• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Satellite Measurements of the Madden–Julian Oscillation in Wintertime Stratospheric Ozone over the Tibetan Plateau and East Asia

    2015-09-04 02:49:05ZHANGYuliLIUYiLIUChuanxiandSOFIEVA
    Advances in Atmospheric Sciences 2015年11期

    ZHANG Yuli,LIU Yi,LIU Chuanxi?,and V.F.SOFIEVA

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Joint Center for Global Change Studies,Beijing100875

    4Finnish Meteorological Institute,Helsinki,Finland

    Satellite Measurements of the Madden–Julian Oscillation in Wintertime Stratospheric Ozone over the Tibetan Plateau and East Asia

    ZHANG Yuli1,2,LIU Yi1,3,LIU Chuanxi?1,3,and V.F.SOFIEVA4

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Joint Center for Global Change Studies,Beijing100875

    4Finnish Meteorological Institute,Helsinki,Finland

    We investigate the Madden–Julian Oscillation(MJO)signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles.Two different MJO indices—the all-season Real-Time multivariate MJO index(RMM)and outgoing longwave radiation-based MJO index(OMI)—are used to compare the MJO-related ozone anomalies.The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 hPa)over the subtropics.The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7,when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean.Compared with the results based on RMM,the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead.Further analysis suggests that different sampling errors,observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements.The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies, i.e.,the uplifted tropopause and the northward shifted westerly jet in the upper troposphere.Compared to the result based on RMM,the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI.Our study indicates that the circulation-based MJO index(RMM)can better characterize the MJO-related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere,especially over subtropical East Asia.

    Madden–Julian Oscillation,stratospheric ozone,tropopause,subtropical jet stream

    1.Introduction

    The Madden–Julian Oscillation(MJO)is a dominant form of intraseasonal variability(30–60 days)in the tropical troposphere,especially during the extended boreal winter (November–April)when the Indo-Pacific warm pool is centered near the equator.It is characterized by slow(~5 m s?1), eastwardpropagating,large-scaleoscillationsintropicaldeep convection,especially over the equatorial Indian and western Pacific oceans(e.g.,Madden and Julian,1971,1972; Zhang,2005;Lau and Waliser,2012).There are interactions between the MJO and a wide range of high-impact weather and climate processes,e.g.,tropical weather,tropicalcyclones,ENSO,andmonsoonmigration.Recentstudies have suggested that the MJO can disturb the winter stratospheric polar vortex,leading to stratospheric sudden warming events(e.g.,Garfinkel et al.,2012;Liu et al.,2014).A better understanding of the MJO may play an important role in bridging the gap between climate prediction and weather forecasting(e.g.,Waliser,2012;Zhang,2013).

    With the advent of the National Aeronautics and Space Administration’s Aqua and Aura satellites,and the European Space Agency’s enviromental satellite(ENVISAT),the footprints of the MJO in atmospheric compositions are gradually being discovered(e.g.,Tian and Waliser,2012).Based on the Nimbus-7 Total Ozone Mapping Spectrometer,Sabutis et al.(1987)first reported evidence for 30–50-day variability in the total column ozone(TCO)over specific locations over the southern Indian and southeast Pacific oceans.Gao and Stanford(1990)went on to identify low-frequency variations(about1–2months)inthe8-yearNimbus-7TOMSTCOdata.Recently,as shown by Tian et al.(2007),the intraseasonal TCO anomalies are mainly obvious in the subtropics over the Eastern Hemisphere and the Pacific,while TCO anomalies are rather small over the equator.MJO convection and related wave dynamics were well proven to have a systematic relationship with subtropical TCO anomalies.For example,the subtropical negative TCO anomalies typically flank or lie to the west of equatorial enhanced convection and are co-located with the subtropical upper-tropospheric anticyclones generated by equatorial anomalous convective forcing.A similar MJO-related ozone signal in the subtropics was also discovered by Liu et al.(2009),who investigated the dynamic formation of a record ozone minimum event (also called ozone“mini-hole”)in mid-December 2003 over the Tibetan Plateau using the satellite measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)and Global Ozone Monitoring by Occultation of Stars(GOMOS)instruments and chemical transport model simulations.Liu et al.(2010)further examined the formation of ozone minimum events in December–January–February over the Tibetan Plateau between 1979 and 2001,suggesting that most of these events are contributed by both the anomaly around the tropopause layer and stratospheric transport related to polar vortex disturbances.Recently,Li et al. (2012)investigated the vertical structure of boreal wintertime MJO-related subtropical ozone variations(November 2004–February 2010)using the ozone pro files from the Tropospheric Emission Spectrometer(TES)and Aura Microwave Limb Sounder(MLS)datasets,as well as in-situ measurements in the Southern Hemisphere.This study suggested that the spatiotemporal patterns of the subtropical ozone anomalies in the lower stratosphere(60–100 hPa)are very similar to those of the total column,which are both dynamically driven by the vertical movement of the subtropical tropopause.It indicates that the subtropical TCO anomalies mostly arise from ozone anomalies in the lower stratosphere,supporting the hypothesis of Tian et al.(2007).The robust connection between the MJO and the intraseasonal variations of subtropical stratospheric ozone implies that the stratospheric ozone variations might be predictable with similar lead times over the subtropics.

