• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 2D Brickwall-like Copper(II) Coordination Polymer Based on Phenyliminodiacetate and 4,4?-Bipyridine:Synthesis, Crystal Structure and Magnetic Property①

    2015-03-25 02:35:40WANGXiaoBingLUZhengAnLUWenGuan
    結(jié)構(gòu)化學(xué) 2015年9期

    WANG Xiao-Bing LU Zheng-An LU Wen-Guan

    (Department of Chemistry, Shaoguan University, Shaoguan 512005, China)

    1 INTRODUCTION

    Very recently, because of the structural diversities and potential applications in many fields, such as gas adsorption, catalysis, luminescence, magnetic,etc., metal-organic coordination polymers (CPs)have attracted extensive attention to chemical researchers[1-10]. One of the most effective strategies to construct functional CPs with unique structures is to employ multinuclear metal cluster as the secondary building unit (SBU), then connecting these SUBs by bridging ligands as linkers, often leading to the formation of novel CPs with extended higher dimensional framework structures and desired function properties[11-13]. Usually, as an auxiliary ligand, rigid rod-like neutral N,N?-donor bridging ligands, such as 4,4?-bipyridine (4,4?-bipy), pyrazine etc., can also be used as bridged ligands to connect these SBUs to form higher dimensional structures[11,12].

    As a flexible organic ligand, phenyliminodiacetic acid (C6H5N(CH2COOH)2, H2L) or its derivatives have two kinds of coordination sites to participate in the coordination process, namely, not only containing one amino nitrogen atom but also exten-ding two flexible acetic arms from its aminodiacetic group. Two flexible acetates, herein, have good coordination capacities and diverse coordination modes, such as monodentate, bidentate, chelate,and so on. Furthermore, H2L can also be used as a tridentate ligand to bind the metal ions to form two five-membered rings of MOCCN by one amino nitrogen atom and two acetates. So, H2L or its derivatives have been widely used in the architecture of CPs[14-19]. Taking these properties into account,we and others have also selected flexible H2L as the main ligand and rigid neutral N,N?-donor ligands,such as 4,4?-bipy, pyrazine, 2,2?-bipyridine (2,2?-bipy), 1,10-phenanthroline (1,10?-phen), etc. as the auxiliary ligand to react with transition metal ions to construct and obtain a series of new CPs based on the H2L ligand[15-17]. Here we report the preparation and crystal structure of another novel copper(II)coordination polymer of {[Cu3L2(4,4?-bipy)4]-(ClO4)2·20H2O}n(1) based on the mixed ligands of H2L and 4,4?-bipy. It contains rare tri- nuclear copper(II) clusters of [Cu3L2]2+, and repre- sents a 2D cation brickwall-like network of [Cu3L2-(4,4?-bipy)4]n2n+connected by 4,4?-bipy ligands. Furthermore, its thermal stability and magnetic property have also been investigated.

    2 EXPERIMENTAL

    2.1 Materials and physical measurements

    Phenyliminodiacetic acid (H2L) was prepared according to the literature procedure[14]. The other chemicals were commercially available and used without further purification. An elemental analysis(EA) was carried out using a Vario EL elemental analyzer. Infrared spectroscopy (IR) was acquired in a Nicolet Avatar-370 FT-IR spectrometer with KBr pellets. Powder X-ray diffraction (PXRD) measurement was performed on a Bruker D8-ADVANCE X-ray diffractometer with a CuKα radiation (λ =0.15418 nm). Thermogravimetric analysis (TGA)data were carried out on a Netzsch TG-209 thermogravimetry analyzer under N2atmosphere in the temperature range of 20~800 ℃ at a heating rate of 10 ℃/min. Magnetic susceptibility data were collected at 2~300 K in a field of 1000 Oe with a Quantum Design MPMS-XL7 SQUID.

    2.2 Synthesis of {[Cu3L2(4,4?-bipy)4](ClO4)2·20H2O}n (1)

    A solution of CuSO4·5H2O (0.125 g, 0.5 mmol)in methanol (20 mL) was added dropwise to an equimolar aqueous solution of H2L (0.105 g, 0.5 mmol). The reaction mixture was stirred for 1 h.Then a solution of 4,4?-bipy (0.156 g, 1.0 mmol) in methanol (10 mL) was added to it. After stirring for 0.5 h, NaClO4·H2O (0.140 g, 1.0 mmoL) was added and the mixture was stirred for 0.5 h, and then filtered. The mother liquor was allowed to evaporate slowly at room temperature. Blue block-shaped crystals of 1 were collected by filtration after one week. Yield: 75% (based on Cu). Anal. Calcd. for C60H90Cl2Cu3N10O36(%): C, 40.28; H, 5.07; N, 7.83.Found (%): C, 41.63; H, 4.86; N, 7.95. IR (KBr pellet, cm-1): 3415 (vs), 1637 (s), 1617 (s), 1501 (w),1443 (m), 1122 (s), 871 (w), 623 (m), 467 (w).

