林杭,陳寶成,范祥,李江騰,吳啟紅
?
錨桿長(zhǎng)短相間布置形式對(duì)邊坡穩(wěn)定性的影響
林杭1, 2,陳寶成1,范祥1,李江騰1,吳啟紅3
(1. 中南大學(xué) 資源與安全工程學(xué)院,湖南 長(zhǎng)沙,410083;2. 國(guó)土資源部丘陵山地地質(zhì)災(zāi)害防治重點(diǎn)實(shí)驗(yàn)室,福建 福州,350002;3. 成都大學(xué) 城鄉(xiāng)建設(shè)學(xué)院,四川 成都,610106)
采用基于拉格朗日元的強(qiáng)度折減法進(jìn)行邊坡穩(wěn)定性分析,將錨桿布設(shè)形式分為長(zhǎng)短相間型、一長(zhǎng)兩短型和一短兩長(zhǎng)型,研究長(zhǎng)短相間錨桿的布置形式對(duì)邊坡安全系數(shù)及滑動(dòng)面位置的影響。研究結(jié)果表明:隨著長(zhǎng)錨桿長(zhǎng)度增加,短錨桿長(zhǎng)度減小,邊坡的安全系數(shù)逐漸增加,潛在滑動(dòng)面向邊坡內(nèi)發(fā)展;當(dāng)長(zhǎng)錨桿達(dá)到一定長(zhǎng)度足以穿過(guò)滑動(dòng)面且長(zhǎng)、短錨桿的長(zhǎng)度差較大時(shí),才會(huì)出現(xiàn)長(zhǎng)、短相間錨固效應(yīng);增加位置靠下的錨桿長(zhǎng)度比增加相對(duì)靠上的錨桿長(zhǎng)度更加有利于邊坡安全系數(shù)的提高。
錨桿;長(zhǎng)短相間;布置形式;邊坡;穩(wěn)定性
作為邊坡有效加固手段之一,全長(zhǎng)黏結(jié)式錨桿由于安全可靠、施工簡(jiǎn)單、成本較低,在巖土工程中得到廣泛應(yīng)用[1?5]。錨桿加固邊坡時(shí),依賴其與周圍巖土體之間的相互作用傳遞錨桿拉力,使巖土體得到加固,并限制其變形發(fā)展,改善巖土體的力學(xué)參數(shù)及應(yīng)力狀態(tài),以保持穩(wěn)定[6?8]。錨桿荷載傳遞機(jī)理較復(fù)雜,采用數(shù)值計(jì)算方法能夠較好地模擬錨桿的不均勻受力和變形特征,從而反映復(fù)雜邊坡錨固過(guò)程中邊坡安全系數(shù)和滑動(dòng)面的變化情況[9?11]。目前,工程上通常采用等長(zhǎng)錨桿加固加固邊坡,使得設(shè)計(jì)結(jié)果過(guò)于保守,造成了不必要的浪費(fèi)。對(duì)于邊坡來(lái)說(shuō),土釘參數(shù)如長(zhǎng)度、間距、傾角以及土釘布置方式對(duì)于錨固效果和邊坡安全系數(shù)以及滑動(dòng)面位置均存在一定影響[6?7, 12]。萬(wàn)林海等[13]研究了安全系數(shù)及其靈敏度與各土釘設(shè)計(jì)參數(shù)之間的變化關(guān)系;張欽喜等[14]計(jì)算了土釘和面層連接、土釘傾角、土釘長(zhǎng)度布設(shè)、土釘間距這4種因素對(duì)基坑變形的影響。以往研究的重點(diǎn)在于錨桿參數(shù)對(duì)邊坡穩(wěn)定性的影響,而較少考慮錨桿組合形式的影響,林杭等[7]分析了錨桿傾角、布設(shè)位置和布設(shè)形式對(duì)邊坡穩(wěn)定性的影響,探討了簡(jiǎn)單的長(zhǎng)短相間錨桿的情況。本文采用基于拉格朗日元的強(qiáng)度折減法進(jìn)行邊坡穩(wěn)定性分析,研究長(zhǎng)短相間錨桿的不同組合形式對(duì)邊坡穩(wěn)定性的影響。
1 數(shù)值計(jì)算模型