    Given that the tropopause height determines the length of the stratospheric air column,in which most of the total ozone column is contained,the variation in the tropopause height plays a dominant role in initiating the MJO-related ozone variation in the subtropics(e.g.,Tian et al.,2007;Li et al., 2012).In a recent case study,Liu et al.(2009)discovered that the MJO can lead to substantial reduction of the TCO over the Tibetan Plateau by shifting the upper-tropospheric subtropical jet to the north of the plateau.It is therefore interesting to examine the relative contribution of the tropopause height and upper tropospheric subtropical jet to the formation of MJO-related ozone anomalies,especially over the Tibetan Plateau and East Asia.

    In this study,we investigate the MJO-related ozone anomalies over the Tibetan Plateau and East Asia using both reanalysis data and satellite measurements.The results based on two different definitions of MJO phases are compared. Section 2 describes the data and methods.Section 3 presents the main results.Conclusions are summarized in section 4.

    2.Data and methods

    2.1.Reanalysis and satellite measurements

    In this study,the MJO-related circulation,tropopause pressure and ozone anomalies are investigated based on the daily mean European Centre for Medium Range Weather Forecasts Reanalysis Interim(ERA-Interim)data between 2005 and 2011(e.g.,Dee et al.,2011).The daily outgoing longwaveradiation(OLR)isderivedfromtheAdvancedVery High Resolution Radiometer instrument on board the National Oceanic and Atmospheric Administration’s(NOAA) polar orbiting spacecraft(Liebman and Smith,1996).

    The harmonized dataset of ozone pro files(HARMOZ, 2005–2011)is also used to study the variability of ozone over the Tibetan Plateau and East Asia.These data are from the MIPAS,the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY),and GOMOS instruments.The harmonized dataset has a common pressure grid in netCDF format(network common data form). There are 13 pressure levels(200,170,150,130,115,100, 90,80,70,50,40,30,and 20 hPa)between 200 and 20 hPa, which correspond to a vertical resolution of~1 km below 20 km and 2–3 km above 20 km(So fieva et al.,2013).The altitude ranges of the MIPAS,SCIAMACHY and GOMOS ozone products are 400–0.05 hPa,250–0.05 hPa,and 250–10?4hPa,respectively.

    The MIPAS instrument on board ENVISAT is a Fourier transform limb emission spectrometer,measuring the signatures of various trace gases(Fischer et al.,2008).We use a combination of the MIPAS version V5RO3220(2005–April 2011)and V5RO3221(April 2011–2012)ozone products.The vertical resolution of the MIPAS ozone profile is 3–5 km in the stratosphere with an estimated error of 1%–4%.

