观看| 天美传媒精品一区二区| 一级爰片在线观看| 免费观看a级毛片全部| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| av免费在线看不卡| 超碰97精品在线观看| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 午夜精品一区二区三区免费看| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 国产 精品1| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 99热这里只有是精品50| 97人妻精品一区二区三区麻豆| 亚洲精品日本国产第一区| 国产成人精品福利久久| 精品一区在线观看国产| 观看免费一级毛片| 婷婷色综合大香蕉| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 免费观看无遮挡的男女| 午夜视频国产福利| av免费在线看不卡| 极品教师在线视频| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 大香蕉久久网| 久久影院123| 免费人成在线观看视频色| 精品一区二区免费观看| 超碰97精品在线观看| 男女啪啪激烈高潮av片| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 欧美性猛交╳xxx乱大交人| 日韩视频在线欧美| 99久久精品热视频| 美女视频免费永久观看网站| 午夜福利在线在线| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 嫩草影院新地址| 亚洲精品一二三| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 18禁在线无遮挡免费观看视频| 日韩国内少妇激情av| 国产精品爽爽va在线观看网站| 国产日韩欧美在线精品| 国产精品久久久久久精品电影| 国产91av在线免费观看| 哪个播放器可以免费观看大片| 99热6这里只有精品| 午夜福利高清视频| 久久久久网色| 国产免费福利视频在线观看| 婷婷色综合www| 九九在线视频观看精品| 六月丁香七月| 国产精品.久久久| 精品少妇久久久久久888优播| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 小蜜桃在线观看免费完整版高清| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 亚洲内射少妇av| 日韩欧美一区视频在线观看 | 国产久久久一区二区三区| 五月伊人婷婷丁香| 亚洲精品456在线播放app| 国产精品成人在线| 最近2019中文字幕mv第一页| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 日本免费在线观看一区| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 国产成人a∨麻豆精品| 国产精品一区二区在线观看99| 国产免费视频播放在线视频| 九草在线视频观看| 欧美成人a在线观看| 夫妻性生交免费视频一级片| 亚洲va在线va天堂va国产| 免费观看在线日韩| 最近2019中文字幕mv第一页| 国产精品偷伦视频观看了| 国产91av在线免费观看| 一本色道久久久久久精品综合| 国产大屁股一区二区在线视频| 久久精品综合一区二区三区| 欧美日本视频| 观看美女的网站| 色综合色国产| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 久久久色成人| 国产爱豆传媒在线观看| 少妇 在线观看| 国产精品福利在线免费观看| 国产精品久久久久久精品古装| 看非洲黑人一级黄片| av线在线观看网站| 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 日韩精品有码人妻一区| 直男gayav资源| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级毛片aaaaaa免费看小| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜添av毛片| 亚洲最大成人av| 伊人久久精品亚洲午夜| 国产成人免费无遮挡视频| 插逼视频在线观看| 国产精品久久久久久精品电影小说 | 在线观看一区二区三区激情| 日韩av免费高清视频| 97超碰精品成人国产|