在計(jì)算模型中,邊坡高度為20 m,坡角為59°。根據(jù)張魯渝等[15]的研究結(jié)果可知模型邊界對(duì)計(jì)算結(jié)果存在一定影響,選取=1.5=30 m,=2.5=50 m,/=1=20 m(其中,為坡高,為坡腳到左端邊界的距離,為坡頂?shù)接叶诉吔绲木嚯x,為坡底到底端邊界的距離),模型尺寸比例如圖1所示。模型下邊界固定,側(cè)向約束水平位移,上部為自由邊界。采用Mohr-Coulomb準(zhǔn)則描述土體的應(yīng)力應(yīng)變關(guān)系,以自重應(yīng)力場(chǎng)作為初始應(yīng)力場(chǎng)。土體參數(shù)如下:彈性模量為100 MPa,泊松比為0.3,重度為20 kN/m3,黏結(jié)力為40 kPa,內(nèi)摩擦角18°。通過(guò)強(qiáng)度折減法計(jì)算邊坡安全系數(shù)為0.96[9, 15]。為分析錨桿加固作用,通過(guò)對(duì)錨桿–漿體界面和漿體–巖土體界面之間相對(duì)位移模擬來(lái)實(shí)現(xiàn)錨桿、灌漿體以及巖土體之間的相對(duì)滑動(dòng),設(shè)置錨桿參數(shù)為:鋼筋直徑30 mm,鋼筋彈性模量b=200 GPa,泊松比b=0.25,注漿體參數(shù)直徑100 mm,黏結(jié)剛度1.0×107N/m2,砂漿黏結(jié)力35 kPa,內(nèi)摩擦角25°。
圖1 邊坡計(jì)算模型
從坡頂豎直向下每2 m設(shè)置第1層錨桿,全坡面共設(shè)置9層錨桿。為了分析錨桿用量不變時(shí)錨桿布設(shè)形式對(duì)邊坡穩(wěn)定性的影響,保持9層錨桿總長(zhǎng)度為72 m,各層錨桿以8 m為長(zhǎng)度標(biāo)準(zhǔn)進(jìn)行增減,設(shè)置錨桿傾角為10°,豎向間距2 m。若錨桿為等長(zhǎng)布置,則通過(guò)計(jì)算得到錨桿的有效錨固長(zhǎng)度[6]為20 m,因此,在設(shè)計(jì)計(jì)算方案中,錨桿的長(zhǎng)度變化范圍均小于有效錨固長(zhǎng)度。
2 分析與討論
將錨桿布置形式分為長(zhǎng)短相間型、一長(zhǎng)兩短型、一短兩長(zhǎng)型三大類,分析邊坡安全系數(shù)和滑動(dòng)面的變化情況。
2.1 錨桿長(zhǎng)短相間型
將邊坡錨桿按一長(zhǎng)一短相間布置,簡(jiǎn)稱長(zhǎng)短相間型,按起始層錨桿長(zhǎng)度分為先長(zhǎng)后短和先短后長(zhǎng)2種類型,并簡(jiǎn)稱為先長(zhǎng)型、先短型。同時(shí),由于錨桿的排數(shù)為9層,故長(zhǎng)短相間分配時(shí)將其中一層錨桿長(zhǎng)度固定為8 m,以便于分析。
2.2 長(zhǎng)短相間(先長(zhǎng))型
錨桿長(zhǎng)短相間先長(zhǎng)安全系數(shù)見表1。錨桿長(zhǎng)短相間(先長(zhǎng))形式與滑動(dòng)面的關(guān)系見圖2。從表1和圖2可知長(zhǎng)短相間布設(shè)(先長(zhǎng)型)情況下邊坡安全系數(shù)和布設(shè)形式的關(guān)系;當(dāng)長(zhǎng)錨桿長(zhǎng)度增加時(shí),短錨桿長(zhǎng)度減?。划?dāng)長(zhǎng)短錨桿相對(duì)長(zhǎng)度差加大時(shí),邊坡的安全系數(shù)不斷增加,同時(shí),邊坡的潛在滑動(dòng)面不斷向邊坡內(nèi)側(cè)發(fā)展,此時(shí),短錨桿加固了邊坡表層土體,防止邊坡臨坡面發(fā)生破壞;長(zhǎng)錨桿端部位置與滑動(dòng)面接近,限制滑動(dòng)面位移。長(zhǎng)短相間錨桿加固形式的加固效應(yīng)與其他形式的不同,適用于表層土體不穩(wěn)定的邊坡。
