• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuII and CuI Complexes of 1,1?-(Pyridin-2-ylmethylene)-bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridine]:in situ Generation of the Ligand via Acetic Acid-controlled Metal-ligand Reactions①

    2015-03-25 02:35:40ZHANGHiFengCHENYnMeiQINRuLIHongLIWu
    結(jié)構(gòu)化學(xué) 2015年9期

    ZHANG Hi-Feng CHEN Yn-Mei QIN Y-Ru LI Y-Hong② LI Wu

    a(College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China)

    b (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China)

    1 INTRODUCTION

    Imidazo[1,5-a]pyridine and its derivatives, as a class of important ligand, have attracted considerable attention of coordination chemists because these ligands and their coordination complexes have extensive applications in medicine[1-3], OLEDs[4,5]and photoluminescent materials[6-8]. Despite all these interests, only few complexes have been reported due to the strict reaction conditions and length sequence required for the synthesis of imidazo[1,5-a]pyridine and its derivatives. Hence, the development of efficient access to the ligands as well as compounds is of great significance.

    In our previous work[9], we report an efficient strategy for the preparation of coordination complexes of imidazo[1,5-a]pyridine and its derivatives.By employing this strategy, a variety of derivatives of imidazo[1,5-a]pyridine were generated via metalligand reactions among picolinaldehyde, ammonium acetate and metal salts. The mechanism investigation revealed that the free radicals were formed in the reaction process. We envisioned that there might be a number of new complexes available by adding acetic acid in the reaction system because acetic acid could sever as a radical inhibitor in some reactions[10].

    To this end, we conducted the reactions of HPIP(HPIP = 3-(pyridin-2-yl)-imidazo[1,5-a]pyridine),picolinaldehyde and CuCl2·2H2O (or CuCl) in the presence of acetic acid under solvothermal conditions. Four complexes of formulas [LCuCl][Cu2Cl3](1), [HLCuCl]2[CuCl2]2[CuCl3]·2H2O (2), [Cu3L2Cl2][CuCl2]·2H2O] (3) and [Cu3L2][CuCl2]3(4) were prepared. Complexes 1 and 2 are CuII/CuImixedvalence compounds. Herein, we report the syntheses and structures of these complexes.

    2 EXPERIMENTAL

    All solvents and reagents were purchased from commercial suppliers and used without further purification. Crystal determinations of complexes 1~4 were performed with a Bruker SMART APEXⅡ CCD diffractometer equipped with a graphite-monochromatized MoKa radiation (λ =0.71073 ?). Elemental analyses (C, N, H) were performed with a Carlo-Erba EA1110 CHNO-S elemental analyzer. Powder X-ray diffraction(PXRD) was recorded on a Rigaku D/Max-2500 diffractiometer. IR spectra (4000~400 cm-1) were recorded by using KBr pellets with a Nicolet MagNa-TR500 FT-IR spectrometer.

    2.1 Syntheses of complexes 1 and 2

    A mixture of HPIP (0.0390 g, 0.2 mmol),picolinaldehyde (0.0214 g, 0.2 mmol), CuCl2·2H2O(0.0524 g, 0.3 mmol), CH3COOH (1 mL) and EtOH(2 mL) was sealed in an 8 mL Pyrex tube and heated for 72 h at 125 ℃ under autogenous pressure. Darkgreen block crystals [LCuCl][Cu2Cl3] (1) and green rod crystals [HLCuCl]2[CuCl2]2[CuCl3]·2H2O (2)were obtained simultaneously. The crystals were collected by filtration, washed with Et2O (2×3 mL),and dried in air. Yield: 19% (based on CuCl2·2H2O).

    Elemental Anal. Calcd. for C30H21Cl4Cu3N7(1): C,44.38; H, 2.61; N, 12.07%. Found: C, 43.85; H, 2.44;N 11.97%. Selected IR data (KBr, cm-1): 2361 (w),1639 (w), 1602 (m), 1481 (s), 1371 (m), 1311 (m),1255 (m), 1146 (m), 1053 (w), 1005 (w), 983 (w),781 (m), 738 (m), 678 (m).

    Elemental Anal. Calcd. for C60H48Cl9Cu5N14O2(2): C, 44.11; H, 2.96; N, 12.00%. Found: C, 43.34;H, 2.67; N, 11.73%. Selected IR data (KBr, cm-1):1606 (m), 1519 (w), 1495 (s), 1367 (m), 1315 (m), 1252(m), 1071 (w), 1008 (w), 774 (s), 750 (m), 697 (m).

    2.2 Synthesis of complex 3

    A mixture of HPIP (0.0390 g, 0.2 mmol), picolinaldehyde (0.0214 g, 0.1 mmol), CuCl (0.0099 g,0.1 mmol), CH3COOH (1 mL) and EtOH (2 mL)was sealed in an 8 mL Pyrex tube. The tube was heated for three days at 125 ℃ under autogenous pressure. Slow cooling of the resultant solution to room temperature over 24 h gave orange-block crystals. The crystals were collected by filtration,washed with Et2O (23 mL), and dried in air. Yield:34% (based on CuCl).

