馮秋生,闞 泉,呂翠平,李 冉,魏靜波,趙毓芳,甄永占,2
(1. 華北理工大學(xué)基礎(chǔ)醫(yī)學(xué)院組織學(xué)與胚胎學(xué)系,河北 唐山063000;2. 華北理工大學(xué)基礎(chǔ)醫(yī)學(xué)院河北省慢性疾病重點實驗室 河北省唐山市慢性病臨床基礎(chǔ)研究重點實驗室,河北 唐山 063000)
賴氨大黃酸對氧化應(yīng)激引起的小鼠動脈血管損傷的保護(hù)作用及其機制
馮秋生1,闞泉1,呂翠平1,李冉1,魏靜波1,趙毓芳1,甄永占1,2
(1. 華北理工大學(xué)基礎(chǔ)醫(yī)學(xué)院組織學(xué)與胚胎學(xué)系,河北 唐山063000;2. 華北理工大學(xué)基礎(chǔ)醫(yī)學(xué)院河北省慢性疾病重點實驗室 河北省唐山市慢性病臨床基礎(chǔ)研究重點實驗室,河北 唐山 063000)
目的:觀察賴氨大黃酸(RHL)對氧化應(yīng)激引起的小鼠動脈血管損傷的保護(hù)作用,并探討其作用機制。方法:采用腹腔注射百草枯方法建立活性氧引起血管損傷小鼠模型。將30只C57小鼠隨機分為對照組(n=10)、百草枯模型組(n=10)和RHL干預(yù)組(n=10)。RHL干預(yù)組小鼠在造模前1周灌胃給予RHL,對照組和百草枯模型組灌胃給予等體積蒸餾水。百草枯模型組和RHL干預(yù)組腹腔注射百草枯,對照組腹腔注射等體積生理鹽水,每周注射1次,持續(xù)2周。造模2周后檢測血清丙二醛(MDA)水平、超氧化物歧化酶(SOD)和谷胱甘肽過氧化物酶(GSH-Px)活性;DCFH-DA染色觀察血管活性氧水平;HE染色觀察腹主動脈病理表現(xiàn);Western blotting 法檢測血管損傷相關(guān)基因的表達(dá)。結(jié)果:與對照組比較,百草枯模型組小鼠血管組織小鼠血清SOD和GSH-Px活性下降(P<0.05),MDA水平升高(P<0.05);與百草枯模型組比較,RHL干預(yù)組MDA水平下降(P<0.05),SOD和GSH-Px活性升高(P<0.05);DCFH-DA和HE染色,百草枯模型組小鼠血管組織血管組織活性氧水平升高(P<0.05),血管結(jié)構(gòu)破壞, RHL干預(yù)組血管活性氧水平下降(P<0.05),病理變化明顯減輕。Western blotting法檢測,與對照組比較,百草枯模型組小鼠血管組織內(nèi)皮型一氧化氮合酶(eNOS)和caspase-3表達(dá)水平降低(P<0.05),caspase-3裂解片段表達(dá)水平升高(P<0.05);與模型組比較,RHL干預(yù)組小鼠血管組織 eNOS和caspase-3 表達(dá)水平升高 (P<0.05),caspase-3裂解片段表達(dá)水平降低(P<0.05)。結(jié)論:百草枯能夠誘導(dǎo)體內(nèi)活性氧水平升高引起血管細(xì)胞損傷,RHL通過清除活性氧,上調(diào)eNOS表達(dá),下調(diào)caspase-3裂解片段表達(dá)來拮抗百草枯的作用。
賴氨大黃酸;百草枯;活性氧;細(xì)胞凋亡
隨著人口老齡化,慢性疾病(如糖尿病和高血壓)的發(fā)病率日益增加。內(nèi)皮功能損傷在動脈粥樣硬化、糖尿病和原發(fā)性高血壓等慢性疾病的發(fā)生發(fā)展過程中扮演著重要角色。體內(nèi)氧化物質(zhì)(如氧化型低密度脂蛋白和一些化合物)參與了內(nèi)皮功能損傷的病理過程。百草枯(1-1-二甲基-4-4-聯(lián)吡啶二氯化物,paraquat)是一種快速滅生性除草劑,其毒性主要是來源于其代謝產(chǎn)物和氧化還原作用產(chǎn)生的活性氧(ROS),因此其常被用來誘導(dǎo)體內(nèi)ROS生成,建立動物體內(nèi)氧化損傷模型[1-6]。