表1 錨桿長(zhǎng)短相間先長(zhǎng)形式安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第九層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
2.3 長(zhǎng)短相間(先短)型
先短型與先長(zhǎng)型布置形式錨桿類型相同,僅布置方式不同,具體形式如表2所示,計(jì)算得到長(zhǎng)短相間布設(shè)(先短型)情況下邊坡安全系數(shù)與布設(shè)形式的關(guān)系。圖3所示為相應(yīng)方案下邊坡滑動(dòng)面的位置。從圖3可以看出:當(dāng)長(zhǎng)錨桿長(zhǎng)度增長(zhǎng)、短錨桿長(zhǎng)度減小時(shí),邊坡的安全系數(shù)不斷增加,同時(shí)邊坡的潛在滑動(dòng)面不斷向邊坡內(nèi)側(cè)發(fā)展。這與長(zhǎng)短相間布設(shè)(先長(zhǎng)型)的變化規(guī)律相同。當(dāng)錨桿長(zhǎng)度組合形式相同時(shí),先長(zhǎng)型均比先短型的安全系數(shù)小3%~4%,可以說(shuō)明增加相對(duì)靠下的錨桿長(zhǎng)度,對(duì)于邊坡的穩(wěn)定有利。
表2 錨桿長(zhǎng)短相間先短形式安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第9層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
2.4 錨桿一長(zhǎng)兩短型
將邊坡錨桿按一長(zhǎng)兩短相間布置,與長(zhǎng)短相間型進(jìn)行同樣定義,按起始層錨桿長(zhǎng)度分為先長(zhǎng)后短和先短后長(zhǎng)2種類型,即簡(jiǎn)稱為先長(zhǎng)型(A類)、先短型(B類)。
2.4.1 一長(zhǎng)兩短(先長(zhǎng))型
錨桿一長(zhǎng)兩短(先長(zhǎng))型(A類)安全系數(shù)如表3所示。
從表3可見:將一長(zhǎng)兩短(先長(zhǎng))型分為4種方案,其中各個(gè)方案中長(zhǎng)短錨桿按規(guī)律變化,分別改變每組短錨桿長(zhǎng)度,依次減少1 m。相應(yīng)地,為保持總長(zhǎng)度相等,長(zhǎng)錨桿依次增加2 m,通過(guò)計(jì)算得到邊坡安全系數(shù)和滑動(dòng)面的情況如表3和圖4所示。從表3和圖4可知:隨著短錨桿減小,長(zhǎng)錨桿增長(zhǎng),邊坡的安全系數(shù)隨之呈現(xiàn)增大趨勢(shì)。在這種情況下,邊坡的潛在滑動(dòng)面逐漸向坡內(nèi)深入,呈現(xiàn)出穩(wěn)定變化趨勢(shì),發(fā)展為深層滑動(dòng)。這是由于長(zhǎng)短錨桿相互組合,起到了不同的作用:長(zhǎng)錨桿約束了深層滑動(dòng)面,使得邊坡滑動(dòng)面進(jìn)一步向坡內(nèi)變化,同時(shí),短錨桿約束了近坡面松散巖土體的滑塌;長(zhǎng)短相間錨桿破壞了原始滑動(dòng)面的連續(xù)性,改變滑動(dòng)面形狀和位置,雖然引起了不同的穩(wěn)定加固效應(yīng),但對(duì)于加固邊坡的穩(wěn)定性十分有效。