    Elemental anal. calcd. for C60H46Cl4Cu4N14O2: C,51.80; H, 3.33; N, 14.10%. Found: C, 51.34; H, 3.41;N 13.95%. Selected IR data (KBr, cm-1): 3463 (s),3423 (s), 2361 (w), 1637 (w), 1594 (w), 1473 (w),1438 (w), 1150 (w), 774 (m), 723 (w), 618 (w).

    2.3 Synthesis of complex 4

    A mixture of HPIP (0.0390 g, 0.2 mmol), picolinaldehyde (0.0214 g, 0.1 mmol), CuCl (0.0297 g,0.3 mmol), CH3COOH (1 mL) and EtOH (2 mL)was sealed in an 8 mL Pyrex tube. The tube was heated for three days at 125 ℃ under autogenous pressure. Slow cooling of the resultant solution to room temperature over 24 h gave red-platy crystals.The crystals were collected by filtration, washed with Et2O (23 mL), and dried in air. Yield: 29%(based on CuCl). Elemental anal. calcd. for C60H42Cl6Cu6N14: C, 46.40; H, 2.73; N, 12.63%.Found: C, 46.72; H, 2.67; N, 12.21%. Selected IR data (KBr, cm-1): 3446 (s), 1635 (w), 1590 (m), 1478(s), 1359 (w), 1312 (w), 1236 (w), 1070 (w), 1002(w), 778 (m), 735 (w), 619 (w).

    2.4 Single-crystal X-ray crystallography

    Data were collected at 296(2) K on a Bruker SMART APEX CCD area-detector diffractometer equipped with a graphite-monochromated MoKα radiation (λ = 0.71073 ?) for 1~4 using the ω-φ scan technique. The structures were solved by direct methods using SHELXS-97[11]and refined on F2using full-matrix least-squares with SHELXL-97[12].Crystallographic data together with refinement details for the new complexes reported in this work are summarized in Table 1. Selected bond lengths and bond angles of 1~4 are shown in Table 2, and hydrogen bond lengths and bond angles are listed in Table 3.

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for 1~4

    Symmetry transformation: (1) #1: x, –y+1/2, z; #2: x–1, y, z; (2) #1: –x+1, –y, z

    Table 3. Selected Hydrogen Bond Lengths (?) and Bond Angles (°) for 1~4

    Symmetry codes: (1) #1: –x, 1/2+y, 1–z; #2: –1+x, y, z; #3: 1–x, 1/2+y, 1–z; #4: –1/2+x, 1/2–y, 1/2–z; (2) #1: 3/4–x, 1/4+y, 3/4+z;#2: –1/4+x, 1/4–y, –1/4+z; #3: –x, –y, z; #4: x, y, –1+z; #5: 1/4+x, 1/4–y, 1/4+z; #6: 1/4+x, –1/4–y, –1/4+z; (3) #1: x, 1+y, z;#2: 1–x,1–y,–z; #3: –1+x,1+y,z; #4: 1–x,–y,1–z; (4) #1: x, 1+y, z; #2: 1–x, 1–y, 1–z; #3: –x, 1–y, 1–z; #4: 1–x, 1–y, –z

    3 RESULTS AND DISCUSSION

    3.1 Synthesis

    In our previous work[9], we have conducted the reactions of HPIP, picolinaldehyde and CuCl2·2H2O in EtOH. Three complexes have been produced via solvothermal in situ metal-ligand reactions. The radical mechanisms are proved for these reactions. It is well known that acetic acid could serve as an inhibitor for radical reactions[10]. We were curious if the in situ generation of the ligand through metalligand reaction could occur again in the presence of acetic acid. To our delight, the solvothermal metalligand reaction was determined, and the ligand L (L= 1,1?-(pyridin-2-ylmethylene)bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridine) was generated again (Scheme 1).The reaction of HPIP, picolinaldehyde and CuCl2·2H2O gave crystals 1 and 2 simultaneously.The color of crystal 1 is dark green, while that of crystal 2 is green-rod. They are easy to distinguish.

    Intrigued by the above work, we are eager to know if other new complexes could be obtained when CuCl2·2H2O is replaced by CuCl. Two reactions were examined. The 2:1:1 (HPIP:picolinaldehyde:CuCl) reaction in the mixture of EtOH and acetic acid gave orange-block crystals 3. If the ratio of HPIP, picolinaldehyde and CuCl is 2:3:1,red-platy crystals of 4 were generated.

    It is possible that acetic acid plays two roles in the reactions. First, it acts as a radical inhibitor, preventing the further reduction of aldehyde group and the formation of tertiary carbon centers[10]. Secondly,it serves as an acid to facilitate the condensation reaction between HPIP and picoli-naldehyde.

    Scheme 1. Synthesis of the L ligand

    3.2 Structure description

    The collected crystal data for the four structures are shown in Table 1. Selected bond lengths and bond angles of complexes 1~4 are listed in Table 2.Selected hydrogen bond lengths and bond angles for 1~4 are summarized in Table 3.

