• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 2D Brickwall-like Copper(II) Coordination Polymer Based on Phenyliminodiacetate and 4,4?-Bipyridine:Synthesis, Crystal Structure and Magnetic Property①

    2015-03-25 02:35:40WANGXiaoBingLUZhengAnLUWenGuan
    結(jié)構(gòu)化學(xué) 2015年9期

    WANG Xiao-Bing LU Zheng-An LU Wen-Guan

    (Department of Chemistry, Shaoguan University, Shaoguan 512005, China)

    1 INTRODUCTION

    Very recently, because of the structural diversities and potential applications in many fields, such as gas adsorption, catalysis, luminescence, magnetic,etc., metal-organic coordination polymers (CPs)have attracted extensive attention to chemical researchers[1-10]. One of the most effective strategies to construct functional CPs with unique structures is to employ multinuclear metal cluster as the secondary building unit (SBU), then connecting these SUBs by bridging ligands as linkers, often leading to the formation of novel CPs with extended higher dimensional framework structures and desired function properties[11-13]. Usually, as an auxiliary ligand, rigid rod-like neutral N,N?-donor bridging ligands, such as 4,4?-bipyridine (4,4?-bipy), pyrazine etc., can also be used as bridged ligands to connect these SBUs to form higher dimensional structures[11,12].

    As a flexible organic ligand, phenyliminodiacetic acid (C6H5N(CH2COOH)2, H2L) or its derivatives have two kinds of coordination sites to participate in the coordination process, namely, not only containing one amino nitrogen atom but also exten-ding two flexible acetic arms from its aminodiacetic group. Two flexible acetates, herein, have good coordination capacities and diverse coordination modes, such as monodentate, bidentate, chelate,and so on. Furthermore, H2L can also be used as a tridentate ligand to bind the metal ions to form two five-membered rings of MOCCN by one amino nitrogen atom and two acetates. So, H2L or its derivatives have been widely used in the architecture of CPs[14-19]. Taking these properties into account,we and others have also selected flexible H2L as the main ligand and rigid neutral N,N?-donor ligands,such as 4,4?-bipy, pyrazine, 2,2?-bipyridine (2,2?-bipy), 1,10-phenanthroline (1,10?-phen), etc. as the auxiliary ligand to react with transition metal ions to construct and obtain a series of new CPs based on the H2L ligand[15-17]. Here we report the preparation and crystal structure of another novel copper(II)coordination polymer of {[Cu3L2(4,4?-bipy)4]-(ClO4)2·20H2O}n(1) based on the mixed ligands of H2L and 4,4?-bipy. It contains rare tri- nuclear copper(II) clusters of [Cu3L2]2+, and repre- sents a 2D cation brickwall-like network of [Cu3L2-(4,4?-bipy)4]n2n+connected by 4,4?-bipy ligands. Furthermore, its thermal stability and magnetic property have also been investigated.

    2 EXPERIMENTAL

    2.1 Materials and physical measurements

    Phenyliminodiacetic acid (H2L) was prepared according to the literature procedure[14]. The other chemicals were commercially available and used without further purification. An elemental analysis(EA) was carried out using a Vario EL elemental analyzer. Infrared spectroscopy (IR) was acquired in a Nicolet Avatar-370 FT-IR spectrometer with KBr pellets. Powder X-ray diffraction (PXRD) measurement was performed on a Bruker D8-ADVANCE X-ray diffractometer with a CuKα radiation (λ =0.15418 nm). Thermogravimetric analysis (TGA)data were carried out on a Netzsch TG-209 thermogravimetry analyzer under N2atmosphere in the temperature range of 20~800 ℃ at a heating rate of 10 ℃/min. Magnetic susceptibility data were collected at 2~300 K in a field of 1000 Oe with a Quantum Design MPMS-XL7 SQUID.

    2.2 Synthesis of {[Cu3L2(4,4?-bipy)4](ClO4)2·20H2O}n (1)

    A solution of CuSO4·5H2O (0.125 g, 0.5 mmol)in methanol (20 mL) was added dropwise to an equimolar aqueous solution of H2L (0.105 g, 0.5 mmol). The reaction mixture was stirred for 1 h.Then a solution of 4,4?-bipy (0.156 g, 1.0 mmol) in methanol (10 mL) was added to it. After stirring for 0.5 h, NaClO4·H2O (0.140 g, 1.0 mmoL) was added and the mixture was stirred for 0.5 h, and then filtered. The mother liquor was allowed to evaporate slowly at room temperature. Blue block-shaped crystals of 1 were collected by filtration after one week. Yield: 75% (based on Cu). Anal. Calcd. for C60H90Cl2Cu3N10O36(%): C, 40.28; H, 5.07; N, 7.83.Found (%): C, 41.63; H, 4.86; N, 7.95. IR (KBr pellet, cm-1): 3415 (vs), 1637 (s), 1617 (s), 1501 (w),1443 (m), 1122 (s), 871 (w), 623 (m), 467 (w).