表3 錨桿一長(zhǎng)兩短先長(zhǎng)形式安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第9層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
為進(jìn)一步確定短錨桿對(duì)于邊坡表層土體的加固作用,固定長(zhǎng)錨桿長(zhǎng)度為10,12,14和16 m,改變短錨桿的長(zhǎng)度分別為1,3,5和7 m時(shí),所得計(jì)算結(jié)果見圖5。從圖5可見:當(dāng)長(zhǎng)錨桿長(zhǎng)度為10~12 m時(shí),隨著短錨桿長(zhǎng)度的增加,邊坡安全系數(shù)逐漸增大,與長(zhǎng)短相間錨桿加固效應(yīng)不同,此時(shí)長(zhǎng)錨桿長(zhǎng)度較小,未能穿過(guò)滑動(dòng)面,長(zhǎng)錨桿的錨固效果不明顯,未形成長(zhǎng)短相間錨固效應(yīng);當(dāng)長(zhǎng)錨桿長(zhǎng)度增加到14 m,短錨桿長(zhǎng)度變化時(shí),邊坡安全系數(shù)總體變化較小,形成長(zhǎng)短相間錨固效應(yīng)。這說(shuō)明當(dāng)長(zhǎng)錨桿達(dá)到一定長(zhǎng)度時(shí),足以穿過(guò)滑動(dòng)面,且當(dāng)長(zhǎng)短錨桿的長(zhǎng)度差較大時(shí),才會(huì)出現(xiàn)長(zhǎng)短相間錨固效應(yīng),此時(shí),短錨桿的長(zhǎng)度適當(dāng)即可加固邊坡松散土體。在一定范圍內(nèi),當(dāng)長(zhǎng)度進(jìn)一步增大時(shí),對(duì)邊坡的整體穩(wěn)定性作用不明顯,此時(shí),可采用短錨桿來(lái)加固邊坡即可獲得同樣的錨固效果,從而節(jié)約經(jīng)濟(jì)成本。在工程實(shí)踐中,如出現(xiàn)需加固表層松散土體的邊坡可參考此結(jié)果進(jìn)行錨桿設(shè)計(jì)。
長(zhǎng)錨桿長(zhǎng)度/m:1—10;2—12;3—14;4—16
2.4.2 一長(zhǎng)兩短(先短)型
錨桿一長(zhǎng)兩短先短形式(B類)安全系數(shù)如表4所示。從表4可見:將一長(zhǎng)兩短(先短)型分為4種方案, 變化規(guī)律與一長(zhǎng)兩短(先長(zhǎng))型的相同。先布置2排短錨桿,再布置長(zhǎng)錨桿,計(jì)算結(jié)果見表4和圖6。從表4和圖6可見:安全系數(shù)呈先增大后減小的趨勢(shì);邊坡的潛在滑動(dòng)面均呈淺層滑動(dòng)狀態(tài),錨桿組合形式從方案1~3變化過(guò)程中,安全系數(shù)不斷增大,邊坡潛在滑動(dòng)面不斷向坡內(nèi)加深,但滑動(dòng)面的位置變化不大;當(dāng)采用方案4時(shí),邊坡安全系數(shù)略減小,同時(shí)邊坡滑動(dòng)面迅速向臨坡面靠近,淺層滑動(dòng)趨勢(shì)明顯。對(duì)比方案2、方案3和方案4可以發(fā)現(xiàn):雖然邊坡中下部錨桿長(zhǎng)度對(duì)邊坡安全系數(shù)及滑動(dòng)面影響比上部的大,但并非錨桿越靠近坡腳效果越好,方案3和方案4對(duì)比結(jié)果證明了這一點(diǎn)。
