• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含π-π相互作用的Cuガ配位聚合物的合成、表征、晶體結(jié)構(gòu)及發(fā)光性能

    2015-09-15 01:41:08黃廷洪曾憲光
    關(guān)鍵詞:化工學(xué)院理工學(xué)院晶體結(jié)構(gòu)

    黃廷洪 顏 杰 楊 虎 曾憲光 陽 龑

    (四川理工學(xué)院材料與化工學(xué)院,材料腐蝕與防護(hù)四川省重點(diǎn)實(shí)驗(yàn)室,自貢 643000)

    0 Introduction

    The design and construction of coordination polymers with novel topologies and structural motifs have been one of the most active research subjects in the field of coordination chemistry due to their properties in catalysis[1-4],separation[5-7],molecular recognition[8-10]and photoluminescence[11-15].So far,some coordination polymer networks can be obtained by the changeof reaction-influencingfactorssuch asinorganic counter ions,organic ligands and metal-to-ligand ratio[16-18].In particular,changing organic ligands with variable bridging lengths,conformation and flexibility is a powerful and synthetically convenient way of structural modifying of coordination polymers[19-21].Use of a mono-ligand system can result in the formation of new coordination polymers[22-25],but a mixed-ligand system containing two or three types ligands provides more changeable to form much more complicated and fantastic topological types of two-,and threedimensional nets[26-31].

    Currently,the research on weak interactions have grown rapidly and have directed much attention toward the construction of supramolecular structures[32-36],especially deliberate design of coordination polymers[37-42].The extent of the π…π stacking interactions of copperガcompounds containing pyridyl ligands has result in the observation of fascinating structures and luminescent properties[43-45],but predicting and designing supramolecular networks of copperガcoordination polymers formed by inter-chain weak interactions,such asπ…πstacking interactions,is relatively difficult.It appears that the design of copper ガcoordination polymers with supramolecular structures are challenging but important.Herein,we report the synthesis,structure,characterization and luminescent properties of copperガcoordination polymers{[Cu2(4-bpo)2(CH3CN)2(PPh3)2](BF4)2}n(1) and {[Cu(4-bpo)(CH3CN)(dppe)0.5]BF4}n(2)(PPh3=triphenylphosphine,dppe=1,2-bis(diphenylphosphino)ethane, 4-bpo=2,5-bis(4-pyridyl)-1,3,4-oxadiazole),indicating diverse and interesting 1D chain,2D layer and 3D extended supramolecular structures constructed by inter-chain weak interactions.In addition,solid-state emission spectra of complexes 1 and 2 are also observed.

    1 Experimental

    1.1 General methods and materials

    All chemicals were of AR grade and were used as received without further purification.Ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole(4-bpo)was prepared according to references[46-48].IR spectra were recorded as KBr pellets on a Nicolet 6700 spectrometer in the range 4 000 ~450 cm-1.Elemental analyses were measured with a Carlo ERBA 1106 analyzer.1H NMR,11B NMR and19F NMR spectra were recorded on a Bruck 400 spectrometer at 400.15,128.3 and 376.5 MHz,respectively.The luminescent spectra of 1 and 2 were measured at room temperature at a FL3-P-TCSPCfluorescence spectrophotometer.

    1.2 Synthesis of{[Cu2(4-bpo)2(CH 3CN)2(PPh3)2](BF4)2}n(1)

    A mixture of[Cu(CH3CN)4]BF4(0.031 6 g,0.1 mmol)and 4-bpo (0.022 4 g,0.1 mmol)in 5 mL CH3CN/DMF was stirred at room temperature for 0.5 h and then PPh3(0.026 2 g,0.1 mmol)was added.The reaction mixture was allowed to stir for 0.5 h at room temperature.The vapor diffusion of diethyl ether into the solution gave yellow block crystals.The complex was obtained by filtration,washed with diethyl ether and dried in vacuo.Yield:40%.Anal.Calcd.for C64H52B2Cu2F8N10O2P2(%):C,56.70;H,3.87;N,10.33.Found(%):C,56.43;H,4.05;N,10.09.IR(cm-1):3 451(br),3 059(w),2 271(w),1 613(m),1 566(m),1 540(w),1 480(s),1 436(s),1 422(m),1 054(vs),839(m),746(s),697(s),520(s).1H NMR(CD3SOCD3,25 ℃,TMS): δ2.08 (6H,-CH3),6.95~10.35 (46H,PPh3+bipy).19F NMR (CD3SOCD3,25 ℃,TMS): δ-148.3.11B NMR(CD3SOCD3,25 ℃,TMS):δ-1.32.

    1.3 Synthesis of{[Cu(4-bpo)(CH 3CN)(dppe)0.5]BF4}n(2)

    The synthesis of 2 was similar to that of 1 using dppe(0.019 9 g,0.050 mmol)instead of PPh3.Yield:49%.Anal.Calcd.for C27H23BCuF4N5OP(%):C,52.74;H,3.77;N,11.39.Found(%):C,52.37;H,3.81;N,11.27.IR(cm-1):3 450(br),3 031(w),2 253(w),1 616(w),1 565(w),1 538(w),1 480(m),1 457(w),1 424(s),1 060(vs),838(m),744(m),715(m),504(s).1H NMR(CD3SOCD3,25 ℃,TMS):δ2.07(3H,-CH3),2.20~2.42(2H,P-CH2-),7.07~9.98(18H,PPh2+bipy).19F NMR(CD3SOCD3,25℃,TMS):δ-148.3.11BNMR(CD3SOCD3,25 ℃,TMS):δ-1.33.