    2.3 Crystallographic data collection and structure determination

    A blue block-shaped crystal with dimensions of 0.30mm × 0.30mm × 0.28mm was selected for X-ray diffraction. The diffraction data were obtained at 293(2) K using a Bruker Smart 1000 CCD diffractometer equipped with a graphitemonochromatic MoKα radiation (λ = 0.071073 nm). 15824 reflections were collected in the range of 1.47≤θ≤25.00o by using the ω/2θ scan mode. Among them,6929 were independent (Rint= 0.0347) and 4910 were observed (I ≥ 2σ(I)). The structure was solved by direct methods and refined by full-matrix least-squares techniques on F2using the SHELXS-97 and SHELXL-97 programs[20,21]. All hydrogen atoms of L2-and 4,4?-bipy ligands were placed in the calculated positions with fixed isotropic thermal parameters and included in the structure factor calculations in the final stage of full-matrix leastsquares refinement. The positions of oxygen atoms in ClO4-and one lattice water molecule (O(5)) are dually disordered, and its occupies were fixed according to their FVAR values. The hydrogen atoms in lattice water molecules were not included.The largest peak and deepest hole on the final difference Fourier map are 735 and –478 e·nm-3,respecttively. The final refinement converged at R =0.0487 and wR = 0.1204 (w = 1/[σ2(Fo2) +(0.0657P)2+ 23.6255P], where P = (Fo2+ 2Fc2)/3),(Δ/σ)max= 0.001 and S = 1.036. The selected bond lengths and bond angles are given in Table 1.

    Table 1. Selected Bond Lengths (nm) and Bond Angles (o) of 1

    3 RESULTS AND DISCUSSION

    Complex 1 was obtained with medium yield by the reaction of H2L, CuSO4·5H2O, NaClO4·H2O and 4,4?-bipy in water/methanol followed by slow evaporating the solution at room temperature. Additionally, it is worth noting that using Cu(NO3)2·3H2O or Cu(Ac)2·H2O instead of CuSO4·5H2O to react with H2L, NaClO4·H2O and 4,4?-bipy under the same conditions can also produce 1 in various yields.This indicates that the influence of metal precursor to the formation of 1 is negligible. IR spectra of 1 show broad O–H stretching bands about 3415 cm-1resulting from the existence of lattice water molecules in the structure. The bands at 1617 and 1443 cm-1can be assigned to the antisymmetric vas(COO-)and symmetric stretching frequency vs(COO-), and the absorption bands for ClO4-could be found at 1122 and 623 cm-1, respectively. The phase homogeneity of the bulk sample 1 was identified by powder X-ray diffraction (PXRD). As shown in Fig.1, all the peaks of experimental result at room temperature closely match to the simulated one generated from the single-crystal diffraction data,which show the bulky sample is pure.

    Fig. 1. Experimental and simulated PXRD patterns of 1

    Fig. 2. Coordination environment of Cu(II) ions, bridging mode of μ2-L2- ligand and [Cu3L2]2+ cluster (a), the coordination polyhedron of Cu(II) ions (b and c) in 1 (Thermal ellipsoids are drawn at the 30% level, and all the hydrogen atoms were omitted for clarity. Symmetry codes: A: x, –y + 1, z + 1/2; B: –x + 2, –y + 1, –z + 2;C: –x + 2, –y, –z + 2; D: x, –y, z + 1/2; E: –x + 2, y, –z + 5/2)

    Fig. 3. In 1, view of the 2D cation brickwall-like layer structure of [Cu3L2(4,4?-bipy)4]2+ along the 101 plane (a), b axis (c)and c axis (d), respectively (All benzene rings of L2- and the hydrogen atoms were omitted for clarity).Topological view of the 2D cation brickwall-like layer in 1 showing (4,4) grid structure by the linkages of 4,4?-bipy ligands and [Cu3L2]2+ clusters as nodes (b)

    Fig. 4. In 1, view of the 3D supramolecular structure assembled via the interlayer stacking interactions along the 101 plane (a), b axis (b) and c axis (c), respectively (The disordered ClO4- counter anions are represented in space-filling mode. All lattice water molecules were omitted for clarity in b and c)