表4 錨桿一長(zhǎng)兩短先短形式安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第九層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
綜合分析一長(zhǎng)兩短型錨桿長(zhǎng)度、位置對(duì)邊坡安全性的影響。從表3和表4可見:總體上說(shuō),B類布置方案優(yōu)于A類布置方案;長(zhǎng)錨桿靠近邊坡中下部時(shí)對(duì)邊坡安全系數(shù)的提高最有效。對(duì)于前3種方案,增長(zhǎng)長(zhǎng)錨桿,同時(shí)在一定范圍內(nèi)減小短錨桿,有利于提高邊坡的安全系數(shù)。對(duì)比A類和B類的第4方案可知:雖然邊坡中下部錨桿長(zhǎng)度對(duì)邊坡安全系數(shù)及滑動(dòng)面影響比上部的大,但并非錨桿越靠近,坡腳效果越好。錨桿的組合形式長(zhǎng)錨桿約束了深層滑動(dòng)面,同時(shí)短錨桿約束了近坡面松散巖土體,但由于B類方案4的最底層錨桿位置過(guò)低,對(duì)滑動(dòng)面的約束減小,同時(shí)短錨桿對(duì)于表層土約束不足,造成邊坡加固效果降低,滑動(dòng)面靠近臨坡面。
2.5 錨桿一短兩長(zhǎng)型
將邊坡錨桿按一短兩長(zhǎng)相間布置,與長(zhǎng)短相間型定義相同,按起始層錨桿長(zhǎng)度分為先長(zhǎng)后短和先短后長(zhǎng)2種類型,即簡(jiǎn)稱為先長(zhǎng)型(A類)、先短型(B類)。
2.5.1 一短兩長(zhǎng)(先長(zhǎng))型
采用一短兩長(zhǎng)(先長(zhǎng))型錨桿組合加固形式,見表5。當(dāng)長(zhǎng)錨桿長(zhǎng)度增加、短錨桿長(zhǎng)度減少時(shí),邊坡對(duì)應(yīng)的安全系數(shù)逐漸增大。同時(shí)又由圖7可知:在這種變化情況下,邊坡的潛在滑動(dòng)面逐漸向坡內(nèi)深入,呈現(xiàn)出穩(wěn)定變化趨勢(shì),并發(fā)展為深層滑動(dòng)。此處發(fā)生的變化與一長(zhǎng)兩短(先長(zhǎng))型錨桿組合形式發(fā)生的變化是一致的,但觀察錨桿與邊坡滑動(dòng)面的位置可知,除了方案4中最長(zhǎng)錨桿穿過(guò)邊坡滑動(dòng)面一小段距離外,其余方案所有錨桿均未穿過(guò)滑動(dòng)面,所以,導(dǎo)致該類型錨固效果不如一長(zhǎng)兩短(先長(zhǎng))型明顯。
表5 錨桿一短兩長(zhǎng)(先長(zhǎng)型)形式及安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第九層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
2.5.2 一短兩長(zhǎng)(先短)型
表6所示為錨桿一短兩長(zhǎng)(先短型)形式相關(guān)參數(shù)及安全系數(shù),可見邊坡的安全系數(shù)呈現(xiàn)逐漸增大的趨勢(shì)。圖8表明:邊坡滑動(dòng)面的滑動(dòng)形式由淺層滑動(dòng)逐步轉(zhuǎn)變?yōu)樯顚踊瑒?dòng),邊坡潛在滑動(dòng)面位置變化明顯。這是由于中下部錨桿長(zhǎng)度的增加,長(zhǎng)錨桿加固土體的范圍增加,因此,導(dǎo)致邊坡滑動(dòng)面進(jìn)一步向坡內(nèi)移動(dòng),同時(shí)邊坡安全系數(shù)也隨之增大。