    The SCIAMACHY ozone pro files in HARMOZ are retrieved based on exploiting scattered radiances in the UV and visible ranges.The vertical resolution is 3–5 km with an estimated error of 10%–15%(Rahpoe et al.,2013).SCIAMACHY ozone pro files are usually of poor quality in cloudy conditions.In the harmonized dataset,ozone data at altitudes contaminated by clouds are filtered out to exclude poor quality in cloudy conditions(So fieva et al.,2013).So,the actual error of SCIAMACHY we use in our study is smaller than 10%–15%.

    GOMOSonboardENVISATisaself-calibratedmediumresolution stellar occultation spectrometer(Kyro¨la¨ et al., 2004;Bertaux et al.,2010).GOMOS ozone pro files generally cover a vertical range from 15 to 100 km,with a vertical resolution of 2–3 km and an estimated error of 0.5%–1%in the stratosphere(Tamminen et al.,2010).

    2.2.Methods

    Wheeler and Hendon(2004)developed the widely-usedReal-time Multivariate MJO(RMM)index,based on circulation and(OLR),to calculate the state of the MJO.Recent studies have developed additional MJO indices,such as a velocity potential MJO index,which replaces OLR with the 200 hPa velocity potential(Ventrice et al.,2013),and an MJO index based solely on the outgoing longwave index(OMI)(Kiladis et al.,2014).

    The daily RMM index(Wheeler and Hendon,2004), which determines the phases of MJO events,is obtained from the Australian Bureau of Meteorology website(http://cawcr. gov.au/staff/mwheeler/maproom/RMM/).Empirical orthogonal function(EOF)analysis decomposes the combined fields of meridionally averaged satellite-observed OLR and zonal winds at 850 and 200 hPa between 15°S–15°N.The time series of the two leading EOFs(RMM1 and RMM2) vary mostly on intraseasonal timescales(typically 30–60 days).The OMI index(Kiladis et al.,2014)is a straightforward application of an EOF of OLR.The daily values of the OMI PC1( first principal component)and OMI PC2(second principal component)are obtained from NOAA’s Earth System Research Laboratory(http://www.esrl.noaa.gov/psd/ mjo/mjoindex/).

    There are eight phases during a lifecycle of the MJO, which indicate the geographic location of the MJO-related convective anomalies.A comparison of MJO phases between RMM and OMI(Fig.1a)in boreal winter 2005–2011 shows a slight delay of MJO phases in RMM compared to OMI.Considering the strength of the MJO,only active MJO phases—amplitudes of MJO indices(RMM12+RMM22)1/2and(PC12+PC22)1/2greater than 1.0—are considered in this study(Fig.1b).

    To derive the MJO signal in stratospheric ozone(i.e., MJO-related ozone anomalies),the daily climatology has been firstly removed from the daily mean value.Then,a 20–100-day bandpass filter has been applied to the daily anomalies.The stratospheric column ozone anomalies are defined as the integrated value between 20 and 200 hPa.The bandpass filter substantially reduces the effective sample size.As a result,the regular Student’s t-test is no longer suitable for testing the significance of MJO-related composites(e.g.,Tian et al.,2011;Liu et al.,2014).In the present study,a twotailed Student’s t-test with reduced degrees of freedom is applied to determine the significance of the MJO-related composite.The effective sample number is estimated as

    where N′and N are the effective sample number and actual sample number,respectively;and r1and r2are the 2-day lag auto-correlations for RMM1(PC1)and RMM2(PC2),respectively.As a result,N′=0.13N based on the RMM index and N′=0.1N based on the OMI index,which are approximately consistent with previous studies(Tian et al.,2011;Liu et al.,2014).

    Given that the MJO is especially active over the equatorial Indian Ocean and western Pacific Ocean,we focus on theinfluence of the MJO on the subtropical stratospheric ozone over the Tibetan Plateau and East Asia.The Tibetan Plateau and East Asia are defined as the regions(25°–40°N,75°–105°E)and(25°–40°N,105°–135°E),respectively.The latitudinal location of the 200 hPa westerly jet over the Tibetan Plateau and East Asia are defined as the mean latitudes of the maximum 200 hPa westerly wind within 75°–105°E and 105°–135°E,respectively.