    2.3 Crystallographic data collection and structure determination

    A blue block-shaped crystal with dimensions of 0.30mm × 0.30mm × 0.28mm was selected for X-ray diffraction. The diffraction data were obtained at 293(2) K using a Bruker Smart 1000 CCD diffractometer equipped with a graphitemonochromatic MoKα radiation (λ = 0.071073 nm). 15824 reflections were collected in the range of 1.47≤θ≤25.00o by using the ω/2θ scan mode. Among them,6929 were independent (Rint= 0.0347) and 4910 were observed (I ≥ 2σ(I)). The structure was solved by direct methods and refined by full-matrix least-squares techniques on F2using the SHELXS-97 and SHELXL-97 programs[20,21]. All hydrogen atoms of L2-and 4,4?-bipy ligands were placed in the calculated positions with fixed isotropic thermal parameters and included in the structure factor calculations in the final stage of full-matrix leastsquares refinement. The positions of oxygen atoms in ClO4-and one lattice water molecule (O(5)) are dually disordered, and its occupies were fixed according to their FVAR values. The hydrogen atoms in lattice water molecules were not included.The largest peak and deepest hole on the final difference Fourier map are 735 and –478 e·nm-3,respecttively. The final refinement converged at R =0.0487 and wR = 0.1204 (w = 1/[σ2(Fo2) +(0.0657P)2+ 23.6255P], where P = (Fo2+ 2Fc2)/3),(Δ/σ)max= 0.001 and S = 1.036. The selected bond lengths and bond angles are given in Table 1.

    Table 1. Selected Bond Lengths (nm) and Bond Angles (o) of 1

    3 RESULTS AND DISCUSSION

    Complex 1 was obtained with medium yield by the reaction of H2L, CuSO4·5H2O, NaClO4·H2O and 4,4?-bipy in water/methanol followed by slow evaporating the solution at room temperature. Additionally, it is worth noting that using Cu(NO3)2·3H2O or Cu(Ac)2·H2O instead of CuSO4·5H2O to react with H2L, NaClO4·H2O and 4,4?-bipy under the same conditions can also produce 1 in various yields.This indicates that the influence of metal precursor to the formation of 1 is negligible. IR spectra of 1 show broad O–H stretching bands about 3415 cm-1resulting from the existence of lattice water molecules in the structure. The bands at 1617 and 1443 cm-1can be assigned to the antisymmetric vas(COO-)and symmetric stretching frequency vs(COO-), and the absorption bands for ClO4-could be found at 1122 and 623 cm-1, respectively. The phase homogeneity of the bulk sample 1 was identified by powder X-ray diffraction (PXRD). As shown in Fig.1, all the peaks of experimental result at room temperature closely match to the simulated one generated from the single-crystal diffraction data,which show the bulky sample is pure.

    Fig. 1. Experimental and simulated PXRD patterns of 1

    Fig. 2. Coordination environment of Cu(II) ions, bridging mode of μ2-L2- ligand and [Cu3L2]2+ cluster (a), the coordination polyhedron of Cu(II) ions (b and c) in 1 (Thermal ellipsoids are drawn at the 30% level, and all the hydrogen atoms were omitted for clarity. Symmetry codes: A: x, –y + 1, z + 1/2; B: –x + 2, –y + 1, –z + 2;C: –x + 2, –y, –z + 2; D: x, –y, z + 1/2; E: –x + 2, y, –z + 5/2)

    Fig. 3. In 1, view of the 2D cation brickwall-like layer structure of [Cu3L2(4,4?-bipy)4]2+ along the 101 plane (a), b axis (c)and c axis (d), respectively (All benzene rings of L2- and the hydrogen atoms were omitted for clarity).Topological view of the 2D cation brickwall-like layer in 1 showing (4,4) grid structure by the linkages of 4,4?-bipy ligands and [Cu3L2]2+ clusters as nodes (b)

    Fig. 4. In 1, view of the 3D supramolecular structure assembled via the interlayer stacking interactions along the 101 plane (a), b axis (b) and c axis (c), respectively (The disordered ClO4- counter anions are represented in space-filling mode. All lattice water molecules were omitted for clarity in b and c)