表6 錨桿一短兩長(zhǎng)(先短型)形式及安全系數(shù)
*錨桿組合中數(shù)字代表錨桿長(zhǎng)度(m),且第九層均為8 m。
1—方案1;2—方案2;3—方案3;4—方案4
對(duì)比一短兩長(zhǎng)型錨桿組合形式2種類型安全系數(shù)及邊坡滑動(dòng)面位置可知:當(dāng)錨桿類型相同布置方式不同時(shí),B類先短型安全系數(shù)比A類先長(zhǎng)型安全系數(shù)普遍提高4%~5%;增加位置靠下的錨桿長(zhǎng)度比增加相對(duì)靠上的錨桿長(zhǎng)度更加有利于邊坡安全系數(shù)提高。
由表3~6對(duì)比2類型B類(先短型)發(fā)現(xiàn):?jiǎn)闻佩^桿長(zhǎng)度穿過(guò)滑動(dòng)面的距離固然重要,但錨桿重點(diǎn)加強(qiáng)邊坡中下部時(shí),要比單純?cè)黾幼钕虏慷雎灾胁垮^桿長(zhǎng)度對(duì)邊坡安全系數(shù)的提高更有效,尤其是在長(zhǎng)短錨桿長(zhǎng)度差值變大時(shí)。
3 結(jié)論
1) 對(duì)于長(zhǎng)短相間型錨桿,當(dāng)長(zhǎng)錨桿長(zhǎng)度增加、短錨桿長(zhǎng)度減小、長(zhǎng)短錨桿相對(duì)長(zhǎng)度差增大時(shí),邊坡的安全系數(shù)不斷增加,同時(shí)邊坡的潛在滑動(dòng)面向邊坡內(nèi)側(cè)發(fā)展。增加相對(duì)靠下的錨桿長(zhǎng)度,對(duì)于邊坡的穩(wěn)定性有利。
2) 對(duì)于一長(zhǎng)兩短型錨桿,隨著短錨桿減小,長(zhǎng)錨桿增長(zhǎng),邊坡的安全系數(shù)隨之呈現(xiàn)增大趨勢(shì)。邊坡的潛在滑動(dòng)面逐漸向坡內(nèi)深入,呈現(xiàn)出穩(wěn)定變化趨勢(shì),發(fā)展為深層滑動(dòng)。另外,當(dāng)長(zhǎng)錨桿達(dá)到一定長(zhǎng)度時(shí),足以穿過(guò)滑動(dòng)面,且當(dāng)長(zhǎng)短錨桿的長(zhǎng)度差較大時(shí),才會(huì)出現(xiàn)長(zhǎng)短相間錨固效應(yīng)。
3) 對(duì)于一短兩長(zhǎng)型錨桿,增加位置靠下的錨桿長(zhǎng)度比增加位置靠上的錨桿長(zhǎng)度更加有利于邊坡安全系數(shù)提高。單排錨桿長(zhǎng)度穿過(guò)滑動(dòng)面的距離固然重要,但當(dāng)錨桿重點(diǎn)加強(qiáng)邊坡中下部尤其是在長(zhǎng)短錨桿長(zhǎng)度差值變大時(shí),要比單純?cè)黾幼钕虏慷雎灾胁垮^桿長(zhǎng)度對(duì)邊坡安全系數(shù)的提高更有效。
[1] 郭小紅, 王夢(mèng)恕. 隧道支護(hù)結(jié)構(gòu)中錨桿的功效分析[J]. 巖土力學(xué), 2007, 28(10): 2234?2239.
GUO Xiaohong, WANG Mengshu. Analysis of efficacy of rock bolt for tunnel support stucture[J]. Rock and Soil Mechanics, 2007, 28(10): 2234?2239.
[2] 康紅普, 姜鐵明, 高富強(qiáng). 預(yù)應(yīng)力在錨桿支護(hù)中的作用[J]. 煤炭學(xué)報(bào), 2007, 32(7): 680?685.