    1.4 X-ray crystallography

    Diffraction data for complexes 1 and 2 were collected on a Bruker APEX CCD diffractometer with graphitemonochromated Mo Kα radiation(λ=0.071 073 nm)using the φ-ω technique at room temperature.The crystal structures were solved by direct methods and refined by full-matrix least-squares on F2using SHELXTL[49].All hydrogens were generated geometrically,assigned fixed isotropic thermal parameters,and included in structure factor calculations.During the structure refinement of 1,an unidentifiable and badly disordered solvent molecule (probably H2O)was omitted by the SQUEEZE option in PLATON.The crystal of 2 was very small and had very weak high angle data,the data was of poor quality (The ratio of data completeness is 0.93,but the molecule structure can be determined).The details of the crystal data are ruled out in Table 1,and selected bond lengths and angles for complexes 1 and 2 are summarized in Table 2.

    CCDC:1043971,1;1043972,2.

    Table 1 Crystal data and structure refinement details of complexes 1 and 2

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1 and 2

    Continued Table 2

    2 Results and discussion

    2.1 Structural description

    2.1.1 {[Cu2(4-bpo)2(CH3CN)2(PPh3)2](BF4)2}n(1)

    Single-crystal analysis shows,as shown in Fig.S1,that the general structure having two different Cuガcenters present in the asymmetric unit.Both Cu1 and Cu2 are coordinated by two Npyridylatoms from 4-bpo,one Nacetonitrileatom from CH3CN and one P atom from PPh3,to yield a distorted tetrahedral geometry(Fig.1 and Fig.S1).The Cu-N bond lengths(0.199 0(5)~0.209 8(4)nm)and Cu-P bond lengths(0.221 88(15)and 0.222 22(16)nm)are within the normal ranges[50]and the metal ions are separated by the Cu1…Cu2 distances of 1.320 7 and 1.352 3 nm.Corresponding NCu-Nbond anglesrangefrom98.93(19)°to116.16(18)°,while the N-Cu-P bond angles are in the range of 105.45(12)°~123.79(16)°.

    Fig.1 Coordination environments of the Cuガ atoms(Cu1)in 1 with displacement ellipsoids drawn at the 10%probability level

    In the solid state,the Cu1 and Cu2 centers are linked to each other by 4-bpo through both terminal N-donors into 1D “W”-shape chain,as shown in Fig.2,which contains two different individual “l(fā)inks”.The neighboring chains are anti-parallel to each other with thenearest inter-chain Cu…Cu distanceof 0.669 9 nm.Theseone-dimensional chainsfurther stack together via intermolecularπ…π interactions to produce infinite 1D bilayer architecture(Fig.3a).In 1D bilayer architecture,two distinct types of inter-chainπ…π stacking interactions are observed: (a)the closest approach between the oxadiazole and pyridyl rings from two distinct 4-bpo is 0.334 2 nm,with the centroid … centroid distances of 0.3674 and 0.377 2 nm and dihedral angles of 2.70°and 13.90°;(b)the center-to-center distances of two parallel pyridyl rings from the two neighboring 4-bpo molecules are 0.385 4 and 0.391 9 nm.Theordered-layer-lattic BF4-islocated between these 1D bilayer chains (Fig.3b).Moreover,1D “W”-shape chain extend to generate a 2D network by intermolecular π…π stacking interactions(Fig.4).The oxadiazole ring from 4-bpo in 2D supramolecular network parallel to phenyl rings attached to phosphorus with a centroid-to-centroid distance of 0.379 8 nm and an offset dihedral angle of 15.63°,showing the existence of significantπ…π stacking interactions.The 2Dπ-stacking structure also involves intermolecular C-H…π interactions,with CH/π distances of 0.271~0.299 nm and angles of 145°~166°,respectively,and the weak interactions of C-H…N and C-H…F hydrogen bonds(Table S1).

    Fig.2 A view of the 1D[Cu2(PPh3)2(4-bpo)2(CH3CN)2]n chain

    Fig.3 (a)Bilayer architecture in 1 formed by the 4-bpo-bridged Cuガ coordination polymer chain and intermolecular π…πstacking interaction;(b)Ordered-layer-latticein 1 located between 1D bilayer chains

    2.1.2 {[Cu(4-bpo)(CH3CN)(dppe)0.5]BF4}n(2)

    Single-crystal analysis shows,as shown in Fig.5,that the structure of 2 consists of a 1D ladder-like chain structure,based on the basis of the 4-bpobridged Cuガcoordination polymer chain and the dppe connector (T-shaped motifs).Different from 1,the fundamental buildingunit containsone independent Cuガcenter,one pair of symmetry-related 4-bpo and a dppe spacer.The Cu+ion adopts a distorted tetrahedral geometry via coordinating to two Npyridylatoms of two 4-bpo ligands,one Nacetonitrileatom of CH3CN and one Patom of one dppe ligand.The Cu-N bond lengths(0.197 6(4)~0.206 6(4)nm)and Cu-P bond lengths(0.221 68(16)nm)are within the normal ranges[51].Corresponding N-Cu-N bond angles range from 101.23(17)°to 117.92(15)°,while the N-Cu-P bond angles are in the range of 104.93(11)°to 121.35(13)°.