    The result of single-crystal X-ray diffraction analysis reveals that 1 crystallizes in the monoclinic system with space group C2/c, and its structure features a 2D cation brickwall-like network layer of[Cu3L2(4,4?-bipy)4]n2n+with an unprecedented trinuclear unit of [Cu3L2]2+core as the second building unit (SBU) (Fig. 2a). The extended structure may be described in terms of the interconnected [Cu3L2]2+subunits by 4,4?-bipy ligands. Three arranged Cu(II)ions are clustered by virtue of two L2-ligands. The L2-ligand, herein, can be viewed as a μ2-connecter.The two carboxylate groups exhibit two different coordination modes. One is monodentate, and the other is syn-anti bridging bidentate, which is very similar to the complex we had reported before[17]. In 1, the asymmetrical unit contains two crystallographically independent Cu(II) ions (Cu(1) and Cu(2)). The Cu(2) is located on an inversion center,and shows different coordination environments and geometry from Cu(1). The Cu(1) and Cu(2) ions are bridged by one carboxylate of μ2-L2-with syn-anti bridging bidentate coordination mode, and the distance between Cu(1) and Cu(2) is 0.5859 nm,which is longer than the syn-syn bridging bidentate coordination mode in several compounds having been reported[22,23]. Two Cu(II) ions (Cu(1) and Cu(1E)) and two L2-ligands are related to each other by this inversion center (Cu(2)) in the SBU, in which the Cu(1)···Cu(2)···Cu(1E) angle is 170.450(8)o, indicating Cu(1), Cu(2) and Cu(1E) in SBU are not completely in a straight line. The Cu(1)shows a slightly distorted tetragonal pyramidal coordination geometry (Fig. 2b) and is five-coordinated with two oxygen atoms (O(1) and O(3)) and one nitrogen atom (N(1)) from one μ2-L2-, and two nitrogen atoms (N(2) and N(3)) from two individual 4,4?-bipy ligands. O(1), O(3), N(1) and N(2) locate on the square quasi-plane, and the vertical position is occupied by N(3). The lengths of Cu(1)–O bands are 0.1939(3) and 0.1954(3) nm, and those of Cu(1)–N range from 0.2008(3) to 0.2227(3) nm. The bond angles around Cu(1) are in the range of 83.34(12)~163.52(12)o. The Cu(2) is six-coordinated with four nitrogen atoms (N(4A), N(4B), N(5C) and N(5D))from four individual 4,4?-bipy ligands in the equatorial plane, and two oxygen atoms (O(4) and O(4E)) from two individual μ2-L2-ligands in the axial positions, forming a slightly distorted octahedral geometry (Fig. 2c). The axial Cu(2)–O bond lengths (0.2380(3) nm) are slightly longer than the equatorial Cu(2)–N bond lengths (0.2028(3) and 0.2043(3) nm) because of the Jahn-Teller effect.Therefore, based on the crystal- field theory, the electronic configuration of Cu(2) may be(t2g)6(dx2–y2)1(dz2)2. The axial bond angle of O(4)–Cu(2)–O(4E) is 169.34(13)o, and the bond angles around Cu(2) in the equatorial plane fall in the 88.11(18)~91.78(12)o range. Both Cu(II)–N and Cu(II)–O bond lengths around the Cu(II) ions (Cu(1)and Cu(2)) in 1 are well-matched to those observed in similar compounds[14,17]. In 1, each subunit of[Cu3L2]2+is further connected to four others via rigid rod-like neutral N,N?-donor bridging 4,4?-bipy ligands to form a 2D cation brickwall-like network layer of [Cu3L2(4,4?-bipy)4]n2n+with a tetragonal window of about 1.1240nm × 1.1105nm (measured by the Cu···Cu distances) (Fig 3a). If the [Cu3L2]2+subunits are taken as nodes and twin bridging 4,4?-bipy as linkers of a topological network, a (4,4)grid topological architecture with grid length of 1.3380nm × 1.3053nm (measured between the[Cu3L2]2+node distances) is generated (Fig. 3b). As shown in Fig. 4, the neighboring brickwall-like layers are further stacked in a staggered manner via the interlayer stacking interactions to generate a 3D supramolecular structure with 1D open square channels. These open square channels are filled with disordered ClO4-counter anions and lattice water molecules (Fig. 4a).

    Fig. 5. Thermogrvimetric analysis curve of 1

    Fig. 6. Temperature dependence of 1/χM and χMT versus T plots for 1

    Thermogravimetric analysis (TGA, Fig. 5)indicates that the lattice water molecules in 1 could be removed form the channel under 220 ℃, and the weight loss of 16.09% is less than that calculated(20.14%), indicating part of lattice water molecules may have been lost before heating. After the loss of lattice water molecules, the 2D framework began to decompose upon further heating.