    The result of single-crystal X-ray diffraction analysis reveals that 1 crystallizes in the monoclinic system with space group C2/c, and its structure features a 2D cation brickwall-like network layer of[Cu3L2(4,4?-bipy)4]n2n+with an unprecedented trinuclear unit of [Cu3L2]2+core as the second building unit (SBU) (Fig. 2a). The extended structure may be described in terms of the interconnected [Cu3L2]2+subunits by 4,4?-bipy ligands. Three arranged Cu(II)ions are clustered by virtue of two L2-ligands. The L2-ligand, herein, can be viewed as a μ2-connecter.The two carboxylate groups exhibit two different coordination modes. One is monodentate, and the other is syn-anti bridging bidentate, which is very similar to the complex we had reported before[17]. In 1, the asymmetrical unit contains two crystallographically independent Cu(II) ions (Cu(1) and Cu(2)). The Cu(2) is located on an inversion center,and shows different coordination environments and geometry from Cu(1). The Cu(1) and Cu(2) ions are bridged by one carboxylate of μ2-L2-with syn-anti bridging bidentate coordination mode, and the distance between Cu(1) and Cu(2) is 0.5859 nm,which is longer than the syn-syn bridging bidentate coordination mode in several compounds having been reported[22,23]. Two Cu(II) ions (Cu(1) and Cu(1E)) and two L2-ligands are related to each other by this inversion center (Cu(2)) in the SBU, in which the Cu(1)···Cu(2)···Cu(1E) angle is 170.450(8)o, indicating Cu(1), Cu(2) and Cu(1E) in SBU are not completely in a straight line. The Cu(1)shows a slightly distorted tetragonal pyramidal coordination geometry (Fig. 2b) and is five-coordinated with two oxygen atoms (O(1) and O(3)) and one nitrogen atom (N(1)) from one μ2-L2-, and two nitrogen atoms (N(2) and N(3)) from two individual 4,4?-bipy ligands. O(1), O(3), N(1) and N(2) locate on the square quasi-plane, and the vertical position is occupied by N(3). The lengths of Cu(1)–O bands are 0.1939(3) and 0.1954(3) nm, and those of Cu(1)–N range from 0.2008(3) to 0.2227(3) nm. The bond angles around Cu(1) are in the range of 83.34(12)~163.52(12)o. The Cu(2) is six-coordinated with four nitrogen atoms (N(4A), N(4B), N(5C) and N(5D))from four individual 4,4?-bipy ligands in the equatorial plane, and two oxygen atoms (O(4) and O(4E)) from two individual μ2-L2-ligands in the axial positions, forming a slightly distorted octahedral geometry (Fig. 2c). The axial Cu(2)–O bond lengths (0.2380(3) nm) are slightly longer than the equatorial Cu(2)–N bond lengths (0.2028(3) and 0.2043(3) nm) because of the Jahn-Teller effect.Therefore, based on the crystal- field theory, the electronic configuration of Cu(2) may be(t2g)6(dx2–y2)1(dz2)2. The axial bond angle of O(4)–Cu(2)–O(4E) is 169.34(13)o, and the bond angles around Cu(2) in the equatorial plane fall in the 88.11(18)~91.78(12)o range. Both Cu(II)–N and Cu(II)–O bond lengths around the Cu(II) ions (Cu(1)and Cu(2)) in 1 are well-matched to those observed in similar compounds[14,17]. In 1, each subunit of[Cu3L2]2+is further connected to four others via rigid rod-like neutral N,N?-donor bridging 4,4?-bipy ligands to form a 2D cation brickwall-like network layer of [Cu3L2(4,4?-bipy)4]n2n+with a tetragonal window of about 1.1240nm × 1.1105nm (measured by the Cu···Cu distances) (Fig 3a). If the [Cu3L2]2+subunits are taken as nodes and twin bridging 4,4?-bipy as linkers of a topological network, a (4,4)grid topological architecture with grid length of 1.3380nm × 1.3053nm (measured between the[Cu3L2]2+node distances) is generated (Fig. 3b). As shown in Fig. 4, the neighboring brickwall-like layers are further stacked in a staggered manner via the interlayer stacking interactions to generate a 3D supramolecular structure with 1D open square channels. These open square channels are filled with disordered ClO4-counter anions and lattice water molecules (Fig. 4a).

    Fig. 5. Thermogrvimetric analysis curve of 1

    Fig. 6. Temperature dependence of 1/χM and χMT versus T plots for 1

    Thermogravimetric analysis (TGA, Fig. 5)indicates that the lattice water molecules in 1 could be removed form the channel under 220 ℃, and the weight loss of 16.09% is less than that calculated(20.14%), indicating part of lattice water molecules may have been lost before heating. After the loss of lattice water molecules, the 2D framework began to decompose upon further heating.