    Single-crystal X-ray diffraction reveals that 1 crystallizes in the monoclinic crystal system of Pnma space group. It displays a 1D chain structure.The asymmetric unit of 1 is shown in Fig. 1. The 1D and 2D networks of 1 are displayed in Figs. 2 and 3,respectively. The asymmetric unit of 1 consists of one CuIIion (Cu(1)), two CuIions (Cu(2),Cu(3)),one L ligand and four Cl-ions. The in situ formed L ligand coordinates to two Cu ions by five nitrogen atoms. The Cu(1) ion is five-coordinated by four nitrogen atoms (N(1), N(2), N(1A), N(2A)) originating from two PIP units of the L ligand and one Clion (Cl(3B)). The Cu(2) ion is bound to one nitrogen atom (N(4)) from pyridine unit of the L ligand and three Cl-anions (Cl(1), Cl(2), Cl(2A)), and Cu(3) is coordinated by three Cl-anions (Cl(2), Cl(3),Cl(2A)). The two adjacent Cu(2) and Cu(3) ions were doubly bridged by two Cl-anions (Cl(2),Cl(2A)), and Cu(1) and Cu(3) were bridged by one Cl-anion (Cl(3B)), forming a 1-D chain structure.

    Fig. 1. Partially labeled plot of the asymmetric unit of 1 with H atoms being omitted for clarity

    Fig. 2. 1D chain structure of 1 with H atoms being omitted for clarity

    Fig. 3. 2D structure created by intermolecular hydrogen bonding interactions.Hydrogen atoms which are not involved in hydrogen bonds are omitted for clarity

    Complex 1 features intermolecular C–H···Cl hydrogen bonding contacts between the C–H of pyridine rings as hydrogen atom donors, and Cl atoms coordinated to Cu ions as acceptors (C(8)–H(8)···Cl(3), C(3)–H(3)···Cl(2)). These intermolecular hydrogen bonds connect the 1-D chains to generate an infinite 2-D network.

    Complex 1 joins a big family of Cu chain complexes[13-15]. However, such examples that use Clions as single or double bridges are very rare[16].

    Compound 2 crystallizes in the orthorhombic crystal system of Fdd2 space group. Fig. 4 gives a perspective view of 2. Compound 2 consists of one CuIIion (Cu(1)), two CuIions (Cu(2), Cu(3)), one in situ formed L ligand, five Cl-ions and one solvent water molecule. The central copper(II) ion is coordinated by four N atoms from an in situ formed L ligand and one Cl-ion. Interestingly, there is one hydrogen atom that bonds to N(6) to balance the negative charge. The [CuCl3]2-unit and [CuCl2]-moiety are located around the [Cu(HL)Cl]2+unit to balance the charge of the molecule.

    Fig. 4. Molecular structure of 2. Hydrogen atoms and water molecules are omitted for clarity

    Strong intermolecular π-π stacking interactions exist in the structure (Fig. 5a). Beside the π-π interaction, the molecules are also linked to each other by three different hydrogen bonding interactions, namely, O(1)–H(1A)…Cl(1) (the oxygen atom O(1) from water molecule as a donor and the chloride atom Cl(1) as an acceptor), C(3)–H(3)…Cl(3) (the carbon atom C(3) as a donor and chloride atom Cl(3) from the [CuCl2] unit as an acceptor), and the other five C–H…Cl interactions(Table 3). An infinite 3-D structure is generated by these hydrogen bonding interactions (Fig. 5b).

    Fig. 5. (a) Intermolecular π···π stacking interactions found in 2. (b) 3D structure created by intermolecular hydrogen bonding interactions. Hydrogen atoms involved in hydrogen bonds are omitted for clarity

    X-ray single-crystal diffraction determination indicates that complex 3 crystallizes in the triclinic crystal system of P1 space group. Its structure is comprised of one [Cu3L2Cl2]+unit, one [CuCl2]-unit and two water molecules. The coordination environments of three Cu atoms are shown in Fig. 6. Cu(1)atom is coordinated by two N atoms from one L ligand and another two N atoms from another L ligand to generate a distorted tetrahedral coordination environment. Cu(2) and Cu(3) ions have similar coordination environments. They are coordinated by two N atoms from one L ligand and one Cl-ion to form a triangular geometry. The [CuCl2]-unit is located around the [Cu3L2Cl2]+unit to balance the charge of the molecule.

    Fig. 6. Structure of 3. Hydrogen atoms and water molecules are omitted for clarity

    The hydrogen bond interactions are found between the adjacent units and solvent water molecules (Fig. 7). These hydrogen bonds connect the units to afford a 2D framework structure.