    Magnetic susceptibility measurements on temperature dependence were investigated on Quantum Design MPMS-XL7 SQUID at 2~300 K in a field of 1000 Oe. As shown in Fig. 6, the χMT value of 1 is 1.733 cm3·mol-1·K at room temperature, which is close to the theoretical value (1.732 cm3·mol-1·K) for three uncoupled spin Cu(II) ions (SCu= 1/2, g = 2.0).By decreasing the temperature, the χMT value decreases gradually approaching to 1.418 cm3·mol-1·K at 20 K, then drops rapidly. At 2.0 K, the χMT value is equal to 0.956 cm3·mol-1·K. The result probably indicates a typical antiferromagnetic behavior between the Cu(II) ions within [Cu3L2]2+trinuclear cluster units because of the coordinate bridging action through the carboxylic ions (Fig. 2a). Due to the long distance of bridging 4,4?-bipy ligands, there is no obvious magnetic exchange interaction between the adjacent trinuclear [Cu3L2]2+cluster units(Fig. 3a). The magnetic susceptibilities over the temperature range of 2~300 K can be fitted based on the Curie-Weiss Law χM= C/(T – θ) with C =1.696 cm3·mol-1and θ = –5.986 K, further suggesting the antiferromagnetic coupling between the Cu(II) ions within [Cu3L2]2+trinuclear cluster units.The obvious decrease of χMT value below 20 K may be attributed to the antiferromagnetic coupling interactions within [Cu3L2]2+trinuclear cluster units or zero-field splitting of the ground state[24].

    4 CONCLUSION

    In summary, a new Cu(II) coordination polymer of {[Cu3L2(4,4?-bipy)4](ClO4)2·20H2O}n(1) was obtained based on mixed ligand of flexible phenyliminodiacetate (L2-) and rigid 4,4?-bipyridine(4,4?-bipy). The single-crystal X-ray diffraction analysis that 1 exhibits a 2D cation brickwall-like layer structure of [Cu3L2(4,4?-bipy)4]n2n+built from the trinuclear [Cu3L2]2+secondary building units(SBUs) and 4,4?-bipy linkers. These adjacent 2D cation brickwall-like layers are further stacked in a staggered fashion by the interlayer stacking interactions to generate a 3D supramolecular structure with 1D open square channels, in which the counter anions ClO4-and lattice water molecules are filled in these channels. Furthermore, magnetic susceptibility measurement of 1 indicates the presence of antiferromagnetic interactions between the neighboring Cu(II) ions.

    (1) Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.

    (2) Lin, Z. J.; Lin, X.; Cao, R. Construction of two octahedral cage-based metal-organic frameworks. Acta Chim. Sinica 2012, 70, 2012–2015.

    (3) Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    (4) Xiong, S. S.; Li, S. J.; Wang, S. J.; Wang, Z. Y. Multi-functional metal-organic frameworks based on H4mdip: crystal structure, photoluminescence,selective ion-exchange and catalysis. CrystEngComm. 2011, 13, 7236–7245.

    (5) Jian, L. J.; Chen, C.; Lan, F.; Deng, S. J.; Xiao, W. M.; Zhang, N. Catalytic activity of unsaturated coordinated Cu-MOF to the hydroxylation of phenol. Solid State Sciences 2011, 13, 1127–1131.

    (6) Chen, B. L.; Wang, L. B.; Xiao, Y. Q.; Fronczek, F. R.; Xue, M.; Cui, Y. J.; Qian, G. D. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48, 500–503.

    (7) Liu, H. W.; Lu W. G. A new 2D zinc(Ⅱ) coordination polymer constructed by imidazole-4,5-dicarboxylic acid (H3IDC) and 1,4-bis(imidazol-1-ylmethyl)-benzene (bix). Chin. J. Inorg. Chem. 2010, 29, 1416–1420.

    (8) Navarro, J. A. R.; Barea, E.; Rodríguez, D. A.; Salas, J. M.; Ania, C. O.; Parra, J. B.; Masciocchi, N.; Galli, S.; Sironi, A. Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, copper(II) coordination network. J. Am. Chem. Soc. 2008, 130,3978–3984.

    (9) Wriedt, M.; N?ther, C. Directed synthesis of μ-1,3,5 bridged dicyanamides by thermal decomposition of μ-1,5 bridged precursor compounds. Dalton Trans. 2011, 40, 886–898.

    (10) Zhang, X. M.; Gao, W.; Liu, J. P.; Gao, E. Q. Mixed-bridging manganese(II) and copper(II) complexes with azide and pyridylbenzoate N-oxide:structures and magnetic properties. Inorg. Chim. Acta 2012, 392, 311–316.

    (11) Chun, H.; Kim, D.; Dybtsev, D. N.; Kim, K. Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand. Angew. Chem. Int. Ed. 2004, 43, 971–974.

    (12) Ahnfeldt, T.; Guillou, N.; Gunzelman, D.; Margiolaki, I.; Loiseau, T.; Férey, G.; Senker, J.; Stock, N. [Al4(OH)2(OCH3)4(H2N-bdc)3]·xH2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew. Chem. Int. Ed. 2009, 48, 5163–5166.