    Fig.5 Coordination environments of the Cuガ atoms in 2 with displacement ellipsoids drawn at the 10%probability level

    In the solid state,the 4-bpo ligand in 2 adopts a bidentate bridging mode to connect with two copperガatoms.The adjacent Cuガ centers are linked by two terminal N-donors of 4-bpo ligand to form infinite Cu-4-bpo chains(Cu…Cu 1.358 0 nm)along the b axis;the neighbouring chains are further linked by dppe ligand to generate a ladder-like chains with the Cu…Cu distance of 0.724 8 nm (Fig.6).These 1D ladderlike chains are further interlinked parallel with the ab plane to generate a 2D network through intermolecular π…π stacking interactions.In the 2D net,the planes of pyridyl and oxadiazoleare approximately parallel with a centroid-to-centroid distance of 0.377 9 nm and an offset dihedral angle of 5.25°,revealing the existence of π … π stacking interactions(Fig.7a).Similarly,the packing structure involvesπ…π interactions parallel with the ac plane,being analogous to that of 1 (Fig.7b).In 2D supramolecular network,the oxadiazole ring from 4-bpo parallel to phenyl rings attached to phosphorus with a centroid-to-centroid distance of 0.368 8 nm and an offset dihedral angle of 5.64°,which is shorter than the corresponding values in complex 1.In other words,adjacen1D ladder-like chains in the ab plane interact with each other by one kind of intermolecularπ…π stacking interactions(Fig.7a)to form two-dimensional(2D)supramolecular net,which are further linked by the other kind of intermolecularπ…πstacking interactions (Fig.7b)to form a three-dimensional(3D)supramolecular structure (Fig.8a).Moreover,the ordered-layer-lattic BF4-is located between these 3D networks(Fig.8b).In the 3D network,and C-H…F and C-H…N hydrogen bonds are also observed(H…F 0.241 nm,C…F 0.329 nm;H…N 0.238 nm,C…N 0.333 nm).

    Fig.6 1D ladder-like network formed by the 4-bpobridged Cuガcoordination polymer chain and the dppe connector in 2

    Fig.7 2D supramolecular network formed by intermolecularπ…πinteractions parallel with the ab(a)or ac(b)plane in 2

    Fig.8 (a)3D framework of 2;(b)Ordered-layer-lattice BF4-in 2 located between 3D networks

    2.2 Luminescent properties

    Coordination compounds constructed from d10metal centers and conjugated organic ligands are promising candidates for hybrid luminescent materials with potential applications such as dye-sensitized solar cells,light-emitting or electrochemical devices and so on.As shown in Fig.9,Solid-state emission spectra of complexes 1 and 2 were recorded at room temperature,showing that excitation of the microcrystalline samples affords different fluorescent emissions,with the maximum peaks occurring at 582 nm for 1(λex=400 nm)and 440 for 2(λex=380 nm).Moreover,the maximal emission of 4-bpo ligands is observed at 417 nm (λex=370 nm)according to references[52-53].With regard to compound 1,the significant red shift of the emission band (165 nm)compared with that of 4-bpo may be assigned to metal-to-ligand charge transfer(MLCT)[54-55].For 2,the very similar profiles of their emission peaks,in comparison with that of the free 4-bpo,indicate that their photoluminescent mechanism may be properly ascribed to intraligand(IL)π→π*transition[56-57].

    Fig.9 Emission spectra of complexes 1 and 2 in the solid state at room temperature

    3 Conclusions

    In this work,we have presented a new family of coordination polymers formulated as{[Cu2(4-bpo)2(CH3CN)2(PPh3)2](BF4)2}n(1)and{[Cu(4-bpo)(CH3CN)(dppe)0.5]BF4}n(2),respectively.These polymers show different supramolecular architectures:1 consists of 1D “W”-shape/bilayer chains and 2D π-stacking net;2 shows the existence of 1D ladder-like chain,2D network and 3D supramolecular structure.All these results undoubtedly reveal that the diverse structures of coordination polymers mainly depend on the Cu+ions with 4-bpo,readily interacting with different flexible/angular ligands(PPh3and dppe)to result in a variety of supramolecular (1D or 2D)networks.Moreover,the extended supramolecular networks of the lower-dimensional coordination polymers can be well modified by the secondary interactions such as intermolecularπ…πstacking interactions.Solid-state emission spectra of complexes 1 and 2 were observed at room temperature,showing that their photoluminescent mechanism may be properly attributed to ILCT or MLCT.