    Magnetic susceptibility measurements on temperature dependence were investigated on Quantum Design MPMS-XL7 SQUID at 2~300 K in a field of 1000 Oe. As shown in Fig. 6, the χMT value of 1 is 1.733 cm3·mol-1·K at room temperature, which is close to the theoretical value (1.732 cm3·mol-1·K) for three uncoupled spin Cu(II) ions (SCu= 1/2, g = 2.0).By decreasing the temperature, the χMT value decreases gradually approaching to 1.418 cm3·mol-1·K at 20 K, then drops rapidly. At 2.0 K, the χMT value is equal to 0.956 cm3·mol-1·K. The result probably indicates a typical antiferromagnetic behavior between the Cu(II) ions within [Cu3L2]2+trinuclear cluster units because of the coordinate bridging action through the carboxylic ions (Fig. 2a). Due to the long distance of bridging 4,4?-bipy ligands, there is no obvious magnetic exchange interaction between the adjacent trinuclear [Cu3L2]2+cluster units(Fig. 3a). The magnetic susceptibilities over the temperature range of 2~300 K can be fitted based on the Curie-Weiss Law χM= C/(T – θ) with C =1.696 cm3·mol-1and θ = –5.986 K, further suggesting the antiferromagnetic coupling between the Cu(II) ions within [Cu3L2]2+trinuclear cluster units.The obvious decrease of χMT value below 20 K may be attributed to the antiferromagnetic coupling interactions within [Cu3L2]2+trinuclear cluster units or zero-field splitting of the ground state[24].

    4 CONCLUSION

    In summary, a new Cu(II) coordination polymer of {[Cu3L2(4,4?-bipy)4](ClO4)2·20H2O}n(1) was obtained based on mixed ligand of flexible phenyliminodiacetate (L2-) and rigid 4,4?-bipyridine(4,4?-bipy). The single-crystal X-ray diffraction analysis that 1 exhibits a 2D cation brickwall-like layer structure of [Cu3L2(4,4?-bipy)4]n2n+built from the trinuclear [Cu3L2]2+secondary building units(SBUs) and 4,4?-bipy linkers. These adjacent 2D cation brickwall-like layers are further stacked in a staggered fashion by the interlayer stacking interactions to generate a 3D supramolecular structure with 1D open square channels, in which the counter anions ClO4-and lattice water molecules are filled in these channels. Furthermore, magnetic susceptibility measurement of 1 indicates the presence of antiferromagnetic interactions between the neighboring Cu(II) ions.

    (1) Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

    (2) Lin, Z. J.; Lin, X.; Cao, R. Construction of two octahedral cage-based metal-organic frameworks. Acta Chim. Sinica 2012, 70, 2012–2015.

    (3) Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    (4) Xiong, S. S.; Li, S. J.; Wang, S. J.; Wang, Z. Y. Multi-functional metal-organic frameworks based on H4mdip: crystal structure, photoluminescence,selective ion-exchange and catalysis. CrystEngComm. 2011, 13, 7236–7245.

    (5) Jian, L. J.; Chen, C.; Lan, F.; Deng, S. J.; Xiao, W. M.; Zhang, N. Catalytic activity of unsaturated coordinated Cu-MOF to the hydroxylation of phenol. Solid State Sciences 2011, 13, 1127–1131.

    (6) Chen, B. L.; Wang, L. B.; Xiao, Y. Q.; Fronczek, F. R.; Xue, M.; Cui, Y. J.; Qian, G. D. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48, 500–503.

    (7) Liu, H. W.; Lu W. G. A new 2D zinc(Ⅱ) coordination polymer constructed by imidazole-4,5-dicarboxylic acid (H3IDC) and 1,4-bis(imidazol-1-ylmethyl)-benzene (bix). Chin. J. Inorg. Chem. 2010, 29, 1416–1420.

    (8) Navarro, J. A. R.; Barea, E.; Rodríguez, D. A.; Salas, J. M.; Ania, C. O.; Parra, J. B.; Masciocchi, N.; Galli, S.; Sironi, A. Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, copper(II) coordination network. J. Am. Chem. Soc. 2008, 130,3978–3984.

    (9) Wriedt, M.; N?ther, C. Directed synthesis of μ-1,3,5 bridged dicyanamides by thermal decomposition of μ-1,5 bridged precursor compounds. Dalton Trans. 2011, 40, 886–898.

    (10) Zhang, X. M.; Gao, W.; Liu, J. P.; Gao, E. Q. Mixed-bridging manganese(II) and copper(II) complexes with azide and pyridylbenzoate N-oxide:structures and magnetic properties. Inorg. Chim. Acta 2012, 392, 311–316.

    (11) Chun, H.; Kim, D.; Dybtsev, D. N.; Kim, K. Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand. Angew. Chem. Int. Ed. 2004, 43, 971–974.

    (12) Ahnfeldt, T.; Guillou, N.; Gunzelman, D.; Margiolaki, I.; Loiseau, T.; Férey, G.; Senker, J.; Stock, N. [Al4(OH)2(OCH3)4(H2N-bdc)3]·xH2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew. Chem. Int. Ed. 2009, 48, 5163–5166.