    (13) Xing, J.; Luo, Y. A novel layer cadmium coordination polymer containing tetranuclear [Cd4(tpt)2(Cl)4]4+as a secondary building unit (SBU) bridged by pyridine 2,4-dicarboxylic acid. Chin. J. Struct. Chem. 2014, 33, 345–352.

    (14) Wang, X. Y.; Li, J. R.; Liu, Q. D.; Gao, S.; Yu, K. B. Synthesis and crystal structure of a novel 2D network copper complex constructed through hydrogen bonds linking zigzag chains. Chem. J. Chin. Univ. 2002, 23, 185–187.

    (15) Hao, Z. F.; Yu, J.; Zhang, Y. F.; Chen, Y. W.; Yu, L. Synthesis, characterization and crystal structure of dinuclear Cu(II) complexes linked by N-phenyliminodiacetic acid. Chin. J. Inorg. Chem. 2007, 23, 1315–1321.

    (16) Hao, Z. F.; Zhang, Y. F.; Chen, Y. W.; Yu, J.; Yu, L. Synthesis and structure of 2D nickel(II) coordination compound with phenyl-iminodiacetic acid. Chin. J. Inorg. Chem. 2005, 21, 573–577.

    (17) Wang, X. B.; Liu, H. W.; Lu, W. G. Synthesis, structure and magnetic property of a new 1D ladder-like copper(II) coordination polymer constructed from phenyliminodiacetate and 4,4?-bipyridyl. Chin. J. Inorg. Chem. 2013, 29, 303–308.

    (18) Chai, X. C.; Zhang, H. H.; Zhang, S.; Cao, Y. N.; Chen, Y. P. The tunable coordination architectures of a flexible multicarboxylate N-(4-carboxyphenyl)iminodiacetic acid via different metal ions, pH values and auxiliary ligand. J. Solid State Chem. 2009, 182, 1889–1898.

    (19) Xu, Y. Q.; Yuan, D. Q.; Wu, B. L.; Han, L.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. 1D tube, 2D layer and 3D framework derived from a new series of metal(II)-5-aminodiacetic isophthalate coordination polymers. Cryst. Growth Des. 2006, 6, 1168–1174.

    (20) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (21) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of G?ttingen, Germany 1997.

    (22) Cheng, J.; Liao, F. L.; Lu, T. H.; Mukherjee, P. S.; Maji, T. K.; Chaudhuri, N. R. An oxalato-bridged copper(II) complex. Acta Crystallographica Section E 2001, 57, m263–m264.

    (23) Stachov, P.; Valigura, D.; Koman, M.; Meln?k, M.; Korabik, M.; Mroziski, J.; Glowiak, T. Crystal structure, magnetic and spectral properties of tetrakis (2-nitrobenzoato) di (aqua) dicopper(II) dehydrate. Polyhedron 2004, 23, 1303–1308.

    (24) Li, Z. X.; Yang, Q.; Li, L. C.; Hu, T. L.; Bu, X. H. A series of 2D coordination polymers based on unprecedented linear tetranuclear units bridged by the azido anion: syntheses, crystal structures and magnetic properties. Acta Chim. Sinica 2013, 71, 755–760.