賴氨大黃酸(rhein lysinate,RHL)是本室對大黃酸進(jìn)行結(jié)構(gòu)改造獲得的具有較好水溶性的化合物,體外研究[7]表明:低劑量(10 μmol·L-1)RHL能夠保護(hù)過氧化氫誘導(dǎo)的臍靜脈血管內(nèi)皮細(xì)胞衰老,RHL延緩內(nèi)皮細(xì)胞衰老的作用是通過清除活性氧自由基實現(xiàn)的。本課題組前期研究[8]還發(fā)現(xiàn):RHL能夠延長快速老化小鼠(SAMP10)的壽命,其延長壽命的作用也與清除活性氧自由基作用有關(guān)。但RHL對體內(nèi)活性氧直接引起的血管內(nèi)皮細(xì)胞損傷是否具有保護(hù)作用尚未見報道。本研究采用百草枯建立活性氧引起血管損傷模型,觀察RHL對血管氧化損傷的保護(hù)作用,旨在為RHL應(yīng)用于臨床提供一定的實驗依據(jù)。
1.1實驗動物、主要試劑和儀器30只C57小鼠,雄性,體質(zhì)量24~28 g,動物合格證號:SCXK(京)2013-0020,購自中國醫(yī)學(xué)科學(xué)院動物所,在恒溫(22℃)、相對濕度65%~70%、光照周期12 h∶12 h 環(huán)境中適應(yīng)飼養(yǎng)1周后用于實驗。RHL由本室合成,分子式為C21H22N2O8,相對分子質(zhì)量430,純度98%; 百草枯(上海Sigma公司);超氧化物歧化酶(SOD)測定試劑盒、谷胱甘肽過氧化物酶(GSH-Px)和丙二醛(MDA)測定試劑盒(南京建成生物工程研究所);HE染色試劑盒(北京經(jīng)科宏達(dá)生物技術(shù)有限公司);DCFH-DA活性氧檢測試劑盒(上海Sigma公司);eNOS 和caspase-3抗體(Cell Signaling 公司);β-actin(SC-16)、辣根過氧化物酶偶聯(lián)二抗(北京中杉金橋公司)??梢姽獬上裣到y(tǒng)(日本Olympus公司),F(xiàn)AITH-4060全自動生化分析儀(中國南京勞拉電子有限公司),Spectra Max 190酶標(biāo)儀(美國Molecular Device 公司),伯樂電泳轉(zhuǎn)印系統(tǒng)和Quantily One分析軟件(美國Bio-Rad 公司),Chemilmager 5500 凝膠成像系統(tǒng)(美國Alpha Innotech 公司)。
1.2實驗動物分組及處理將小鼠隨機分為對照組(n=10)、百草枯模型組(n=10)和RHL干預(yù)組(n=10)。RHL干預(yù)組小鼠在造模前1周灌胃給予RHL(50 mg·kg-1),每日1次,對照組和百草枯模型組灌胃給予等體積蒸餾水。百草枯模型組和RHL干預(yù)組腹腔注射百草枯(10 mg·kg-1),對照組腹腔注射等體積生理鹽水,每周注射1次,持續(xù)2周。
1.3標(biāo)本收集小鼠造模2周后,用10%水合氯醛麻醉,右心房采血,分離血清用于測定其MDA水平、SOD和GSH-Px活性。處死小鼠取腹主動脈(主動脈入橫膈處向下1 cm),一部分置于10% 中性甲醛溶液中固定,用于HE 和DCFH-DA染色,剩余腹主動脈置于液氮中,凍透后轉(zhuǎn)入-80℃冰箱中用于測定相關(guān)蛋白的表達(dá)。
1.4血清MDA水平、SOD和GSH-Px 活性測定MDA 水平檢測采用硫代巴比妥酸法,SOD 活力檢測采用聯(lián)苯三酚自氧化法,GSH-Px 活性檢測采用NADPH 偶聯(lián)法。上述檢測均嚴(yán)格按照試劑盒說明書操作。
1.5腹主動脈活性氧水平檢測取一段腹主動脈在4℃ 預(yù)冷的生理鹽水中反復(fù)清洗,置于OCT中包埋,放入液氮上冷卻,-80℃凍存,經(jīng)冰凍切片機切片后,按照DCFH-DA活性氧檢測試劑盒說明書進(jìn)行染色,在熒光顯微鏡下觀察紅色活性氧熒光強度,并拍照。