    Fig. 7. 2D structure created by intermolecular hydrogen bonding interactions.Hydrogen atoms which are not involved in hydrogen bonds are omitted for clarity

    Complex 4 crystallizes in the triclinic system,space group P 1. Its structure consists of three crystallographically independent Cu+cations, two in situ formed L ligand, and three [CuCl2]-units. The copper atoms in [Cu3L2]3+unit exhibit two different coordination geometries. The Cu(1) ion is coordinated by four nitrogen atoms from two PIP units to give rise to a tetrahedral coordination environment,as shown in Fig. 8. The coordination environments of Cu(2) and Cu(3) are the same. They are both three coordinated by three nitrogen atoms from the L ligand.

    The intermolecular π-π stacking interactions are found between the adjacent units (Fig. 9). Beside these π-π stacking interactions, hydrogen bonds are also found between the adjacent units and [CuCl2]-moiety (Fig. 9). All these weak interactions connect the asymmetric units to give a 3D framework structure.

    Fig. 8. Structure of 4. Hydrogen atoms are omitted for clarity

    Fig. 9. (a) Intermolecular π···π stacking interactions found in 4. (b) 3D structure created by intermolecular hydrogen bonding interactions. Hydrogen atoms which are not involved in hydrogen bonds are omitted for clarity

    Complex 4 was formed by slightly adjusting the ratio of the reactants of 3. However, the structures of complexes 3 and 4 were totally different, demonstrating the synthetic novelty of this work.

    Complexes 3 and 4 are the members of a great family of trinuclear copper complexes[17-19]. The triangle topology is a common conformation of trinuclear copper complexes, whereas the linear configuration of Cu3 complexes is not common.

    4 CONCLUSION

    In summary, we have prepared four new complexes via solvothermal in situ metal ligand reactions in the presence of CH3COOH. It is believed CH3COOH plays a key role in forming complexes 1~4. This work demonstrates that the structures of 1~4 could be rationally tuned via the proper selection of different starting materials and dexterous adjustment of the ratio of the starting materials. We are currently studying the coordination chemistry of imidazo[1,5-a]pyridine and its derivatives with other metals in the presence of CH3COOH. This work is on-going and will be reported soon.

    (1) Siamaki, A. R.; Aradtsen, B. A. A direct, one step synthesis of imidazoles from imines and acid chlorides: a palladium catalyzed multicomponent coupling approach. J. Am. Chem. Soc. 2006, 128, 6050–6051.

    (2) Kanazawa, C.; Kamijo, S.; Yamamoto, Y. Synthesis of imidazoles through the copper-catalyzed cross-cycloaddition between two different isocyanides. J. Am. Chem. Soc. 2006, 128, 10662–10663.

    (3) Sharma, G. V. M.; Jyothi, Y.; Sree Lakshmi, P. Efficient room-temperature synthesis of tri- and tetrasubstituted imidazoles catalyzed by ZrCl4. Synth.Commun. 2006, 36, 2991–3000.

    (4) Garino, C.; Ruiu, T.; Salassa, L.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I. Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containing pyridylimidazo[1,5-a]pyridine ligands. Eur. J. Inorg. Chem. 2008, 2008, 3587–3591.

    (5) Salassa, L.; Garino, C.; Albertino, A.; Volpi, G.; Nervi, C.; Gobetto, R.; Hardcastle, K. I. Computational and spectroscopic studies of new rhenium(I)complexes containing pyridylimidazo[1,5-a]pyridine ligands: charge transfer and dual emission by fine-tuning of excited states. Organometallics 2008, 27, 1427–1435.

    (6) Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernández, R.; Brown, J. M.; Lassaletta, J. M. Imidazo[1,5-a]pyridine: a versatile architecture for stable N-heterocyclic carbenes. J. Am. Chem. Soc. 2005, 127, 3290–3291.

    (7) Tong, Y. P.; Zheng, S. L.; Chen, X. M. Structures, photoluminescence and theoretical studies of two ZnIIcomplexes with substituted 2-(2-hydroxyphenyl)benzimidazoles. Eur. J. Inorg. Chem. 2005, 2005, 3734–3741.

    (8) Eseola, A. O.; Li, W.; Adeyemi, O. G.; Obi-Egbedi, N. O.; Woods, J. A. O. Hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands: imidazole and oxazole ring Lewis basicity, Ni(II)/Pd(II) complex structures and spectra. Polyhedron 2010, 29, 1891–1901.

    (9) Chen, Y. M.; Li, L.; Chen, Z.; Liu, Y. L.; Hu, H. L.; Chen, W. Q.; Liu, W.; Li, Y. H.; Lei, T.; Cao, Y. Y.; Kang, Z. H.; Lin, M. S.; Li, W.Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands. Inorg. Chem. 2012, 51, 9705–9713.

    (10) Roy, M.; Chakravarthi, B. V. S. K.; Jayabaskaran, C.; Karande, A. A.; Chakravarty, A. R. Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative. Dalton Trans. 2011, 40, 4855–4864.

    (11) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (12) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diあraction Data. University of G?ttingen, Germany 1997.