    另类亚洲欧美激情| 岛国在线观看网站| 国产亚洲精品第一综合不卡| 久久精品人人爽人人爽视色| 99久久国产精品久久久| 国产1区2区3区精品| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 欧美日韩视频精品一区| 我的亚洲天堂| 少妇 在线观看| 久久国产精品男人的天堂亚洲| 91成年电影在线观看| 午夜精品在线福利| 国产片内射在线| 激情在线观看视频在线高清| 午夜福利一区二区在线看| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 日韩国内少妇激情av| 婷婷精品国产亚洲av在线| 99在线人妻在线中文字幕| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址 | 女人被躁到高潮嗷嗷叫费观| 在线天堂中文资源库| 成年人黄色毛片网站| 伦理电影免费视频| 黄色 视频免费看| 午夜福利,免费看| 久久久久国内视频| 欧美久久黑人一区二区| 女人被躁到高潮嗷嗷叫费观| 久久久精品欧美日韩精品| 免费在线观看黄色视频的| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 黄色视频不卡| 夜夜夜夜夜久久久久| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 欧美黄色片欧美黄色片| 日韩大码丰满熟妇| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 久久久久久大精品| 欧美黄色淫秽网站| 欧美国产精品va在线观看不卡| 日韩成人在线观看一区二区三区| 亚洲黑人精品在线| 最新美女视频免费是黄的| 女同久久另类99精品国产91| 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 9热在线视频观看99| 一区福利在线观看| av网站免费在线观看视频| 成熟少妇高潮喷水视频| a级毛片黄视频| 国产又色又爽无遮挡免费看| 黄片大片在线免费观看| 国产精品野战在线观看 | 亚洲成国产人片在线观看| av电影中文网址| 国产精品影院久久| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站| 一本综合久久免费| 欧美黑人精品巨大| 国产成人影院久久av| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼 | 黑人巨大精品欧美一区二区mp4| 在线观看一区二区三区| 一区二区三区精品91| 91大片在线观看| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 免费不卡黄色视频| 欧美精品亚洲一区二区| 国产精品二区激情视频| 精品一区二区三区四区五区乱码| 欧美不卡视频在线免费观看 | 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 电影成人av| 亚洲精品国产色婷婷电影| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 国产极品粉嫩免费观看在线| 久久精品国产综合久久久| 久久人人精品亚洲av| 免费女性裸体啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 757午夜福利合集在线观看| 一区福利在线观看| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 国产野战对白在线观看| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 成人三级做爰电影| 欧美日韩黄片免| 国产黄a三级三级三级人| 人人妻人人澡人人看| netflix在线观看网站| 亚洲国产精品sss在线观看 | 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 亚洲美女黄片视频| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 亚洲av成人不卡在线观看播放网| 免费人成视频x8x8入口观看| 免费观看精品视频网站| 国产野战对白在线观看| 一区二区三区精品91| 精品国内亚洲2022精品成人| 韩国精品一区二区三区| 亚洲国产欧美一区二区综合| 丁香六月欧美| 丁香欧美五月| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 可以在线观看毛片的网站| 99久久人妻综合| 狠狠狠狠99中文字幕| 国产高清videossex| 在线观看www视频免费| 国产精品日韩av在线免费观看 | 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区二区三区在线观看| 美女 人体艺术 gogo| 亚洲自偷自拍图片 自拍| 午夜a级毛片| a在线观看视频网站| 一级毛片女人18水好多| 精品一区二区三卡| 一级作爱视频免费观看| 欧美激情久久久久久爽电影 | 成年人黄色毛片网站| 丝袜美足系列| 久久天堂一区二区三区四区| 日本vs欧美在线观看视频| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 麻豆国产av国片精品| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 757午夜福利合集在线观看| 亚洲成人国产一区在线观看| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 嫩草影院精品99| 国产精品久久电影中文字幕| 好男人电影高清在线观看| 在线看a的网站| 国产高清国产精品国产三级| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 午夜两性在线视频| 一夜夜www| 国产日韩一区二区三区精品不卡| 亚洲国产精品999在线| 丝袜人妻中文字幕| 午夜福利影视在线免费观看| 国产成年人精品一区二区 | 男女做爰动态图高潮gif福利片 | 久久久国产一区二区| 黄色成人免费大全| 国产av精品麻豆| 成人18禁在线播放| 男女午夜视频在线观看| 两性夫妻黄色片| av电影中文网址| 午夜免费观看网址| 中出人妻视频一区二区| 日韩免费av在线播放| 免费观看人在逋| 制服人妻中文乱码| 国产三级在线视频| 后天国语完整版免费观看| 欧美人与性动交α欧美软件| 亚洲精品美女久久av网站| 欧美中文日本在线观看视频| 久久久久久人人人人人| 