1.6腹主動脈病理學(xué)表現(xiàn)10% 中性甲醛固定腹主動脈,常規(guī)石蠟包埋,石蠟切片HE 染色后,顯微鏡下觀察并拍照。
1.7Western blotting法檢測血管損傷相關(guān)基因表達(dá)水平凍存的腹主動脈加入新鮮配制的組織裂解液(137 mmol·L-1NaCl,20 mmol·L-1Tris,pH 7.4,1% NP40,20% glycerol,10 mmol·L-1PMSF,1 mmol·L-1Na3VO4,10 mmol·L-1NaF,2.5 mg·L-1aprotinin,2.5 mg·L-1leupetin,phosphotase inhibitor cocktail),4℃下勻漿,冰上裂解15 min, 4℃、12 000 r·min-1離心20 min,取上清,BCA法檢測蛋白濃度。等量蛋白(40 μg)于10% 十二烷基磺酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)分離后,電轉(zhuǎn)至聚偏二氟乙烯(PVDF)膜,5%脫脂牛奶 37℃封閉1 h,分別加入抗SIRT1(1∶1 000)、抗p21 (1∶1 000)、抗p16 (1∶1 000)及抗β-actin(1∶2 000)抗體,4℃孵育過夜。洗滌10 min×4次,用含辣根過氧化物酶(HRP) 標(biāo)記的相應(yīng)二抗(1∶5 000) 孵育1 h,洗膜15 min×4次,膜上滴加化學(xué)發(fā)光增強劑(Santa Cruz biotechnology SC-2048),按照試劑盒說明書操作,結(jié)果在凝膠成像儀上照相并使用Quantity One分析軟件測量條帶吸光度(A)值,目的條帶與β-actin條帶A值比值即為該目的蛋白的相對表達(dá)量。
2.1小鼠一般情況和體質(zhì)量與對照組比較,百草枯模型組小鼠活動減少,進(jìn)食量減少。RHL干預(yù)組小鼠活動量和進(jìn)食量較正常對照組雖有所下降,但高于百草枯模型組。與對照組[(28.5±1.8)g]比較,百草枯模型組[(25.3±2.8)g]和RHL干預(yù)組[(26.2±2.7)g]小鼠體質(zhì)量下降(P<0.05)。
2.2各組小鼠血清中MDA 水平、SOD 和GSH-Px 的活性與對照組比較,百草枯模型組小鼠血清中SOD 和GSH-Px 活性明顯降低(P<0.05),MDA 水平明顯升高(P<0.05)。與百草枯模型組比較, RHL干預(yù)組小鼠血清中SOD 和GSH-Px 活性明顯升高(P<0.05),MDA水平明顯降低(P<0.05)。 RHL干預(yù)組小鼠血清中SOD水平升高,但與對照組比較差異無統(tǒng)計學(xué)意義(P>0.05)。見表1。
2.3DCFH-DA染色檢測各組小鼠血管活性氧水平與對照組比較,百草枯模型組小鼠血管活性氧水平明顯升高。與百草枯氧化損傷模型組比較, RHL干預(yù)組小鼠血管活性氧水平明顯下降。見圖1(插頁三)。
2.4各組小鼠腹主動脈病理學(xué)表現(xiàn)與對照組比較,百草枯模型組小鼠血管組織可見明顯水腫,內(nèi)皮細(xì)胞中可見氣球樣變性,部分細(xì)胞脫落,細(xì)胞質(zhì)顏色嗜堿性,中膜彈性膜增寬、排列松散、間隙增寬。 RHL干預(yù)組小鼠以上所述的病理變化明顯減輕。各組小鼠血管組織炎細(xì)胞浸潤均不明顯。見圖2(插頁三)。
表1 各組小鼠血清MDA水平和SOD、GSH-Px活性
*P<0.05vscontrol group;△P<0.05vsparaquat model group.