    3.Results

    3.1.Evolution of the MJO-related stratospheric column ozone anomalies

    To illustrate the influence of the MJO on stratospheric ozone,Fig.2 shows composites of the ERA-Interim MJO-related ozone anomalies(i.e.,a 20–100-day bandpass filter has been applied)of the stratospheric column ozone(SCO) during boreal winter(i.e.,December,January,and February). Limited by small sample sizes,some anomalies are not statistically significant.

    In RMM phase 1,there are positive SCO anomalies over the Tibetan Plateau,East Asia,and the western Pacific(Fig. 2a).In RMM phase 2(Fig.2b),the positive SCO anomalies over the Tibetan Plateau and East Asia become stronger and greater than+12 Dobson unit(DU).In addition,there are negative SCO anomalies to the west of the positive SCO anomalies.In RMM phase 3,as the negative OLR anomalies move eastward to the south of Bay of Bengal,the positive SCO anomalies propagate eastward with less strength, and the weak negative SCO anomalies over the west part of the Tibetan Plateau move eastward(Fig.2c).In RMM phase 4,the negative SCO anomalies become stronger and move to the Tibetan Plateau(Fig.2d)when OLR anomalies arrive at the Maritime Continent.As the OLR anomalies enhance over the Maritime Continent in RMM phase 5,the negative SCO anomalies are significantly enhanced(less than?14 DU)with a center that propagates eastward to over East Asia (Fig.2e).In RMM phases 6–8,the negative SCO anomalies quickly dissipate(Figs.2f–h)after the negative OLR anomalies arrive in the western equatorial Pacific.Meanwhile,as the positive OLR anomalies are active over the equatorial Indian Ocean,there are positive SCO anomalies developing over the Tibetan Plateau and East Asia(Figs.2f–h).The evolution of SCO anomalies based on OMI MJO phases is similar to that based on RMM MJO phases(compare right to left panels in Fig.2).One of the major differences is that the negative SCO anomalies are more persistent with a stronger amplitude over East Asia based on OMI than those based on RMM(compare Figs.2m and n to 2e and f),especially in phase 6.This can be attributed to different definitions of the MJO phase based on the two MJO indices.As a result of being ahead of phase based on OMI(Fig.1),some negative SCO anomalies in RMM phase 5 are shown in OMI phase 6,making stronger negative SCO anomalies in OMI phase 6 than in RMM phase 6(compare Fig.2n to 2f).

    3.2.Vertical structure of the MJO-related stratospheric ozone anomalies

    In this section,we examine the vertical structure of the MJO-related stratospheric ozone anomalies over the Tibetan Plateau and East Asia using reanalysis data and satellite ozone profiles.