KANG Hongpu, JIANG Tieming, GAO Fuqiang. Effect of pretensioned stress on rock bolting[J]. Journal of China Coal Society, 2007, 32(7): 680?685.
[3] 李國(guó)維, 高磊, 黃志懷, 等. 全長(zhǎng)黏結(jié)玻璃纖維增強(qiáng)聚合物錨桿破壞機(jī)制拉拔模型試驗(yàn)[J]. 巖石力學(xué)與工程學(xué)報(bào), 2007, 26(8): 1653?1663.
LI Guowei, GAO Lei, HUANG Zhihuai, et al. Pull-out model experiment on failure mechanism of full-length bonding glass fiber reinforced polymer rebar[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1653?1663.
[4] 楊慶, 朱訓(xùn)國(guó), 欒茂田. 全長(zhǎng)注漿巖石錨桿雙曲線模型的建立及錨固效應(yīng)的參數(shù)分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2007, 26(4): 692?698.
YANG Qing, ZHU Xunguo, LUAN Maotian. Development of hyperbolic model for fully grouting rock bolt and parameters analysis for anchoring effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 692?698.
[5] 張農(nóng), 高明仕. 煤巷高強(qiáng)預(yù)應(yīng)力錨桿支護(hù)技術(shù)與應(yīng)用[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào), 2004, 33(5): 34?37.
ZHANG Nong, GAO Shiming. High-strength and pretension bolting support of coal roadway and its application[J]. Journal of China University of Mining and Technology, 2004, 33(5): 34?37.
[6] 林杭, 曹平. 錨桿長(zhǎng)度對(duì)邊坡穩(wěn)定性影響的數(shù)值分析[J]. 巖土工程學(xué)報(bào), 2009, 31(3): 470?474.
LIN Hang, CAO Ping. Numerical analysis for the effect of cable length on the stability of slope[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 470?474.
[7] 林杭, 曹平, 李江騰. 全長(zhǎng)注漿錨桿布設(shè)方式對(duì)邊坡穩(wěn)定性的影響分析[J]. 解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 11(2): 137?141.
LIN Hang, CAO Ping, LI Jiangteng. Effect of wholly grouted cable layout mode on stability of slope[J]. Journal of PLA University of Science and Technology, 2010, 11(2): 137?141.
[8] 林杭, 曹平, 李江騰, 等. 全長(zhǎng)黏結(jié)式錨桿加固節(jié)理邊坡的動(dòng)靜態(tài)位移響應(yīng)[J]. 巖土力學(xué), 2009, 30(6): 1787?1792.
LIN Hang, CAO Ping, LI Jiangteng, et al. Response of dynamic and static displacements of jointed slope reinforced by wholly grouted bolts[J]. Rock and Soil Mechanics, 2009, 30(6): 1787?1792.
[9] 曹平, 林杭, 李江騰, 等. 竹城公路層狀巖質(zhì)邊坡的穩(wěn)定性研究[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 40(3): 774?780.
CAO Ping, LIN Hang, LI Jiangteng, et al. Stability of stratified rock slope in Zhu—Cheng road[J]. Journal of Central South University (Science and Technology), 2009, 40(3): 774?780.
[10] 戴妙林, 李同春. 基于降強(qiáng)法數(shù)值計(jì)算的復(fù)雜巖質(zhì)邊坡動(dòng)力穩(wěn)定性安全評(píng)價(jià)分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2007, 26(S1): 2749?2754.
DAI Miaolin, LI Tongchun. Analysis of dynamic stability safety evaluation for complex rock slopes by strength reduction numerical method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2749?2754.
[11] 趙少飛, 欒茂田, 呂愛鐘. 土工極限平衡問(wèn)題的非線性有限元數(shù)值分析[J]. 巖土力學(xué), 2004, 25(S2): 121?125.
ZHAO Shaofei, LUAN Maotian, Lü Aizhong. FEM-based nonlinear numerical analyses for limit equilibrium problems in geotechnics considering no associated flow rule[J]. Rock and Soil Mechanics, 2004, 25(S2): 121?125.