2.5各組小鼠血管組織中eNOS和caspase-3表達(dá)與對照組比較,百草枯模型組小鼠血管eNOS和caspase-3表達(dá)水平明顯下降(P<0.05),而剪切后 caspase-3表達(dá)水平升高(P<0.05)。與百草枯模型組比較, RHL干預(yù)組小鼠血管組織中 eNOS和caspase-3表達(dá)水平升高(P<0.05),剪切后caspase-3表達(dá)水平降低(P<0.05)。見圖3和表2。
Lane 1:Control group;Lane 2:Paraquat model group;Lane 3:RHL prevention group.
圖3各組小鼠血管凋亡相關(guān)基因表達(dá)檢測電泳圖
Fig.3Electrophoregram of expressions of apoptosis-related genes in blood vessel of mice in various groups
表2 各組小鼠血管凋亡相關(guān)蛋白的表達(dá)水平
CL:Cleaved.*P<0.05vscontrol group;△P<0.05vsparaquat model group.
本課題組前期研究[7]發(fā)現(xiàn):低劑量RHL能夠清除活性氧自由基,保護(hù)臍靜脈內(nèi)皮細(xì)胞免受過氧化氫的損害。目前對于RHL是否能夠清除動物體內(nèi)產(chǎn)生的活性氧尚未見報道。本研究采用百草枯誘導(dǎo)動物體內(nèi)氧自由基生成模型,探討RHL是否對活性氧誘發(fā)的血管損傷存在保護(hù)作用。百草枯是一種快速滅生性除草劑,其毒性主要是來源于其代謝產(chǎn)物和氧化還原作用產(chǎn)生的活性氧[9-15]。本研究結(jié)果顯示:與對照組比較,百草枯模型組小鼠體質(zhì)量減輕、血清SOD和GSH-Px活性降低,而MDA水平升高;與百草枯模型組比較,RHL干預(yù)組血清SOD和GSH-Px活性升高,MDA水平降低。上述結(jié)果表明:RHL能夠清除百草枯誘發(fā)的體內(nèi)活性氧自由基生成。百草枯誘導(dǎo)血清活性氧水平升高,但是否也能誘導(dǎo)血管組織活性氧水平升高受到關(guān)注。本研究通過DCFH-DA染色觀察血管活性氧水平結(jié)果表明:百草枯模型組血管活性氧水平明顯升高,RHL干預(yù)后,活性氧水平明顯降低。同時HE染色顯示:血管組織活性氧水平升高后,出現(xiàn)部分內(nèi)皮細(xì)胞脫落、彈性膜增寬和排列松散等病理變化,應(yīng)用RHL干預(yù)能夠逆轉(zhuǎn)百草枯對血管組織的損傷。
凋亡在氧自由基誘導(dǎo)細(xì)胞損傷中發(fā)揮著重要作用,百草枯所致的氧化應(yīng)激可誘導(dǎo)血管細(xì)胞凋亡。本研究采用Western blotting法檢測在百草枯誘導(dǎo)血管細(xì)胞凋亡過程中哪些凋亡信號通路發(fā)生改變及RHL是否能夠通過抗氧化應(yīng)激作用阻止血管細(xì)胞凋亡,結(jié)果顯示:百草枯模型組小鼠血管組織中caspase-3表達(dá)水平明顯下降,而剪切后caspase-3表達(dá)升高。與百草枯模型組比較,應(yīng)用RHL干預(yù)后caspase-3表達(dá)水平顯著上調(diào),剪切后caspase-3表達(dá)下調(diào),說明caspase-3凋亡蛋白在百草枯誘導(dǎo)血管細(xì)胞凋亡和RHL保護(hù)血管免受氧化損傷中起著重要作用。本研究同時還顯示:代表血管功能狀況的eNOS表達(dá)水平在應(yīng)用百草枯造模后也降低,而應(yīng)用RHL干預(yù)后能夠逆轉(zhuǎn)。
總之,RHL能清除活性氧,降低活性氧自由基對血管內(nèi)皮細(xì)胞和彈性膜的損傷。RHL有望成為預(yù)防心腦血管疾病的新藥。
[1]Amirshahrokhi K.Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice [J].Int Immunopharmacol,2013,17(2):210-215.
[2]Harrison FE,Best JL,Meredith ME,et al.Increased expression of SVCT2 in a new mouse model raises ascorbic acid in tissues and protects against paraquat-induced oxidative damage in lung [J].PLoS One,2012,7(4):e35623.