    The number of ozone profiles from three satellite measurements between 2005 and 2011 over the Tibetan Plateau and East Asia are given in Table 1.SCIAMACHY has almost twice the total profiles of MIPAS,over both the Tibetan Plateau(22 005 cf.12 796)and East Asia(22 053 cf.12 273)regions.The numbers of GOMOS profiles are less than a quarter of those of MIPAS profiles,over both the Tibetan Plateau(1937 cf.12 796)and East Asia(1949 cf.12 273).As a result,the GOMOS dataset is the leastrepresentative dataset among the three sets of satellite measurements used in this study.Figure 3 shows the vertical structure of the MJO-related ozone anomalies based on ERAInterim reanalysis and different satellite measurements from MIPAS,SCIAMACHY,and GOMOS.The ozone anomalies from ERA-Interim reanalysis(Figs.3a,e,i and m)show that there are significant MJO-related ozone anomalies between 20 and 200 hPa,which is generally consistent with previous studies(e.g.,Li et al.,2012).This is also the reason for defining the ozone column between 20 and 200 hPa as the SCO in this study.The significant MJO-related ozone anomalies derived from MIPAS(Figs.3b,f,j and n)andSCIAMACHY(Figs.3c,g,k and o)measurements are generally consistent with those from the ERA-Interim reanalysis. However,the result from GOMOS measurement(Figs.3d,h, l and p)is different.This could be attributable to the scarcity of GOMOS ozone profiles(Table 1).The different observation principles and retrieval algorithms may also contribute to the discrepancies among the three sets of satellite measurements.As shown in Figs.3a–d and 3i–l,both reanalysis data and satellite measurements suggest that there are negative SCO anomalies over the Tibetan Plateau(East Asia)in RMMphases4–6(5–7),whiletherearepositiveSCOanomalies over the Tibetan Plateau(East Asia)in RMM phases 7–8 and 1–3(8 and 1–4).The one–phase delay between the results over the Tibetan Plateau and those over East Asia can be attributed to the eastward propagation of the MJO and its circulation anomalies.The minimal ozone anomalies over East Asia are shown in RMM phase 5 and OMI phase 6,respectively.This one-phase difference between RMM and OMI indices has been explained in section 3.1.It is also noted that there is vertical tilt with altitude in the ozone anomalies between 200 and 20 hPa over the Tibetan Plateau(Figs.3a–h).Compared to ERA-Interim reanalysis,the vertical tilt is clearer in the satellite measurements(compare Figs.3a to 3b–d).The vertical tilt structure has been reported in a previous study(Li et al.,2012).In contrast,no vertical tilt structure can be discerned over East Asia,in either ERA-Interim reanalysis or satellite measurements(Figs.3i–p).

    Table 1.Number of ozone profiles from the different instrument measurements(MIPAS,SCIAMACHY and GOMOS)over the Tibetan Plateau and East Asia for each MJO phase(according to the RMM and OMI indices)between 2005 and 2011.

    To test if the satellite sampling errors can contribute to the discrepancies among different satellite measurements and reanalysis shown in Fig.3,the MJO-related ozone anomalies from ERA-Interim reanalysis have been interpolated to the geophysical locations of ozone profiles from MIPAS(Figs. 4a,d,g and j),SCIAMACHY(Figs.4b,e,h and k)and GOMOS(Figs.4c,f,i and l)measurements.The differences among the subsampled ERA-Interim at different satellite locations(compare the three columns in Fig.4)indicate that the sampling error is responsible for the differences among satellite measurements shown in Fig.3.Despite the similarity of pressure–phase distribution,the strength of subsampled ERA-Interim ozone anomalies over the Tibetan Plateau at SCIAMACHY locations is slightly larger than those at MIPAS locations.In addition,the smaller anomalies at higher altitudes over the Tibetan Plateau at GOMOS locations based on RMM confirm the lesser representation of GOMOS measurements than the other two measurements because of less GOMOS samples.The correlations between satellite measurements and subsampled ERA-Interim are generally larger than the ones between satellite measurements and fully sampled ERA-Interim(not shown),suggesting that the influence of sampling error could be important.

    As shown in Fig.3,the result from GOMOS measurements is quite noisy and somewhat different to that from MIPAS and SCIAMACHY measurements.Compared to the original GOMOS measurements,the result of subsampled ERA-Interim at GOMOS locations,shown in Fig.4,is more similar to the results from MIPAS and SCIAMACHY measurements,shown in Fig.3.The improved result indicates that the observation principles and/or the retrieval algorithms of GOMOS measurements also play an important role in generating the discrepancies among satellite measurements and reanalysis.

    It is also noted that the amplitude of MJO-related ozone anomalies between 20 and 50 hPa is greater in ERA-Interim reanalysis than those in satellite measurements(compare the left column to the right three columns in Fig.3).Figure 4 suggests that the amplitudes of ozone anomalies between 20 and 50 hPa are comparable to those in ERA-Interim reanalysis after the interpolation.Therefore,the differences of ozone anomalies in 20–50 hPa between ERA-Interim reanalysis and satellite measurements shown in Fig.3 could be a systematic difference rather than caused by the satellite sampling errors.