    Supportinginformation is available at http://www.wjhxxb.cn

    [1]Doherty S,Knight JG,Ellison JR,et al.Green Chem.,2014,16(3):1470-1479

    [2]Dronova M S,Bilyachenko A N,Yalymov A I,et al.Dalton Trans.,2014,43(2):872-882

    [3]Hou Y L,Sun R W Y,Zhou X P,et al.Chem.Commun.,2014,50(18):2295-2297

    [4]Jiang L,Wang Z,Bai SQ,et al.Dalton Trans.,2013,42(26):9437-9443

    [5]Falcaro P,Ricco R,Doherty C M,et al.Chem.Soc.Rev.,2014,43(16):5513-5560

    [6]Mao Y,Su B,Cao W,et al.ACSAppl.Mater.Int.,2014,6(18):15676-15685

    [7]Sandroni M,Maufroy A,Rebarz M,et al.J.Phys.Chem.C,2014,118(49):28388-28400

    [8]Dominguez-Martin A,Choquesillo-Lazarte D,Dobado J A,et al.Dalton Trans.,2013,42(17):6119-6130

    [9]Park K H,Noh TH,Shim Y B,et al.Chem.Commun.,2013,49(38):4000-4002

    [10]Santos-Figueroa L E,Moragues M E,Climent E,et al.Chem.Soc.Rev.,2013,42(8):3489-3613

    [11]Cheng J K,Yao Y G,Zhang J,et al.J.Am.Chem.Soc.,2004,126(25):7796-7797

    [12]Huang T H,Yan J,Liu Y F,et al.Aust.J.Chem.,2015,68(7):1144-1151

    [13]Huang TH,Yan J,Yang H,et al.J.Mol.Struct.,2015,1101:66-72

    [14]Zhan SZ,Li M,Zhou X P,et al.Inorg.Chem.,2011,50(18):8879-8892

    [15]Zhang J,Xiong R G,Chen X T,et al.Organometallics,2002,21(1):235-238

    [16]Dong Y B,Cheng J Y,Huang R Q,et al.Inorg.Chem.,2003,42(18):5699-5706

    [17]Jin F,Zhang Y,Wang H Z,et al.Cryst.Growth Des.,2013,13(5):1978-1987

    [18]Wu JY,Chao TC,Zhong M S.Cryst.Growth Des.,2013,13(7):2953-2964

    [19]Brozek C K,Dinc M.J.Am.Chem.Soc.,2013,135(34):12886-12891

    [20]Tu B,Pang Q,Wu D,et al.J.Am.Chem.Soc.,2014,136(41):14465-14471

    [21]Xu Z,Meng W,Li H,et al.Inorg.Chem.,2014,53(7):3260-3262

    [22]Hashemi L,Morsali A.CrystEngComm,2013,15(44):8894-8897

    [23]Lee L M,Elder P J W,Dube P A,et al.CrystEngComm,2013,15(37):7434-7437

    [24]Niu C Y,Zheng X F,He Y,et al.CrystEngComm,2010,12(10):2847-2855

    [25]Thorp-Greenwood FL,Kulak A N,Hardie M J.Cryst.Growth Des.,2014,14(11):5361-5365

    [26]Du M,Li C P,Liu C S,et al.Coord.Chem.Rev.,2013,257(7/8):1282-1305

    [27]Han L,Zhou Y,Zhao W N,et al.Cryst.Growth Des.,2009,9(2):660-662

    [28]Martin D P,Supkowski R M,LaDuca R L.Dalton Trans.,2009:514-520

    [29]Wang X L,Lin H Y,Mu B,et al.CrystEngComm,2011,13(6):1990-1997

    [30]Wu Y P,Li D S,Fu F,et al.Inorg.Chem.Commun.,2010,13(9):1005-1008

    [31]Yuan X,Zhang X,Zhao H,et al.Cryst.Growth Des.,2013,13(11):4859-4867

    [32]Cao X,Meng L,Li Z,et al.Langmuir,2014,30(39):11753-11760

    [33]Das A,Choudhury SR,Dey B,et al.J.Phys.Chem.B,2010,114(15):4998-5009

    [34]González-Rodríguez D,Schenning A P H J.Chem.Mater.,2011,23(3):310-325

    [35]Henze W,G?rtner T,Gschwind R M.J.Am.Chem.Soc.,2008,130(41):13718-13726

    [36]Shishkin O V,Zubatyuk R I,Shishkina S V,et al.Phys.Chem.Chem.Phys.,2014,16(14):6773-6786