    (13) Xing, J.; Luo, Y. A novel layer cadmium coordination polymer containing tetranuclear [Cd4(tpt)2(Cl)4]4+as a secondary building unit (SBU) bridged by pyridine 2,4-dicarboxylic acid. Chin. J. Struct. Chem. 2014, 33, 345–352.

    (14) Wang, X. Y.; Li, J. R.; Liu, Q. D.; Gao, S.; Yu, K. B. Synthesis and crystal structure of a novel 2D network copper complex constructed through hydrogen bonds linking zigzag chains. Chem. J. Chin. Univ. 2002, 23, 185–187.

    (15) Hao, Z. F.; Yu, J.; Zhang, Y. F.; Chen, Y. W.; Yu, L. Synthesis, characterization and crystal structure of dinuclear Cu(II) complexes linked by N-phenyliminodiacetic acid. Chin. J. Inorg. Chem. 2007, 23, 1315–1321.

    (16) Hao, Z. F.; Zhang, Y. F.; Chen, Y. W.; Yu, J.; Yu, L. Synthesis and structure of 2D nickel(II) coordination compound with phenyl-iminodiacetic acid. Chin. J. Inorg. Chem. 2005, 21, 573–577.

    (17) Wang, X. B.; Liu, H. W.; Lu, W. G. Synthesis, structure and magnetic property of a new 1D ladder-like copper(II) coordination polymer constructed from phenyliminodiacetate and 4,4?-bipyridyl. Chin. J. Inorg. Chem. 2013, 29, 303–308.

    (18) Chai, X. C.; Zhang, H. H.; Zhang, S.; Cao, Y. N.; Chen, Y. P. The tunable coordination architectures of a flexible multicarboxylate N-(4-carboxyphenyl)iminodiacetic acid via different metal ions, pH values and auxiliary ligand. J. Solid State Chem. 2009, 182, 1889–1898.

    (19) Xu, Y. Q.; Yuan, D. Q.; Wu, B. L.; Han, L.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. 1D tube, 2D layer and 3D framework derived from a new series of metal(II)-5-aminodiacetic isophthalate coordination polymers. Cryst. Growth Des. 2006, 6, 1168–1174.

    (20) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (21) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of G?ttingen, Germany 1997.

    (22) Cheng, J.; Liao, F. L.; Lu, T. H.; Mukherjee, P. S.; Maji, T. K.; Chaudhuri, N. R. An oxalato-bridged copper(II) complex. Acta Crystallographica Section E 2001, 57, m263–m264.

    (23) Stachov, P.; Valigura, D.; Koman, M.; Meln?k, M.; Korabik, M.; Mroziski, J.; Glowiak, T. Crystal structure, magnetic and spectral properties of tetrakis (2-nitrobenzoato) di (aqua) dicopper(II) dehydrate. Polyhedron 2004, 23, 1303–1308.

    (24) Li, Z. X.; Yang, Q.; Li, L. C.; Hu, T. L.; Bu, X. H. A series of 2D coordination polymers based on unprecedented linear tetranuclear units bridged by the azido anion: syntheses, crystal structures and magnetic properties. Acta Chim. Sinica 2013, 71, 755–760.