    3.3.Attribution of the MJO-related ozone anomalies

    Previous studies have indicated that the wintertime stratospheric ozone anomalies over the Tibetan Plateau can be attributed to the tropopause height and upper tropospheric circulation pattern(i.e.,200 hPa subtropical westerly jet)(e.g., Liu et al.,2009,2010).To better understand the mechanism responsible for the negative stratospheric ozone anomalies over the Tibetan Plateau and East Asia,Fig.5 shows the MJO-related anomalies in tropopause pressure and 200 hPa horizontal winds during MJO phases 3–6.

    In RMM phase 3,when the MJO convective anomalies become active over the equatorial Indian Ocean,there is an anticyclonic anomaly center in the upper troposphere moving towards the Tibetan Plateau(Fig.5a).The anticyclonic anomaly is coupled with an uplifted tropopause(Fig.5a). As a result,the negative stratospheric ozone anomalies move towards the west part of the Tibetan Plateau(Fig.2c).As the MJO-related convective anomalies travel across the Maritime Continent in RMM phases 4–5,the coupled anticyclonic anomaly intensifies and moves eastward(Figs.5b–c), leading to enhanced negative stratospheric ozone anomalies over the Tibetan Plateau and East Asia(Figs.2d–e).After RMM phase 6(Fig.5d),as the MJO convective anomalies move towards the equatorial western Pacific Ocean,the MJO-related circulation anomalies weaken over the Tibetan Plateau and East Asia.

    The results based on the OMI index are quite similar (Figs.2i–p and 5e–h).The major difference is that the coupled anticyclonic circulation anomaly and the uplifted tropopause are stronger during MJO phases 5–6 over East Asia based on OMI index than those based on RMM index (compare Figs.5g and h to 5c and d).This difference is consistent with the difference of MJO-related SCO anomalies(compare Figs.2m and n to 2e and f).

    It is also noted that,in Fig.5,MJO-related anomalies in tropopause pressure based on RMM show persistent eastward propagation through phases 3–6(Figs.5a–d).In contrast,the anomalies based on OMI show westward propagation from phases 4 to phase 5(Figs.5f–g).This difference is amplified by contrasting the different dates based on RMM and OMI (i.e.,removing the samples that have the same definition of MJO phase based on RMM and OMI)(Fig.6).Therefore,the circulation-based MJO index(i.e.,RMM)can better characterize the eastward propagation of the MJO-related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere over subtropical East Asia.

    To explore the relative contributions of the tropopause height and upper-tropospheric subtropical jet to the MJO-related stratospheric ozone anomalies over the Tibetan Plateau and East Asia,the MJO-related anomalies in tropopause height and the latitudinal location of the 200 hPa subtropical jet are compared with the amplitude of the SCO anomalies for each MJO phase.Because of the regional averageusedinFig.7,theamplitudeofMJO-relatedSCOanomalies over the Tibetan Plateau(?8 to 10 DU)and East Asia (?12 to 7 DU)are smaller than those shown in Fig.2.Compared to over the Tibetan Plateau,the amplitudes of negative SCO anomalies over East Asia are generally larger,especially in satellite measurements(compare Figs.7a–h to Figs. 7i–p).Generally,the negative SCO anomalies are observed during RMM phases 4–6 and OMI phases 4–7 over the Tibetan Plateau.As the eastward propagation of the MJO,they are observed during phases 5–7 over East Asia.As a resultof being ahead of phase in OMI,the minimal SCO anomalies are shown in OMI phase 6,which are one phase ahead of minima in RMM(phase 5).However,the timing of the negative ozone anomalies is slightly different based on different satellitemeasurementsduetothesamplingerroranddifferent retrieval algorithms,as discussed in section 3.2.Over both regions,the peak of the negative SCO anomalies coincides well with that of the negative anomalies of tropopause height and that of the positive anomalies of the latitudinal location of the 200 hPa subtropical jet.The result suggests that the anomalies in both the tropopause height and westerly jet play important roles in creating the negative stratospheric ozone anomalies over both regions.However,compared to results based on RMM,the 200 hPa westerly jet anomalies are relatively smaller than the amplitudes of the tropopause anomaly based on OMI(Figs.7e–h and 7m–p).Therefore,the westerly jet in the upper troposphere may play a less important role in generating the negative stratospheric ozone anomalies based on the OMI index due to the fact that the OMI definition does not include the factor of circulation.