    [37]Guan Y,Ni M,Hu X,et al.Chem.Commun.,2012,48(68):8529-8531

    [38]Harada A,Takashima Y,Nakahata M.Acc.Chem.Res.,2014,47(7):2128-2140

    [39]Ji X,Yao Y,Li J,et al.J.Am.Chem.Soc.,2013,135(1):74-77

    [40]Ogoshi T,Kayama H,Yamafuji D,et al.Chem.Sci.,2012,3(11):3221-3226

    [41]Zheng B,Wang F,Dong S,et al.Chem.Soc.Rev.,2012,41(5):1621-1636

    [42]Zou GD,He Z Z,Tian CB,et al.Cryst.Growth Des.,2014,14(9):4430-4438

    [43]Fang Z L,He J G,Yu R M,et al.CrystEngComm,2011,13(20):6243-6250

    [44]Riesgo E C,Hu Y Z,Bouvier F,et al.Inorg.Chem.,2001,40(14):3413-3422

    [45]Zhang L,Li B,Su Z.Langmuir,2009,25(4):2068-2074

    [46]Bentiss F,Lagrenée M.J.Heterocycl.Chem.,1999,36(4):1029-1032

    [47]Du M,Chen S T,Bu X H.Cryst.Growth Des.,2002,2(6):625-629

    [48]Ma J P,Dong Y B,Huang R Q,et al.Inorg.Chem.,2005,44(18):6143-6145

    [49]Sheldrick G M.Acta Cryst.,2008,A64:112-122

    [50]Huang T H,Zhang M H,Yan J,et al.Inorg.Chim.Acta,2015,437:47-53

    [51]Zink D M,Volz D,Baumann T,et al.Chem.Mater.,2013,25(22):4471-4486

    [52]Du M,Wang Q,Li C P,et al.Cryst.Growth Des.,2010,10(7):3285-3296

    [53]Li CP,Yu Q,Chen J,et al.Cryst.Growth Des.,2010,10(6):2650-2660

    [54]Bergmann L,Friedrichs J,Mydlak M,et al.Chem.Commun.,2013,49(58):6501-6503

    [55]Linfoot C L,Leitl M J,Richardson P,et al.Inorg.Chem.,2014,53(20):10854-10861

    [56]Crestani M G,Manbeck G F,Brennessel W W,et al.Inorg.Chem.,2011,50(15):7172-7188