[12] 彭文祥, 趙明華, 袁海平, 等. 基于拉格朗日差分法的全長(zhǎng)注漿錨桿支護(hù)參數(shù)優(yōu)化[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 37(5): 1002?1007.
PENG Wenxiang, ZHAO Minghua, YUAN Haiping, et al. Parameters analysis of grouted bolts by Lagrangian difference method[J]. Journal of Central South University (Science and Technology), 2006, 37(5): 1002?1007.
[13] 萬(wàn)林海, 余建民, 馮翠紅. 軟土復(fù)合土釘支護(hù)結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)[J]. 巖石力學(xué)與工程學(xué)報(bào), 2004, 23(19): 3342?3347.
WAN Linhai, YU Jianmin, FENG Cuihong. Optimum design of parameters for composite soil nail wall in soft soil foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3342?3347.
[14] 張欽喜, 何建勇, 霍達(dá), 等. 土釘墻變形破壞的數(shù)值模擬及設(shè)計(jì)參數(shù)優(yōu)化[J]. 土木工程學(xué)報(bào), 2003, 36(11): 24?28.
ZHANG Qinxi, HE Jianyong, HUO Da, et al. Numerical analysis for deformation of nailed soil wall and optimization of design parameters[J]. China Civil Engineering Journal, 2003, 36(11): 24?28.
[15] 張魯渝, 鄭穎人, 趙尚毅, 等. 有限元強(qiáng)度折減系數(shù)法計(jì)算土坡穩(wěn)定安全系數(shù)的精度研究[J]. 水利學(xué)報(bào), 2003(1): 21?27.
ZHANG Luyu, ZHENG Yingren, ZHAO Shangyi, et al. The feasibility study of strength?reduction method with FEM for calculating safety factors of soil slope stability[J]. Journal of Hydraulic Engineering, 2003(1): 21?27.
Effect of bolt with long-short layout on slope stability
Lin Hang1, 2, Chen Baocheng1, FAN Xiang1, Li Jiangteng1, Wu Qihong3
(1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;2. Key Laboratory of Geohazard Prevention of Hilly Mountain, Ministry of Land and Resources, Fuzhou 350002, China;3. School of Urban and Rural Construction, Chengdu University, Chengdu 610106, China)
The strength reduction method based on the Lagrange numerical method was used to analyze the stability of slope, the bolt was divided into three types, i.e. long-short layout, one-long and two-short layout, one-short and two-long layout, and the effect of bolt layout on the safety factor and slip surface of slope was studied. The results show that with the increase of the length of long bolt and the decrease of the length of short bolt, the factor of safety of slope increases gradually, and the potential slip surface moves gradually to the inner slope. If the long bolt is long enough to pass through the slip surface, and the differences between the long and short bolt is large enough, the effect of anchoring will exert. It is better for increasing the slope safety factor by increasing the length of bolts at the lower part of slope than by increasing the length of bolts at the upper part of slope.
bolt; long-short; layout; slope; stability
TU457
A
1672?7207(2015)02?0625?06
2014?03?10;
2014?06?17
長(zhǎng)江科學(xué)院開放基金資助項(xiàng)目(CKWV2014218/KY);國(guó)家自然科學(xué)基金資助項(xiàng)目(51304240, 51474249, 51374246);國(guó)土資源部丘陵山地地質(zhì)災(zāi)害防治重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(FJKLGP2012K005)(Projects (CKWV2014218/KY) supported by CRSRI Open Research Program; Projects (51304240, 51474249, 51374246) supported by the National Natural Science Foundation of China; Project (FJKLGP2012K005) supported by the Open Projects of Key Laboratory of Geohazard Prevention of Hilly Mountain, Ministry of Land and Resources of China)
范祥,博士,從事巖土工程數(shù)值分析的研究;E-mail:fanxiang224@126.com
10.11817/j.issn.1672-7207.2015.02.034
(編輯 陳燦華)