[3]Kobayashi S,Kuwata K,Sugimoto T,et al.Enhanced expression of cystine/glutamate transporter in the lung caused by the oxidative-stress-inducing agent paraquat [J].Free Radic Biol Med,2012,53(12):2197-2203.
[4]Ahmad I,Shukla S,Kumar A,et al.Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats [J].Chem Biol Interact,2013,201(1-3):9-18.
[5]Tan D,Wang Y,Bai B,et al.Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat [J].Food Chem Toxicol,2015,78:141-146.
[6]Medina-Leendertz S,Paz M,Mora M,et al.Longterm melatonin administration alleviates paraquat mediated oxidative stress in Drosophila melanogaster [J].Invest Clin,2014,55(4):352-364.
[7]Lin YJ,Zhen YZ,Wei J,et al.Effects of Rhein lysinate on H2O2-induced cellular senescence of human umbilical vascular endothelial cells [J].Acta Pharmacol Sin,2011,32(10):1246-1252.
[8]Hu G,Liu J,Zhen YZ,et al.Rhein lysinate increases the median survival time of SAMP10 mice:protective role in the kidney [J].Acta Pharmacol Sin,2013,34(4):515-521.
[9]Lima ME,Colpo AC,Salgueiro WG,et al.Ilex paraguariensis extract Increases lifespan and protects against the toxic effects caused by paraquat in Caenorhabditis elegans [J].Int J Environ Res Public Health,2014,11(10):10091-10104.
[10]Shokrzadeh M,Shaki F,Mohammadi E,et al.Edaravone decreases paraquat toxicity in a549 cells and lung isolated mitochondria [J].Iran J Pharm Res,2014,13(2):675-681.
[11]Podder B,Song KS,Song HY,et al.Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC [J].Biol Pharm Bull,2014,37(9):1486-1494.
[12]Muralidhara HR.Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster [J].Indian J Biochem Biophys,2010,47(2):75-82.
[13]Krucek T,Korandová M,erM,et al.Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila [J].Arch Insect Biochem Physiol,2015,88(4):235-248.
[14]Muralidhara HR.Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction [J].Arch Insect Biochem Physiol,2013,83(1):25-40.
[15]Yao R,Zhou Y,He Y,et al.Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrativestress [J].Exp Ther Med,2015,9(1):131-136.