    [57]Hsu C W,Lin C C,Chung M W,et al.J.Am.Chem.Soc.,2011,133(31):12085-12099

    猜你喜歡
    化工學(xué)院理工學(xué)院晶體結(jié)構(gòu)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    江蘇理工學(xué)院
    常熟理工學(xué)院
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    理工學(xué)院簡介
    任意門
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    《化工學(xué)報(bào)》贊助單位
    国产成人精品久久二区二区免费| 熟女少妇亚洲综合色aaa.| 久久中文字幕人妻熟女| 精品不卡国产一区二区三区| 夜夜躁狠狠躁天天躁| xxxwww97欧美| 99久久无色码亚洲精品果冻| 成年人黄色毛片网站| 女警被强在线播放| 一个人免费在线观看电影 | 亚洲人成电影免费在线| 综合色av麻豆| 一a级毛片在线观看| 免费看光身美女| 最新美女视频免费是黄的| 后天国语完整版免费观看| 在线观看美女被高潮喷水网站 | 在线免费观看的www视频| 国产一区二区三区视频了| 99热这里只有精品一区 | 国产69精品久久久久777片 | 老司机深夜福利视频在线观看| 免费在线观看成人毛片| 久久天躁狠狠躁夜夜2o2o| 最好的美女福利视频网| 久久天堂一区二区三区四区| 午夜免费成人在线视频| 亚洲自偷自拍图片 自拍| 夜夜夜夜夜久久久久| 亚洲精品久久国产高清桃花| 在线免费观看的www视频| 精品电影一区二区在线| 一级毛片精品| 热99re8久久精品国产| 黄色视频,在线免费观看| 美女免费视频网站| 亚洲熟女毛片儿| 亚洲av中文字字幕乱码综合| 99久久综合精品五月天人人| 18美女黄网站色大片免费观看| 美女高潮喷水抽搐中文字幕| 久久久久久九九精品二区国产| 欧美高清成人免费视频www| 成人三级做爰电影| 99久国产av精品| 日本一二三区视频观看| 九九热线精品视视频播放| www日本黄色视频网| 身体一侧抽搐| 91在线观看av| 国产成人啪精品午夜网站| 最近在线观看免费完整版| av在线天堂中文字幕| 国产高清激情床上av| 三级国产精品欧美在线观看 | 午夜福利欧美成人| 欧美日韩精品网址| 窝窝影院91人妻| 国产精品久久电影中文字幕| 成年人黄色毛片网站| 久久久久久久精品吃奶| 精华霜和精华液先用哪个| 亚洲专区国产一区二区| 欧美高清成人免费视频www| 亚洲精品乱码久久久v下载方式 | 久久性视频一级片| 日本a在线网址| 亚洲精品美女久久av网站| 男人和女人高潮做爰伦理| 在线免费观看的www视频| 少妇丰满av| 老汉色∧v一级毛片| 日本熟妇午夜| 成人一区二区视频在线观看| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清专用| 免费大片18禁| 床上黄色一级片| 国产真人三级小视频在线观看| 999久久久精品免费观看国产| 波多野结衣巨乳人妻| 黄色丝袜av网址大全| 1024手机看黄色片| 亚洲黑人精品在线| 亚洲国产欧美人成| 日本精品一区二区三区蜜桃| 亚洲成人久久性| 欧美日韩瑟瑟在线播放| 天堂av国产一区二区熟女人妻| 欧美国产日韩亚洲一区| 97超级碰碰碰精品色视频在线观看| 久99久视频精品免费| 啪啪无遮挡十八禁网站| 成人特级av手机在线观看| 国产精品久久久人人做人人爽| 免费看a级黄色片| 国产视频一区二区在线看| 在线十欧美十亚洲十日本专区| 亚洲人成网站高清观看| 黄色丝袜av网址大全| 热99re8久久精品国产| 中国美女看黄片| 香蕉丝袜av| 视频区欧美日本亚洲| 黄片小视频在线播放| 亚洲欧美日韩无卡精品| 99久久久亚洲精品蜜臀av| 网址你懂的国产日韩在线| 老司机深夜福利视频在线观看| 中文字幕最新亚洲高清| 黄色丝袜av网址大全| 91久久精品国产一区二区成人 | 国产毛片a区久久久久| 久久久久免费精品人妻一区二区| 精品国内亚洲2022精品成人| 精品久久久久久成人av| 无人区码免费观看不卡| 男插女下体视频免费在线播放| 亚洲精华国产精华精| 极品教师在线免费播放| 九九久久精品国产亚洲av麻豆 | 久久久久久国产a免费观看| 深夜精品福利| 亚洲激情在线av| 久久人人精品亚洲av| 免费在线观看影片大全网站| 白带黄色成豆腐渣| 久久精品亚洲精品国产色婷小说| 精品久久久久久久久久免费视频| 亚洲国产中文字幕在线视频| 少妇的丰满在线观看| 精品一区二区三区视频在线 | 90打野战视频偷拍视频| 亚洲熟妇熟女久久| 久久这里只有精品中国| 97人妻精品一区二区三区麻豆| 午夜视频精品福利| 欧美日韩黄片免| 国产精品一区二区三区四区免费观看 | 亚洲人成伊人成综合网2020| 男女之事视频高清在线观看| 免费高清视频大片| 国产精品av视频在线免费观看| 精品国产三级普通话版| 岛国视频午夜一区免费看| 悠悠久久av| 国产精品乱码一区二三区的特点| 国产激情偷乱视频一区二区| 国产又黄又爽又无遮挡在线| 美女扒开内裤让男人捅视频| xxx96com| 亚洲一区高清亚洲精品| 天天添夜夜摸| 极品教师在线免费播放| 国产男靠女视频免费网站| 国产精品野战在线观看| 狂野欧美白嫩少妇大欣赏| av片东京热男人的天堂| 久99久视频精品免费| 又大又爽又粗| 国产视频内射| 女人被狂操c到高潮| 国产精华一区二区三区| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 久9热在线精品视频| 这个男人来自地球电影免费观看| 久久午夜亚洲精品久久| 欧美zozozo另类| 国产黄色小视频在线观看| 午夜亚洲福利在线播放| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品sss在线观看| 日本三级黄在线观看| 欧美成人免费av一区二区三区| 中文字幕精品亚洲无线码一区| 在线观看日韩欧美| 精品免费久久久久久久清纯| АⅤ资源中文在线天堂| 国产高清视频在线观看网站| 久久中文看片网| 亚洲,欧美精品.