    (13) Escuer, A.; Vicente, R.; EI Fallah, M. S.; Goher, M. A. S.; Mautner, F. A. Synthesis and structural characterization of the one-dimensional[Cu(3-Clpy)2(N3)2]ncomplex (3-Clpy = 3-Chloropyridine): a singular ferrimagnetic chain with local SA= SB. Inorg. Chem. 1998, 37, 4466–4469.

    (14) Li, B. L.; Xu, Z.; Cao, Z. B.; Zhu, L. M.; Yu, K. B. One-dimensional chain copper complexes [Cu(dien)(btrz)(ClO4)2] and [Cu(en)2(btrz)(ClO4)2]based on the bridging ligand 1,2-bis(1,2,4-triazole-1-yl)ethane (btrz). Transit. Metal. Chem. 1999, 24, 622–627.

    (15) Li, L. C.; Liao, D. Z.; Liu, S. Y.; Jiang, Z. H.; Yan, S. P. A one-dimensional chain compound [Cu(im2-py)(SCN)2]n exhibiting strong ferromagnetic coupling. Inorg. Chem. Commun. 2003, 6, 225–228.

    (16) Song, J. L.; Dong, Z. C.; Zeng, H. Y.; Zhou, W. B.; Naka, T.; Wei, Q.; Mao, J. G.; Guo, G. C.; Huang, J. S. [Cu(H4C3N2S)Cl2]n, an unprecedented diazole-bridged one-dimensional copper halide: synthesis, structure, and magnetic properties. Inorg. Chem. 2003, 42, 2136–2140.

    (17) Joshi, S. A.; Kulkarni, N. D. A new trinuclear Cu(II) complex of inositol as a hydrogelator. Chem. Commun. 2009, 17, 2341–2343.

    (18) Driessen, W. L.; Chang, L.; Finazzo, C.; Gorter, S.; Rehorst, D.; Reedijk, J.; Lutz, M.; Spek, A. L. Two pyrazolato-bridged, linear trinuclear Cu(II)complexes. Crystal structures and magnetic properties. Inorg. Chim. Acta 2003, 350, 25–31.

    (19) Tercero, J.; Diaz, C.; Ribas, J.; Mahia, J.; Maestro, M. A. New oxamato-bridged trinuclear CuII-CuII-CuIIcomplexes with hydrogen-bond supramolecular structures: synthesis and magneto-structural studies. Inorg. Chem. 2002, 41, 5373–5381.