[16]Utkan T,Yazir Y,Karson A,et al.Etanercept improves cognitive performance and increases eNOS and BDNF expression during experimental vascular dementia in streptozotocin-induced diabetes [J].Curr Neurovasc Res,2015,12(2):135-146.
Protective effect of rhein lysinate on blood vessel damage induced by oxidative stress in mice and its mechanism
FENG Qiusheng1,KAN Quan1,LYU Cuiping1,LI Ran1,WEI Jingbo1,ZHAO Yufang1,ZHEN Yongzhan1,2
(1. Department of Histology and Embryology,School of Basic Medical Sciences,North China University of Science and Technology,Tangshan 063000,China;2. Key Laboratory for Chronic Diseases of Hebei Province,Key Laboratory for Preclinical and Basic Research on Chronic Diseases of Tangshan City,School of Basic Medical Sciences,North China University of Science and Technology,Tangshan 063000,China)
ObjectiveTo investigate the protective effects of rhein lysinate (RHL) on the blood vessel damage induced by oxidative stress in the mice,and to explore its mechanism.MethodsThe mouse models of oxidative damage were established by intraperitoneal injection of paraquat.30 C57 mice were randomly divided into control,paraquat model,and RHL prevention groups.The mice in RHL prevention group were given RHL by gavage for one week before performing model.The mice in other two groups were given equal volume of distilled water.For making model,paraquat was intraperitoneally injected in the mice in paraquat model and RHL prevention groups once a week for two weeks.The activities of superoxide dismutase (SOD) and glutathione peroxidase(GSH-Px) and the content of serum malonaldehyde (MDA) of the mice were detected 2 weeks after modeling.The pathological profile of blood vessel was observed by hematoxylin and eosin (HE) staining and the level of reactive oxygen species was observed by DCFH-DA staining.The expressions of genes related to blood vessel damage were detected by Western blotting method.ResultsCompared with control group,the activities of SOD and GSH-Px were decreased and the content of MDA was increased in paraquat model group (P<0.05).Compared with paraquat model group,the activities of SOD and GSH-Px were increased and the content of MDA was decreased in RHL prevention group (P<0.05).The pathological examination indicated the structure of blood vessel of the mice was damaged and the level of reactive oxygen species of blood vessel was increased (P<0.05) in paraquat model group.The pathological changes were significantly improved and the level of reactive oxygen species of blood vessel of the mice was decreased (P<0.05) in RHL prevention group.The Western blotting analysis showed that compared with control group,the expression levels of nitric oxide endothelial synthase (eNOS) and caspase-3 of the mice in paraquat model group were decreased (P<0.05),however the expression level of cleaved fragment of caspase-3 was increased (P<0.05).Compared with paraquat model group,the expression levels of eNOS and caspase-3 of the mice in RHL prevention group were increased (P<0.05) and the expression level of cleaved fragment of caspase-3 was decreased (P<0.05).ConclusionParaquat could induce vascular cell damageinvivothrough increasing the levels of reactive oxygen species,and RHL could antagonize the effects of paraquat by scavenging reactive oxygen species,and up-regulating the eNOS expression and reducing the expression of the cleaved fragment of caspase-3.
rhein lysinate; paraquat; reactive oxygen species; apoptosis
1671-587Ⅹ(2015)06-1171-05
10.13481/j.1671-587x.20150614
2015-02-27
河北省科技廳自然科學(xué)基金資助課題(H2012401030);河北省唐山市科學(xué)技術(shù)研究與發(fā)展指導(dǎo)計劃項目資助課題(10130267c)
馮秋生(1974-),男,河北省唐山市人,在讀醫(yī)學(xué)碩士,主要從事心腦血管疾病發(fā)病機制和治療方面的研究。
甄永占,副教授,碩士研究生導(dǎo)師(Tel:0315-3725754,E-mail:yongzhanzhen@126.com)
R285.5
A