    99香蕉大伊视频| 自线自在国产av| 国产一区二区激情短视频 | 蜜桃在线观看..| 国产亚洲精品第一综合不卡| netflix在线观看网站| 制服诱惑二区| 国产伦理片在线播放av一区| 99国产精品一区二区三区| 午夜精品久久久久久毛片777| av视频免费观看在线观看| 手机成人av网站| 欧美国产精品一级二级三级| 国产黄频视频在线观看| 亚洲国产av影院在线观看| 高清视频免费观看一区二区| 亚洲三区欧美一区| 成年人黄色毛片网站| 国产精品国产av在线观看| 亚洲国产毛片av蜜桃av| 自线自在国产av| 欧美日韩视频精品一区| 亚洲欧美精品自产自拍| 精品国产一区二区三区久久久樱花| 久久精品成人免费网站| av天堂久久9| 又黄又粗又硬又大视频| 少妇精品久久久久久久| 免费高清在线观看日韩| 精品久久久久久电影网| 国产免费视频播放在线视频| 亚洲成人手机| 久久这里只有精品19| 午夜免费成人在线视频| 性色av一级| 亚洲精品第二区| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品一区二区精品视频观看| 高清欧美精品videossex| 美国免费a级毛片| 丰满少妇做爰视频| 亚洲精品国产av成人精品| 丰满少妇做爰视频| 少妇 在线观看| 国产日韩欧美在线精品| 亚洲一码二码三码区别大吗| 国产区一区二久久| 高清欧美精品videossex| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| 美女福利国产在线| 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 日本av免费视频播放| 国产高清国产精品国产三级| 亚洲成人免费电影在线观看| 久久久久精品人妻al黑| 免费观看a级毛片全部| 精品国产乱子伦一区二区三区 | 黄色片一级片一级黄色片| 两个人看的免费小视频| 老司机靠b影院| 午夜福利,免费看| 十八禁人妻一区二区| 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面 | 五月天丁香电影| 亚洲欧美色中文字幕在线| 欧美激情高清一区二区三区| 一本色道久久久久久精品综合| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 国产成人精品久久二区二区91| 首页视频小说图片口味搜索| a级毛片黄视频| 欧美97在线视频| 亚洲av日韩在线播放| 成人国语在线视频| 无限看片的www在线观看| av在线app专区| 大陆偷拍与自拍| 日本vs欧美在线观看视频| 精品国产国语对白av| 99国产极品粉嫩在线观看| 国产精品自产拍在线观看55亚洲 | 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久 | 性色av乱码一区二区三区2| 欧美黄色淫秽网站| 成年人午夜在线观看视频| 美女中出高潮动态图| 亚洲黑人精品在线| 欧美大码av| 黄网站色视频无遮挡免费观看| 国产伦理片在线播放av一区| 亚洲天堂av无毛| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 99国产综合亚洲精品| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 青春草视频在线免费观看| 交换朋友夫妻互换小说| 两个人看的免费小视频| 亚洲精品一区蜜桃| 国产精品久久久久久人妻精品电影 | 欧美精品av麻豆av| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 18禁裸乳无遮挡动漫免费视频| 欧美精品啪啪一区二区三区 | 国产国语露脸激情在线看| 啦啦啦视频在线资源免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久av网站| 国产一区有黄有色的免费视频| 国产xxxxx性猛交| 亚洲国产看品久久| 国产精品久久久人人做人人爽| 亚洲精品一二三| 日韩三级视频一区二区三区| 国内毛片毛片毛片毛片毛片| 国产福利在线免费观看视频| 欧美激情高清一区二区三区| 国产av精品麻豆| 51午夜福利影视在线观看| 青草久久国产| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 搡老岳熟女国产| 久久久精品免费免费高清| 久久国产精品大桥未久av| 亚洲免费av在线视频| 老司机亚洲免费影院| 欧美黑人精品巨大| 欧美日韩福利视频一区二区| 欧美激情久久久久久爽电影 | 9191精品国产免费久久| 国产免费视频播放在线视频| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区黑人| 青草久久国产| 777米奇影视久久| 色视频在线一区二区三区| 欧美日韩av久久| 十八禁高潮呻吟视频| 国产欧美日韩精品亚洲av| 亚洲黑人精品在线| 国产97色在线日韩免费| 午夜免费鲁丝| 国产精品1区2区在线观看. | www.自偷自拍.com| 亚洲第一av免费看| 一本一本久久a久久精品综合妖精| 国产三级黄色录像| 精品福利永久在线观看| 女警被强在线播放| av一本久久久久| 午夜福利影视在线免费观看| 国产精品久久久久久精品电影小说| 亚洲欧美激情在线| 精品国产一区二区三区四区第35| 老司机影院毛片| 美女主播在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区免费| 天天影视国产精品| 欧美精品一区二区免费开放| 精品少妇内射三级| a级片在线免费高清观看视频| 美女主播在线视频| 国产精品99久久99久久久不卡| 久久中文看片网| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 男女无遮挡免费网站观看| 一区二区三区精品91| 91精品伊人久久大香线蕉| 少妇精品久久久久久久| 99香蕉大伊视频| 超碰成人久久| 老汉色av国产亚洲站长工具| 成人三级做爰电影| 成人av一区二区三区在线看 | 久热爱精品视频在线9| 捣出白浆h1v1| 777米奇影视久久| 妹子高潮喷水视频| 精品福利永久在线观看| netflix在线观看网站| 日韩欧美一区视频在线观看| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 99re6热这里在线精品视频| 99久久精品国产亚洲精品| 精品福利观看| 色94色欧美一区二区| 777米奇影视久久| 婷婷成人精品国产| 亚洲黑人精品在线| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀| 