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 精品无人区乱码1区二区| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 国产在线精品亚洲第一网站| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 黑人欧美特级aaaaaa片| 午夜a级毛片| 日本一区二区免费在线视频| 国产精品亚洲一级av第二区| 丝袜美腿诱惑在线| 91老司机精品| 在线观看免费视频网站a站| 麻豆国产av国片精品| 亚洲国产精品合色在线| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 久久人人97超碰香蕉20202| 久久亚洲真实| 又黄又粗又硬又大视频| 国产亚洲欧美在线一区二区| 丰满迷人的少妇在线观看| 久久人人精品亚洲av| 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 久久精品91无色码中文字幕| 757午夜福利合集在线观看| 欧美激情极品国产一区二区三区| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| 真人一进一出gif抽搐免费| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 久久热在线av| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 91成人精品电影| 午夜精品在线福利| 欧美成人午夜精品| 电影成人av| 韩国av一区二区三区四区| 免费在线观看完整版高清| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 国产又爽黄色视频| 夜夜夜夜夜久久久久| 亚洲一区二区三区色噜噜 | 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 级片在线观看| 日韩精品免费视频一区二区三区| 精品久久蜜臀av无| 男人舔女人的私密视频| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 久久99一区二区三区| 免费一级毛片在线播放高清视频 | 满18在线观看网站| 老司机深夜福利视频在线观看| 国产一区二区三区综合在线观看| svipshipincom国产片| 国产亚洲精品第一综合不卡| 很黄的视频免费| 激情视频va一区二区三区| 国产成人精品无人区| 一区二区三区国产精品乱码| 国产欧美日韩精品亚洲av| 成人18禁在线播放| 一级a爱片免费观看的视频| 18禁黄网站禁片午夜丰满| 亚洲人成网站在线播放欧美日韩| 久久久久久久久久久久大奶| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站 | 亚洲色图 男人天堂 中文字幕| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 在线国产一区二区在线| 女性生殖器流出的白浆| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 国内久久婷婷六月综合欲色啪| 久久久国产欧美日韩av| 亚洲免费av在线视频| 亚洲专区中文字幕在线| 成人手机av| av免费在线观看网站| 天堂中文最新版在线下载| 一级毛片高清免费大全| 久久香蕉国产精品| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 日韩欧美一区二区三区在线观看| 成熟少妇高潮喷水视频| 99re在线观看精品视频| 成人三级做爰电影| 久久狼人影院| 精品久久久久久成人av| 国产精品香港三级国产av潘金莲| 大码成人一级视频| 亚洲国产精品sss在线观看 | 波多野结衣高清无吗| 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 69精品国产乱码久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| ponron亚洲| 国产色视频综合| 国产亚洲av高清不卡| 电影成人av| 亚洲午夜精品一区,二区,三区| 国产伦人伦偷精品视频| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出 | av在线天堂中文字幕 | 亚洲久久久国产精品| 国产片内射在线| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| av中文乱码字幕在线| 三级毛片av免费| 精品电影一区二区在线| 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡 | 黄色毛片三级朝国网站| 国产三级黄色录像| 99精品在免费线老司机午夜| 久久久水蜜桃国产精品网| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| 黄片播放在线免费| 老汉色av国产亚洲站长工具| 国产精品电影一区二区三区| 亚洲精品国产精品久久久不卡| 怎么达到女性高潮| 国产野战对白在线观看| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播| 国产麻豆69| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 在线观看免费视频日本深夜| 在线观看免费日韩欧美大片| 久久婷婷成人综合色麻豆| tocl精华| 好男人电影高清在线观看| bbb黄色大片| 伊人久久大香线蕉亚洲五| 视频区图区小说| 久久人人97超碰香蕉20202| 人人妻人人澡人人看| 91字幕亚洲| 国产极品粉嫩免费观看在线| av天堂在线播放| 99久久精品国产亚洲精品| 日本五十路高清| 国产区一区二久久| 免费少妇av软件| 大码成人一级视频| 久久精品国产亚洲av香蕉五月| 久久伊人香网站| 日韩欧美一区二区三区在线观看| 9色porny在线观看| 在线天堂中文资源库| 中文字幕av电影在线播放| 99在线人妻在线中文字幕| 亚洲精品av麻豆狂野| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 黄色视频不卡| 在线观看舔阴道视频| 香蕉丝袜av| 99国产精品一区二区三区| 亚洲av熟女| 97人妻天天添夜夜摸| 一边摸一边抽搐一进一小说| 超碰97精品在线观看| 波多野结衣一区麻豆| 欧美一区二区精品小视频在线| bbb黄色大片| 