| 色吧在线观看| 美女高潮喷水抽搐中文字幕| 少妇人妻一区二区三区视频| 99热只有精品国产| 国产一区在线观看成人免费| 久久久国产欧美日韩av| 嫩草影视91久久| 日韩欧美国产一区二区入口| h日本视频在线播放| 变态另类成人亚洲欧美熟女| 亚洲中文字幕日韩| 亚洲一区二区三区色噜噜| 亚洲成人中文字幕在线播放| av天堂在线播放| 亚洲乱码一区二区免费版| 男人舔奶头视频| 亚洲自拍偷在线| 一边摸一边抽搐一进一小说| 亚洲片人在线观看| 日韩 欧美 亚洲 中文字幕| 一a级毛片在线观看| 在线视频色国产色| 精华霜和精华液先用哪个| 黄色女人牲交| 天堂√8在线中文| 最新中文字幕久久久久 | 日本免费a在线| 18禁裸乳无遮挡免费网站照片| 香蕉国产在线看| 国产久久久一区二区三区| 午夜日韩欧美国产| av中文乱码字幕在线| 国产精品98久久久久久宅男小说| 亚洲成av人片在线播放无| 欧美日韩国产亚洲二区| 午夜成年电影在线免费观看| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| bbb黄色大片| 日本黄色片子视频| 欧美一级毛片孕妇| 国产 一区 欧美 日韩| 看片在线看免费视频| 日韩欧美国产在线观看| 免费观看精品视频网站| 天堂网av新在线| 国产精品野战在线观看| 久久久久免费精品人妻一区二区| 美女午夜性视频免费| 最好的美女福利视频网| 日本 av在线| 亚洲乱码一区二区免费版| 国产一区在线观看成人免费| 丁香欧美五月| 欧美av亚洲av综合av国产av| 巨乳人妻的诱惑在线观看| 午夜a级毛片| 国产真人三级小视频在线观看| 99re在线观看精品视频| 午夜福利高清视频| 日韩成人在线观看一区二区三区| 色在线成人网| 欧美av亚洲av综合av国产av| 男女下面进入的视频免费午夜| 99热只有精品国产| 国产精品九九99| 成在线人永久免费视频| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| tocl精华| 国产精品永久免费网站| 成人亚洲精品av一区二区| 看免费av毛片| 欧美乱码精品一区二区三区| av天堂中文字幕网| 日韩欧美 国产精品| 亚洲精品一区av在线观看| 人人妻,人人澡人人爽秒播| 久久亚洲精品不卡| 女生性感内裤真人,穿戴方法视频| а√天堂www在线а√下载| 51午夜福利影视在线观看| 69av精品久久久久久| 男女视频在线观看网站免费| 日韩有码中文字幕| 一进一出抽搐动态| 久9热在线精品视频| 99久久综合精品五月天人人| 很黄的视频免费| 国内精品久久久久久久电影| 久久热在线av| 亚洲国产欧美网| 手机成人av网站| 久久精品夜夜夜夜夜久久蜜豆| 深夜精品福利| 51午夜福利影视在线观看| tocl精华| 国产欧美日韩一区二区精品| 黄色视频,在线免费观看| 叶爱在线成人免费视频播放| 久9热在线精品视频| 欧美中文日本在线观看视频| 久久久久国产一级毛片高清牌| 日本一本二区三区精品| 国产熟女xx| 不卡av一区二区三区| 12—13女人毛片做爰片一| 国内精品一区二区在线观看| av欧美777| 亚洲精品中文字幕一二三四区| 国产精品av久久久久免费| 亚洲国产欧美一区二区综合| 成人18禁在线播放| 欧美日韩福利视频一区二区| 久久午夜亚洲精品久久| 最近在线观看免费完整版| 精品久久久久久成人av| 夜夜躁狠狠躁天天躁| 在线国产一区二区在线| 欧美乱码精品一区二区三区| 九九在线视频观看精品| 婷婷六月久久综合丁香| 男女做爰动态图高潮gif福利片| 亚洲av电影在线进入| 久久久久国产精品人妻aⅴ院| 成人特级黄色片久久久久久久| 欧美日韩黄片免| 国产免费av片在线观看野外av| 波多野结衣高清作品| 精品久久久久久久末码| 亚洲一区高清亚洲精品| 亚洲第一电影网av| 国产午夜精品论理片| 成人国产一区最新在线观看| 亚洲美女黄片视频| avwww免费| 国产高清有码在线观看视频| 成人三级做爰电影| 久久精品亚洲精品国产色婷小说| 精品不卡国产一区二区三区| 成人三级黄色视频| 美女大奶头视频| 亚洲av成人av| а√天堂www在线а√下载| 欧美乱妇无乱码| 亚洲成a人片在线一区二区| 欧美成人免费av一区二区三区| 一本精品99久久精品77| 国产乱人伦免费视频| 午夜视频精品福利| 88av欧美| 他把我摸到了高潮在线观看| 久久精品人妻少妇| 日本精品一区二区三区蜜桃| 日韩欧美三级三区| 亚洲九九香蕉| 日本撒尿小便嘘嘘汇集6| 婷婷丁香在线五月| 成人永久免费在线观看视频| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女| 最新中文字幕久久久久 | 香蕉国产在线看| 成人永久免费在线观看视频| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 日本一二三区视频观看| 国产成人av激情在线播放| 亚洲精品在线美女| 99精品欧美一区二区三区四区| 久久久国产精品麻豆| 老司机午夜福利在线观看视频| 国产探花在线观看一区二区| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 少妇裸体淫交视频免费看高清| 精品久久蜜臀av无| 国内精品一区二区在线观看| 亚洲欧美日韩无卡精品| 国产一区二区激情短视频| 黄片大片在线免费观看| e午夜精品久久久久久久| 91九色精品人成在线观看| 精品人妻1区二区| 亚洲性夜色夜夜综合| 一个人观看的视频www高清免费观看 | 性色avwww在线观看| 制服人妻中文乱码| 亚洲成人免费电影在线观看| 亚洲国产精品999在线| 岛国视频午夜一区免费看| 久久久色成人| 成人欧美大片| 成人国产一区最新在线观看| 听说在线观看完整版免费高清| 日本黄色片子视频| 少妇的逼水好多| 男女午夜视频在线观看| 91在线精品国自产拍蜜月 | 午夜激情欧美在线| 人人妻人人看人人澡| av天堂在线播放| 亚洲九九香蕉| 亚洲avbb在线观看| 特级一级黄色大片| 国产一区二区在线观看日韩 | 男人舔女人下体高潮全视频| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站| 两个人看的免费小视频| 午夜影院日韩av| 亚洲国产欧美人成| x7x7x7水蜜桃| 国产精品一区二区免费欧美| 手机成人av网站| 最新中文字幕久久久久 | 色视频www国产| 国产精品99久久久久久久久| 一级a爱片免费观看的视频| 亚洲精品国产精品久久久不卡| 亚洲人与动物交配视频| 亚洲午夜理论影院| 国产三级中文精品| 欧美日韩乱码在线| 最新在线观看一区二区三区| 国产熟女xx| 99国产极品粉嫩在线观看| 国产精品自产拍在线观看55亚洲| 久久久久亚洲av毛片大全| 久久久水蜜桃国产精品网| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲自拍偷在线| 叶爱在线成人免费视频播放| 色av中文字幕| 国产视频一区二区在线看| 岛国视频午夜一区免费看| 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 国产高潮美女av| 