国产97色在线日韩免费| 12—13女人毛片做爰片一| 欧美xxⅹ黑人| 亚洲成人手机| 宅男免费午夜| 老司机福利观看| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区久久| 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 亚洲三区欧美一区| 欧美xxⅹ黑人| 亚洲欧美日韩高清在线视频 | 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 自线自在国产av| 久久免费观看电影| 9191精品国产免费久久| 亚洲男人天堂网一区| e午夜精品久久久久久久| 在线 av 中文字幕| 老司机影院毛片| av天堂久久9| 国产亚洲av片在线观看秒播厂| 免费看十八禁软件| 丰满少妇做爰视频| www.av在线官网国产| 自拍欧美九色日韩亚洲蝌蚪91| 美女视频免费永久观看网站| 黄频高清免费视频| 久久青草综合色| 日韩视频在线欧美| 大香蕉久久成人网| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 在线精品无人区一区二区三| 欧美精品av麻豆av| 日本欧美视频一区| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 欧美精品一区二区大全| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 日韩中文字幕视频在线看片| 女人高潮潮喷娇喘18禁视频| 午夜精品久久久久久毛片777| a 毛片基地| 69精品国产乱码久久久| 成年人午夜在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 91大片在线观看| 国产亚洲av高清不卡| 热99国产精品久久久久久7| 亚洲精品av麻豆狂野| 精品少妇一区二区三区视频日本电影| 国产亚洲av片在线观看秒播厂| 美女高潮喷水抽搐中文字幕| 成在线人永久免费视频| 啪啪无遮挡十八禁网站| 热99re8久久精品国产| 一级毛片女人18水好多| 热99国产精品久久久久久7| 一个人免费看片子| 久久久国产精品麻豆| 亚洲国产av影院在线观看| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 无限看片的www在线观看| tube8黄色片| 中文字幕人妻丝袜制服| 欧美日韩一级在线毛片| 可以免费在线观看a视频的电影网站| 久久热在线av| 色老头精品视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久av网站| 亚洲精品日韩在线中文字幕| 精品欧美一区二区三区在线| 丰满少妇做爰视频| 在线观看人妻少妇| 国产精品自产拍在线观看55亚洲 | 啦啦啦啦在线视频资源| 欧美黄色片欧美黄色片| 成人免费观看视频高清| 一级,二级,三级黄色视频| 高清av免费在线| 一区二区三区乱码不卡18| 中文字幕制服av| kizo精华| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| 老汉色∧v一级毛片| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区 | 一级片'在线观看视频| 老司机影院成人| 久久久精品免费免费高清| 久久女婷五月综合色啪小说| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 日韩大码丰满熟妇| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 天堂中文最新版在线下载| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区| 99久久综合免费| 亚洲精品成人av观看孕妇| 九色亚洲精品在线播放| 精品一区二区三卡| 中文字幕另类日韩欧美亚洲嫩草| 日韩制服骚丝袜av| 精品少妇内射三级| 日韩精品免费视频一区二区三区| 国产精品 国内视频| 午夜免费鲁丝| 国产成人系列免费观看| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀| 一级,二级,三级黄色视频| 日本猛色少妇xxxxx猛交久久| 一本综合久久免费| 国产日韩欧美亚洲二区| 亚洲国产精品一区二区三区在线| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 十八禁网站免费在线| 亚洲国产av新网站| 欧美日韩精品网址| 捣出白浆h1v1| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| 黄色片一级片一级黄色片| av国产精品久久久久影院| 欧美成人午夜精品| 18禁国产床啪视频网站| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 久久精品国产综合久久久| 国产精品麻豆人妻色哟哟久久| 69av精品久久久久久 | 久久久精品94久久精品| 亚洲精品一区蜜桃| 久久久久国内视频| 脱女人内裤的视频| 亚洲伊人色综图| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 91大片在线观看| 妹子高潮喷水视频| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 岛国在线观看网站| 国产精品二区激情视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 最近中文字幕2019免费版| av天堂久久9| 十八禁高潮呻吟视频| 18在线观看网站| av电影中文网址| 久久久久久人人人人人| 久久av网站| 亚洲天堂av无毛| 国产成人a∨麻豆精品| www.