    午夜福利免费观看在线| 亚洲少妇的诱惑av| 日韩大片免费观看网站| 久久九九热精品免费| 国产精品二区激情视频| 国产午夜精品一二区理论片| 亚洲av在线观看美女高潮| 精品亚洲乱码少妇综合久久| 热re99久久国产66热| 脱女人内裤的视频| 校园人妻丝袜中文字幕| 激情五月婷婷亚洲| 精品一区在线观看国产| √禁漫天堂资源中文www| 婷婷丁香在线五月| 老司机午夜十八禁免费视频| 免费高清在线观看视频在线观看| 天天操日日干夜夜撸| 亚洲成色77777| 1024香蕉在线观看| 男人添女人高潮全过程视频| 丝瓜视频免费看黄片| 狠狠精品人妻久久久久久综合| 亚洲精品国产区一区二| 下体分泌物呈黄色| 在现免费观看毛片| 美国免费a级毛片| 咕卡用的链子| 99国产精品一区二区三区| 国产av国产精品国产| 婷婷丁香在线五月| 婷婷丁香在线五月| 色综合欧美亚洲国产小说| 午夜老司机福利片| 欧美日韩一级在线毛片| 亚洲天堂av无毛| 视频在线观看一区二区三区| 性色av乱码一区二区三区2| 色网站视频免费| 波野结衣二区三区在线| 久久精品人人爽人人爽视色| 黄色视频不卡| 午夜免费男女啪啪视频观看| 一区二区日韩欧美中文字幕| 国产精品香港三级国产av潘金莲 | 久久久精品免费免费高清| 日本91视频免费播放| 十八禁高潮呻吟视频| 女人高潮潮喷娇喘18禁视频| 午夜视频精品福利| 99re6热这里在线精品视频| 国产精品久久久久成人av| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 亚洲国产最新在线播放| 国产99久久九九免费精品| av天堂久久9| 激情五月婷婷亚洲| 青春草亚洲视频在线观看| av天堂久久9| 人人妻人人添人人爽欧美一区卜| 中国国产av一级| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 精品第一国产精品| 成人18禁高潮啪啪吃奶动态图| 欧美成狂野欧美在线观看| 老鸭窝网址在线观看| 亚洲一码二码三码区别大吗| 亚洲国产毛片av蜜桃av| 国产亚洲av高清不卡| 99国产精品99久久久久| 99九九在线精品视频| av电影中文网址| 美国免费a级毛片| 女性被躁到高潮视频| 老司机影院成人| 国产片特级美女逼逼视频| 超碰成人久久| 五月天丁香电影| 色婷婷久久久亚洲欧美| 在线 av 中文字幕| 成年人午夜在线观看视频| 老司机影院成人| 一级黄色大片毛片| 激情视频va一区二区三区| 亚洲三区欧美一区| 丰满饥渴人妻一区二区三| 黄色 视频免费看| 老熟女久久久| 国产真人三级小视频在线观看| av欧美777| 亚洲av美国av| www.av在线官网国产| 波野结衣二区三区在线| 亚洲国产精品一区二区三区在线| 免费看十八禁软件| 99热国产这里只有精品6| av片东京热男人的天堂| 亚洲国产av新网站| 大码成人一级视频| 伦理电影免费视频| 亚洲精品国产色婷婷电影| 青春草亚洲视频在线观看| 99久久99久久久精品蜜桃| 99九九在线精品视频| 久久久久网色| 久久国产精品影院| 999久久久国产精品视频| 成人国产一区最新在线观看 | 亚洲精品日韩在线中文字幕| 国产黄频视频在线观看| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 少妇的丰满在线观看| 国产激情久久老熟女| 日本av手机在线免费观看| 国精品久久久久久国模美| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 日本vs欧美在线观看视频| 视频在线观看一区二区三区| 91国产中文字幕| 视频区图区小说| 亚洲精品乱久久久久久| 国产成人啪精品午夜网站| 国产日韩一区二区三区精品不卡| 亚洲精品久久午夜乱码| 好男人视频免费观看在线| 国产精品一区二区精品视频观看| 亚洲精品成人av观看孕妇| 黄色 视频免费看| 在线观看一区二区三区激情| 青春草视频在线免费观看| 精品人妻熟女毛片av久久网站| 捣出白浆h1v1| 中文字幕另类日韩欧美亚洲嫩草| 亚洲七黄色美女视频| 久久久久久久久久久久大奶| 汤姆久久久久久久影院中文字幕| 又大又黄又爽视频免费| 日韩中文字幕视频在线看片| 美女扒开内裤让男人捅视频| svipshipincom国产片| 日日爽夜夜爽网站| 99国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 脱女人内裤的视频| 国产高清videossex| av电影中文网址| 婷婷成人精品国产| 天天影视国产精品| 午夜福利,免费看| 中文字幕人妻丝袜制服| 大香蕉久久成人网| 国产成人欧美在线观看 | 国产伦人伦偷精品视频| 免费看十八禁软件| 亚洲国产av影院在线观看| 男女边吃奶边做爰视频| 亚洲,一卡二卡三卡| 老司机亚洲免费影院| 国产日韩欧美视频二区| 91字幕亚洲| 国产日韩欧美亚洲二区| 国产午夜精品一二区理论片| 午夜福利免费观看在线| 日韩一本色道免费dvd| 午夜老司机福利片| 免费av中文字幕在线| 免费一级毛片在线播放高清视频 | 色婷婷久久久亚洲欧美| 啦啦啦啦在线视频资源| 免费少妇av软件| 十八禁网站网址无遮挡| 国产伦人伦偷精品视频| 久久九九热精品免费| 日韩大片免费观看网站| 久久人人爽av亚洲精品天堂| 亚洲精品国产av成人精品| 精品少妇一区二区三区视频日本电影| 久久久久久久国产电影| 美女午夜性视频免费| 在线天堂中文资源库| 国产成人精品久久二区二区91| 一区在线观看完整版| 日韩av免费高清视频| 午夜福利视频精品| 一边摸一边抽搐一进一出视频| 久久久久久久国产电影| 国产淫语在线视频| 国产三级黄色录像| 久久99精品国语久久久| 七月丁香在线播放| 久久国产精品人妻蜜桃| av电影中文网址| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| 国产一卡二卡三卡精品| 国产成人精品久久二区二区91| 丝袜人妻中文字幕| 狂野欧美激情性xxxx| 欧美精品av麻豆av| 女性被躁到高潮视频| 久久久精品区二区三区| 亚洲国产毛片av蜜桃av| 九草在线视频观看| cao死你这个sao货| 99精品久久久久人妻精品| 成人影院久久| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 亚洲一码二码三码区别大吗| 亚洲国产av新网站| 国产视频首页在线观看| 熟女少妇亚洲综合色aaa.