黄色视频,在线免费观看| 国产美女午夜福利| 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 一本久久中文字幕| 国产成+人综合+亚洲专区| 亚洲国产精品999在线| 观看美女的网站| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 在线观看免费午夜福利视频| 在线观看66精品国产| 国产91精品成人一区二区三区| 嫩草影院入口| 亚洲av成人精品一区久久| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| www国产在线视频色| 一个人看视频在线观看www免费 | 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 91老司机精品| 三级国产精品欧美在线观看 | 欧美大码av| 国产三级在线视频| 精品国产三级普通话版| 这个男人来自地球电影免费观看| 伦理电影免费视频| av天堂在线播放| 禁无遮挡网站| 老司机在亚洲福利影院| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 一级毛片精品| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 欧美中文综合在线视频| 人妻夜夜爽99麻豆av| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 国产精品久久久人人做人人爽| 日韩有码中文字幕| 小蜜桃在线观看免费完整版高清| av欧美777| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 五月伊人婷婷丁香| 亚洲国产色片| 欧美激情久久久久久爽电影| 一二三四社区在线视频社区8| 国产单亲对白刺激| 国产一区二区三区视频了| 亚洲精品国产精品久久久不卡| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 中文字幕精品亚洲无线码一区| 国产乱人伦免费视频| 国产av在哪里看| 男人和女人高潮做爰伦理| 久久热在线av| 男女做爰动态图高潮gif福利片| 国产成人av教育| 两个人的视频大全免费| 久久亚洲真实| 99久久精品国产亚洲精品| 99视频精品全部免费 在线 | 亚洲 欧美一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产美女午夜福利| 99视频精品全部免费 在线 | 日日摸夜夜添夜夜添小说| 久久欧美精品欧美久久欧美| 18禁美女被吸乳视频| av黄色大香蕉| 久久国产乱子伦精品免费另类| 亚洲精品久久国产高清桃花| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 国产乱人伦免费视频| 舔av片在线| 夜夜躁狠狠躁天天躁| 小说图片视频综合网站| 免费观看人在逋| 精品国产乱子伦一区二区三区| 又粗又爽又猛毛片免费看| 久久久久国内视频| 少妇的逼水好多| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看| 黄色日韩在线| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 精品久久久久久久久久久久久| 在线视频色国产色| 18禁黄网站禁片午夜丰满| 国产精品一区二区三区四区免费观看 | 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 丰满的人妻完整版| 精品日产1卡2卡| 日韩精品青青久久久久久| 久久久久国内视频| 国产精品98久久久久久宅男小说| 亚洲精品中文字幕一二三四区| 一级毛片高清免费大全| 中文字幕人妻丝袜一区二区| 法律面前人人平等表现在哪些方面| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 亚洲自偷自拍图片 自拍| 久久久久久大精品| 国产人伦9x9x在线观看| 国产精品av视频在线免费观看| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜| 中文字幕最新亚洲高清| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 人人妻人人澡欧美一区二区| 欧美日韩一级在线毛片| 一区二区三区激情视频| 天天躁日日操中文字幕| 特级一级黄色大片| 国产精品爽爽va在线观看网站| 午夜精品一区二区三区免费看| 色吧在线观看| 丰满人妻熟妇乱又伦精品不卡| 一级a爱片免费观看的视频| 一本久久中文字幕| 免费无遮挡裸体视频| 最近最新中文字幕大全免费视频| 国产欧美日韩精品一区二区| 亚洲18禁久久av| 最新美女视频免费是黄的| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 久久香蕉精品热| 免费观看人在逋| 国产午夜精品论理片| 国产一区二区三区在线臀色熟女| 看黄色毛片网站| 99精品欧美一区二区三区四区| svipshipincom国产片| 国产真人三级小视频在线观看| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 久久这里只有精品19| 成人国产一区最新在线观看| 亚洲欧美日韩高清专用| 国内精品美女久久久久久| 香蕉国产在线看| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 亚洲国产欧美一区二区综合| 国产精品99久久99久久久不卡| 日本 欧美在线| 在线观看66精品国产| 免费搜索国产男女视频| 亚洲最大成人中文| 性色av乱码一区二区三区2| 一个人看视频在线观看www免费 | 麻豆国产97在线/欧美| 看片在线看免费视频| АⅤ资源中文在线天堂| 国产探花在线观看一区二区| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 1024香蕉在线观看| 男女那种视频在线观看| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 男女之事视频高清在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 免费观看人在逋| 又黄又爽又免费观看的视频| 日本a在线网址| 免费无遮挡裸体视频| 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| a在线观看视频网站| 久久香蕉精品热| 丝袜人妻中文字幕|