女人高潮潮喷娇喘18禁视频| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 高潮久久久久久久久久久不卡| 19禁男女啪啪无遮挡网站| 精品高清国产在线一区| 国产亚洲精品久久久久5区| 在线十欧美十亚洲十日本专区| 亚洲aⅴ乱码一区二区在线播放 | 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 精品日产1卡2卡| 国产主播在线观看一区二区| 黄片播放在线免费| 90打野战视频偷拍视频| 99国产精品一区二区三区| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 操出白浆在线播放| 精品久久久久久,| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 亚洲中文av在线| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 亚洲一区中文字幕在线| 超色免费av| 亚洲精品国产区一区二| 国产精品秋霞免费鲁丝片| 91成人精品电影| 欧美另类亚洲清纯唯美| 88av欧美| netflix在线观看网站| 18禁美女被吸乳视频| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| 免费看a级黄色片| 色综合欧美亚洲国产小说| 两个人免费观看高清视频| 久久国产精品人妻蜜桃| 国产免费现黄频在线看| 757午夜福利合集在线观看| 中国美女看黄片| 欧美亚洲日本最大视频资源| 亚洲成a人片在线一区二区| 国产xxxxx性猛交| 日韩欧美在线二视频| 免费在线观看完整版高清| 高清在线国产一区| 婷婷六月久久综合丁香| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 成人国语在线视频| 午夜福利一区二区在线看| 国产成人av激情在线播放| 啦啦啦 在线观看视频| 亚洲一区二区三区不卡视频| 黄频高清免费视频| 国产亚洲精品久久久久久毛片| 国产熟女午夜一区二区三区| 精品久久久久久,| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区三区四区久久 | 老司机午夜十八禁免费视频| 午夜a级毛片| 久久人人爽av亚洲精品天堂| 天天添夜夜摸| 国产精品免费视频内射| 久久香蕉激情| 亚洲国产毛片av蜜桃av| 久久热在线av| 国产精品自产拍在线观看55亚洲| 欧美日韩精品网址| 欧美色视频一区免费| 女人高潮潮喷娇喘18禁视频| 国内久久婷婷六月综合欲色啪| 久久精品影院6| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲真实| 老熟妇仑乱视频hdxx| 少妇的丰满在线观看| 欧美午夜高清在线| 美女福利国产在线| 亚洲aⅴ乱码一区二区在线播放 | 狂野欧美激情性xxxx| 亚洲激情在线av| 一区二区三区国产精品乱码| 国产精品久久久久久人妻精品电影| 久久久久久免费高清国产稀缺| 日本wwww免费看| 午夜福利欧美成人| 看免费av毛片| 天堂中文最新版在线下载| 亚洲成人免费电影在线观看| 性少妇av在线| 欧美午夜高清在线| 精品国产国语对白av| 电影成人av| 国产精品综合久久久久久久免费 | 黄片播放在线免费| 久久人妻福利社区极品人妻图片| 亚洲人成网站在线播放欧美日韩| 精品久久久久久电影网| 日韩 欧美 亚洲 中文字幕| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人| 不卡一级毛片| 中出人妻视频一区二区| 亚洲熟妇中文字幕五十中出 | 桃红色精品国产亚洲av| 99久久人妻综合| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产精品久久久不卡| 色婷婷久久久亚洲欧美| 欧美色视频一区免费| 美女大奶头视频| 久久人人爽av亚洲精品天堂| 欧美日韩乱码在线| 精品国产亚洲在线| 欧美丝袜亚洲另类 | 中文欧美无线码| 婷婷精品国产亚洲av在线| 国产片内射在线| 精品久久久久久久毛片微露脸| 9热在线视频观看99| 精品熟女少妇八av免费久了| 久久狼人影院| 国产成人免费无遮挡视频| 亚洲aⅴ乱码一区二区在线播放 | 精品日产1卡2卡| 长腿黑丝高跟| 757午夜福利合集在线观看| 欧美色视频一区免费| 国产xxxxx性猛交| 免费在线观看日本一区| 男女下面插进去视频免费观看| 少妇粗大呻吟视频| 欧美另类亚洲清纯唯美| 成人免费观看视频高清| 国产精品98久久久久久宅男小说| 国产麻豆69| 91麻豆精品激情在线观看国产 | 18美女黄网站色大片免费观看| 亚洲av成人不卡在线观看播放网| 伦理电影免费视频| 亚洲九九香蕉| 亚洲精品国产区一区二| 人妻久久中文字幕网| 电影成人av| 嫩草影视91久久| 国产av一区在线观看免费| 成人亚洲精品一区在线观看| 精品少妇一区二区三区视频日本电影| 亚洲成a人片在线一区二区| 免费在线观看完整版高清| 国产免费男女视频| 久久香蕉激情| 婷婷六月久久综合丁香| 亚洲午夜理论影院| 在线观看免费日韩欧美大片| 丁香欧美五月| 日日摸夜夜添夜夜添小说| 色精品久久人妻99蜜桃| 亚洲精品一区av在线观看| 国产在线精品亚洲第一网站| 最近最新中文字幕大全免费视频| 18禁观看日本| 久久久久精品国产欧美久久久| 极品教师在线免费播放| 国产一区二区三区视频了| 国产亚洲欧美精品永久| 久久久久久久午夜电影 | 国产精品美女特级片免费视频播放器 | 长腿黑丝高跟| 777久久人妻少妇嫩草av网站| 久久这里只有精品19| 免费av毛片视频| 又黄又粗又硬又大视频| av福利片在线| 他把我摸到了高潮在线观看| 国产伦一二天堂av在线观看| 久9热在线精品视频| 国产主播在线观看一区二区| 韩国av一区二区三区四区| 香蕉国产在线看| 一区福利在线观看| 欧美日韩国产mv在线观看视频| 两性夫妻黄色片| 日韩精品免费视频一区二区三区| 精品卡一卡二卡四卡免费| 国产精品成人在线| 男人舔女人下体高潮全视频| 国产亚洲精品综合一区在线观看 | 99国产极品粉嫩在线观看| 亚洲情色 制服丝袜| 69av精品久久久久久| 国产精品影院久久| 午夜免费鲁丝| 中亚洲国语对白在线视频| 91成人精品电影| 日日夜夜操网爽| 丝袜人妻中文字幕| 免费少妇av软件| 国产成人精品久久二区二区免费| 久久精品亚洲av国产电影网| 久久狼人影院| 欧美乱码精品一区二区三区| 后天国语完整版免费观看| 国产免费av片在线观看野外av| 亚洲一区二区三区不卡视频| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三|