| 国产成人免费观看mmmm| 又大又黄又爽视频免费| 青草久久国产| 国产熟女欧美一区二区| 亚洲人成77777在线视频| 免费在线观看完整版高清| 久久久精品免费免费高清| 亚洲少妇的诱惑av| 日韩制服丝袜自拍偷拍| 丝袜在线中文字幕| 久久久久久免费高清国产稀缺| 亚洲欧美日韩另类电影网站| 水蜜桃什么品种好| 久热爱精品视频在线9| 女性被躁到高潮视频| 美国免费a级毛片| 亚洲成人手机| 久久精品久久精品一区二区三区| 青春草亚洲视频在线观看| 欧美国产精品一级二级三级| 国产精品免费大片| 又粗又硬又长又爽又黄的视频| 亚洲天堂av无毛| 免费观看a级毛片全部| 男人操女人黄网站| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 啦啦啦啦在线视频资源| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 一区二区三区精品91| 亚洲国产av新网站| 国产成人av激情在线播放| 亚洲专区国产一区二区| 亚洲第一av免费看| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 伦理电影免费视频| 下体分泌物呈黄色| 在线观看一区二区三区激情| 最近中文字幕2019免费版| 精品熟女少妇八av免费久了| 精品第一国产精品| 韩国高清视频一区二区三区| 蜜桃在线观看..| 亚洲一区二区三区欧美精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人a∨麻豆精品| 婷婷成人精品国产| 亚洲,欧美,日韩| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 精品卡一卡二卡四卡免费| 欧美+亚洲+日韩+国产| 亚洲久久久国产精品| 国产色视频综合| 欧美久久黑人一区二区| 国产精品国产三级国产专区5o| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 国产深夜福利视频在线观看| 黄色视频不卡| 亚洲人成电影免费在线| 欧美久久黑人一区二区| 午夜两性在线视频| 一区二区日韩欧美中文字幕| 满18在线观看网站| 狂野欧美激情性xxxx| 亚洲中文日韩欧美视频| 午夜视频精品福利| 波野结衣二区三区在线| 19禁男女啪啪无遮挡网站| 色网站视频免费| 51午夜福利影视在线观看| 高清黄色对白视频在线免费看| 日韩一本色道免费dvd| 日韩人妻精品一区2区三区| 久久天躁狠狠躁夜夜2o2o | 夫妻午夜视频| 久久午夜综合久久蜜桃| 我的亚洲天堂| 国产成人精品久久二区二区免费| 欧美人与性动交α欧美软件| a 毛片基地| 久久久精品区二区三区| 18禁观看日本| 免费少妇av软件| 蜜桃在线观看..| 色94色欧美一区二区| 亚洲av日韩在线播放| 欧美在线一区亚洲| 这个男人来自地球电影免费观看| 国产成人av教育| 免费在线观看日本一区| 婷婷成人精品国产| 91精品三级在线观看| 欧美日韩福利视频一区二区| 亚洲色图综合在线观看| 亚洲国产欧美日韩在线播放| 宅男免费午夜| 国产免费福利视频在线观看| 啦啦啦在线观看免费高清www| 在线 av 中文字幕| av在线老鸭窝| 欧美日韩综合久久久久久| 色婷婷av一区二区三区视频| 午夜日韩欧美国产| av在线app专区| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 午夜日韩欧美国产| 亚洲精品国产av蜜桃| 国产免费现黄频在线看| 99热网站在线观看| 国产99久久九九免费精品| 亚洲图色成人| 看免费成人av毛片| 亚洲av成人精品一二三区| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 男女下面插进去视频免费观看| 成人三级做爰电影| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 美女大奶头黄色视频| 9色porny在线观看| 午夜视频精品福利| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 9热在线视频观看99| 亚洲av美国av| av福利片在线| 一级毛片我不卡| 男人添女人高潮全过程视频| 1024视频免费在线观看| 欧美少妇被猛烈插入视频| 亚洲成人免费电影在线观看 | 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 国产av一区二区精品久久| 中国美女看黄片| 国产精品一区二区免费欧美 | 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 侵犯人妻中文字幕一二三四区| 成人午夜精彩视频在线观看| 午夜av观看不卡| 天天添夜夜摸| 69精品国产乱码久久久| 亚洲色图综合在线观看| 精品亚洲乱码少妇综合久久| 男女之事视频高清在线观看 | 男女高潮啪啪啪动态图| 欧美日韩黄片免| 国产精品.久久久| 桃花免费在线播放| 免费在线观看视频国产中文字幕亚洲 | 成人三级做爰电影| 亚洲成人手机| 亚洲精品在线美女| 精品人妻在线不人妻| 黑丝袜美女国产一区| 亚洲精品自拍成人| 十分钟在线观看高清视频www| 麻豆乱淫一区二区| 亚洲精品国产av蜜桃| av视频免费观看在线观看| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 制服人妻中文乱码| a级毛片黄视频| 午夜免费成人在线视频| 老司机影院毛片| 多毛熟女@视频| 亚洲 国产 在线| 久久久久久久久久久久大奶| 一级毛片女人18水好多 | 精品国产一区二区久久| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 国产成人91sexporn| 国产亚洲av高清不卡| 免费高清在线观看日韩| 国产激情久久老熟女| 国产高清视频在线播放一区 | 人人妻人人澡人人爽人人夜夜| 午夜激情久久久久久久| 999精品在线视频| 性色av乱码一区二区三区2| 久久综合国产亚洲精品| 国产黄色视频一区二区在线观看| 欧美黄色片欧美黄色片| 99热网站在线观看| 麻豆乱淫一区二区| 色网站视频免费| 多毛熟女@视频| 欧美亚洲日本最大视频资源| 波野结衣二区三区在线| 一级毛片电影观看| 女人高潮潮喷娇喘18禁视频| 亚洲av国产av综合av卡| 精品久久久精品久久久| 国产精品久久久人人做人人爽| 国产欧美日韩综合在线一区二区| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 久久性视频一级片| 99国产精品一区二区三区| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 免费在线观看影片大全网站 | 桃花免费在线播放| 国产精品一二三区在线看| 日本a在线网址| 国产日韩一区二区三区精品不卡| 日本五十路高清| 久久精品成人免费网站| 99国产精品99久久久久| 亚洲视频免费观看视频| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 精品久久久精品久久久| 亚洲,欧美精品.