自偷自拍.com| 国产成人影院久久av| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 最黄视频免费看| 亚洲精品一卡2卡三卡4卡5卡 | 久久久水蜜桃国产精品网| av超薄肉色丝袜交足视频| 国产片内射在线| 欧美日韩精品网址| 欧美午夜高清在线| 三级毛片av免费| 狂野欧美激情性bbbbbb| 啦啦啦 在线观看视频| 国产精品欧美亚洲77777| 18禁观看日本| 最新的欧美精品一区二区| 亚洲欧美一区二区三区久久| 1024香蕉在线观看| 国产欧美日韩一区二区精品| 国产老妇伦熟女老妇高清| 欧美黑人欧美精品刺激| 男女下面插进去视频免费观看| 成人国产av品久久久| 中亚洲国语对白在线视频| 国产高清videossex| 亚洲三区欧美一区| 黄色视频,在线免费观看| 国产日韩一区二区三区精品不卡| 免费少妇av软件| 久久香蕉激情| tocl精华| 正在播放国产对白刺激| 一区二区三区激情视频| 成年人免费黄色播放视频| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 老司机福利观看| 久久久久久久大尺度免费视频| 日韩人妻精品一区2区三区| 热re99久久国产66热| 国产一卡二卡三卡精品| 一本—道久久a久久精品蜜桃钙片| 一级a爱视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 超色免费av| 国产1区2区3区精品| 美女午夜性视频免费| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看. | 久久综合国产亚洲精品| 日本欧美视频一区| 99久久国产精品久久久| 亚洲精品国产av成人精品| 久久亚洲精品不卡| 最近最新免费中文字幕在线| 国产亚洲欧美在线一区二区| 午夜免费成人在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩制服丝袜自拍偷拍| 精品欧美一区二区三区在线| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 久久人人97超碰香蕉20202| 免费看十八禁软件| 国产成+人综合+亚洲专区| 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 在线观看www视频免费| 黄频高清免费视频| 人人澡人人妻人| 一个人免费看片子| 99香蕉大伊视频| 亚洲熟女毛片儿| 欧美精品一区二区大全| av电影中文网址| 啦啦啦 在线观看视频| 久久热在线av| 日韩精品免费视频一区二区三区| av福利片在线| 男人爽女人下面视频在线观看| 午夜福利免费观看在线| 大片电影免费在线观看免费| 久久久久久久大尺度免费视频| 69av精品久久久久久 | 正在播放国产对白刺激| 成人国产一区最新在线观看| 久久精品成人免费网站| 蜜桃国产av成人99| 操美女的视频在线观看| 国产亚洲av片在线观看秒播厂| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 久久女婷五月综合色啪小说| 多毛熟女@视频| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 男人爽女人下面视频在线观看| 国产一区二区三区综合在线观看| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻熟女乱码| 一边摸一边做爽爽视频免费| 99国产精品一区二区蜜桃av | 大香蕉久久成人网| 色老头精品视频在线观看| 国产精品九九99| 男女国产视频网站| 在线观看一区二区三区激情| 一区二区三区精品91| 久久精品亚洲熟妇少妇任你| 十八禁网站网址无遮挡| 伦理电影免费视频| 欧美在线黄色| 操美女的视频在线观看| 一本大道久久a久久精品| 午夜影院在线不卡| av超薄肉色丝袜交足视频| 亚洲欧美日韩高清在线视频 | 人人妻人人澡人人看| 脱女人内裤的视频| 日韩制服丝袜自拍偷拍| 久久人妻福利社区极品人妻图片| 极品人妻少妇av视频| 女人爽到高潮嗷嗷叫在线视频| 91成人精品电影| 亚洲一码二码三码区别大吗| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 99精品欧美一区二区三区四区| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 新久久久久国产一级毛片| videosex国产| 老司机午夜福利在线观看视频 | 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 国产成+人综合+亚洲专区| 成人亚洲精品一区在线观看| 啦啦啦中文免费视频观看日本| 精品乱码久久久久久99久播| www.熟女人妻精品国产| 欧美在线黄色| 成人三级做爰电影| 国产xxxxx性猛交| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 国产黄频视频在线观看| 日韩 亚洲 欧美在线| 欧美精品人与动牲交sv欧美| 亚洲av片天天在线观看| 欧美老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 搡老岳熟女国产| 国产成人欧美在线观看 | xxxhd国产人妻xxx| 老汉色av国产亚洲站长工具| 成人影院久久| 蜜桃在线观看..| 老司机午夜福利在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 老司机靠b影院| 国产精品成人在线| 久久久精品区二区三区| 国产国语露脸激情在线看| 欧美在线黄色| 一级毛片精品| 最近最新中文字幕大全免费视频| 欧美日韩亚洲高清精品| 高清av免费在线| 久久中文看片网| 精品国产乱子伦一区二区三区 | 夫妻午夜视频| 欧美97在线视频| 国产精品亚洲av一区麻豆| 亚洲全国av大片| bbb黄色大片| 在线观看免费高清a一片| 成在线人永久免费视频| 一本综合久久免费| 母亲3免费完整高清在线观看| 久久人人爽人人片av| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 免费黄频网站在线观看国产| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 免费看十八禁软件| 欧美人与性动交α欧美软件| 久久人妻熟女aⅴ| 97人妻天天添夜夜摸| 亚洲国产精品一区二区三区在线| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区| 亚洲国产欧美网| 亚洲人成77777在线视频| 亚洲欧美一区二区三区久久| 岛国毛片在线播放| 亚洲情色 制服丝袜| 亚洲av美国av| 精品国内亚洲2022精品成人 | 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜制服| 飞空精品影院首页| 一级毛片电影观看| 国产精品九九99| 欧美乱码精品一区二区三区| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 视频在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 动漫黄色视频在线观看| 成人黄色视频免费在线看| 老司机靠b影院| 成人手机av| 嫩草影视91久久| 国产97色在线日韩免费|