| xxx大片免费视频| 美女视频免费永久观看网站| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 午夜福利一区二区在线看| 午夜老司机福利片| 日韩一区二区三区影片| 精品国产乱码久久久久久男人| 亚洲欧洲精品一区二区精品久久久| 久久久国产欧美日韩av| 国产精品一国产av| 男人爽女人下面视频在线观看| av有码第一页| 久久影院123| 在线观看一区二区三区激情| 久久免费观看电影| 日韩免费高清中文字幕av| 亚洲成人国产一区在线观看 | 国产爽快片一区二区三区| 久久国产精品大桥未久av| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区中文字幕在线| 免费高清在线观看视频在线观看| 不卡av一区二区三区| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 成人手机av| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 日日爽夜夜爽网站| 国产午夜精品一二区理论片| 亚洲av男天堂| 午夜精品国产一区二区电影| 男女边摸边吃奶| 最近手机中文字幕大全| 人妻一区二区av| 啦啦啦在线观看免费高清www| 好男人电影高清在线观看| 青草久久国产| 美女国产高潮福利片在线看| 亚洲av日韩精品久久久久久密 | 一级黄色大片毛片| 狠狠婷婷综合久久久久久88av| 我的亚洲天堂| 国产麻豆69| 晚上一个人看的免费电影| 中国美女看黄片| 亚洲精品日本国产第一区| 成在线人永久免费视频| 啦啦啦中文免费视频观看日本| 91麻豆精品激情在线观看国产 | 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品人妻al黑| 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 国产爽快片一区二区三区| 免费观看a级毛片全部| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| netflix在线观看网站| www.999成人在线观看| 黑人猛操日本美女一级片| 巨乳人妻的诱惑在线观看| 精品久久久久久电影网| 国产视频一区二区在线看| 在线av久久热| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全免费视频 | 深夜精品福利| 两个人看的免费小视频| 蜜桃在线观看..| 成年av动漫网址| 亚洲人成电影观看| 国产视频一区二区在线看| 亚洲五月婷婷丁香| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 99久久99久久久精品蜜桃| 熟女av电影| 久久久久久亚洲精品国产蜜桃av| 9191精品国产免费久久| 久久久欧美国产精品| 99香蕉大伊视频| 午夜福利视频精品| 极品少妇高潮喷水抽搐| 免费女性裸体啪啪无遮挡网站| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 亚洲国产精品999| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 女人久久www免费人成看片| 一级毛片女人18水好多 | 日本猛色少妇xxxxx猛交久久| 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站| tube8黄色片| 日韩中文字幕视频在线看片| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 亚洲欧美色中文字幕在线| 色综合欧美亚洲国产小说| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 免费在线观看影片大全网站 | 色视频在线一区二区三区| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 美女高潮到喷水免费观看| 精品少妇久久久久久888优播| 欧美人与善性xxx| 夫妻午夜视频| a级片在线免费高清观看视频| 欧美精品av麻豆av| 深夜精品福利| 国产av国产精品国产| 成人免费观看视频高清| 亚洲色图综合在线观看| 亚洲成色77777| 婷婷色综合www| 国产免费福利视频在线观看| 亚洲午夜精品一区,二区,三区| 欧美精品人与动牲交sv欧美| 一级黄色大片毛片| 国产精品成人在线| 飞空精品影院首页| 日韩一卡2卡3卡4卡2021年| 男女免费视频国产| 国产99久久九九免费精品| 欧美激情极品国产一区二区三区| 久久综合国产亚洲精品| 久久久久精品人妻al黑| 欧美另类一区| 另类亚洲欧美激情| 成人三级做爰电影| 亚洲人成网站在线观看播放| 性少妇av在线| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| 亚洲国产精品国产精品| 亚洲成国产人片在线观看| 精品国产一区二区三区四区第35| www.精华液| 国产一卡二卡三卡精品| 久久精品久久精品一区二区三区| videosex国产| 99国产精品一区二区三区| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区 | 一边摸一边做爽爽视频免费| 国产精品一国产av| 日韩制服丝袜自拍偷拍| 色婷婷av一区二区三区视频| 天堂俺去俺来也www色官网| 麻豆国产av国片精品| 乱人伦中国视频| xxx大片免费视频| 久久天堂一区二区三区四区| 午夜免费鲁丝| 美女高潮到喷水免费观看| 一本综合久久免费| 叶爱在线成人免费视频播放| 手机成人av网站|