    4.Conclusions

    The MJO-related stratospheric ozone anomalies during boreal winter were analyzed based on satellite-borne ozone profiles from MIPAS,SCIAMACHY,and GOMOS measurements.All the satellite measurements suggest pronounced MJO-related ozone anomalies(greater than±10 DU)between 200 and 20 hPa over the Tibetan Plateau and East Asia. According to the circulation-based MJO index(RMM),there are negative stratospheric ozone anomalies over the Tibetan Plateau in MJO phases 4–6,when the MJO-related convective anomalies are active over the Maritime Continent.In MJO phases 5–7,as the MJO-related convective anomalies move from the Maritime Continent towards the equatorial western Pacific Ocean,there are negative stratospheric ozone anomalies over East Asia.The MJO-related ozone anomalies between 200 and 20 hPa show a vertical tilt structure over the Tibetan Plateau.However,no vertical tilt structure can be discerned over East Asia,in either ERA-Interim reanalysis or satellite measurements.

    TheMJO-relatedstratosphericozoneanomaliesarequantitatively different based on different satellite measurements. Further analysis suggests that the discrepancies among different satellite datasets can be mainly attributed to the different sampling errors,observation principles,and retrieval algorithms of the three satellite instruments.

    The occurrence of the MJO-related stratospheric ozone anomalies can be attributed to the uplift of the tropopause and the northward shift of the subtropical jet in the upper troposphere.Meteorological analysis suggests that the negative SCO anomalies over both the Tibetan Plateau and East Asia are dynamically associated with the uplifted tropopause and northward shifted subtropical jet.Compared to the results based on the RMM index,the upper tropospheric westerly jet may play a less important role in generating the stratospheric ozone anomalies,as shown by the results based on the OMI index.

    Because of the different definitions of the two MJO indices,there are pronounced differences between the results based on the circulation-based(RMM)and convection-based (OMI)indices over East Asia.Compared to the results based on the OMI index,the anomalies in tropopause pressure based on the RMM index propagate eastward with steady velocity,indicating that the circulation-based MJO index (RMM)can better characterize the eastward propagation of MJO-related anomalies in tropopause pressure,and thus the MJO influence on the atmospheric trace gases in the upper troposphere and lower stratosphere,especially over subtropical East Asia.

    Acknowledgements.This work was funded by the National Natural Science Foundation of China(Grant No.41105025), the Dragon 3 Programme(ID:10577)and the High Resolution Earth Observation Funds for Young Scientists(Grant No. GFZX04060103).ERA-Interim and NCEP/NCAR reanalysis data have been kindly provided by the European Centre for Medium-Range Weather Forecasts and National Centers for Environmental Prediction.

    REFERENCES

    Bertaux,J.L.,and Coauthors,2010:Global ozone monitoring by occultation of stars:An overview of GOMOS measurements on ENVISAT.Atmos.Chem.Phys.,10,12 091–12 148,doi: 10.5194/acp-10–12091-2010.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,doi:10.1002/ qj.828.

    Fischer,H.,and Coauthors,2008:MIPAS:An instrument for atmospheric and climate research.Atmos.Chem.Phys.,8, 2151–2188,doi:10.5194/acp-8–2151-2008.

    Garfinkel,C.I.,S.B.Feldstein,D.W.Waugh,C.Yoo,and S. Lee,2012:Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation.Geophys. Res.Lett.,39,L18807,doi:10.1029/2012GL053144.

    Gao,X.H.,and J.L.Stanford,1990:Low-frequency oscillations in total ozone measurements.J.Geophys.Res.,95,13 797–13 806.

    Kiladis,G.N.,J.Dias,K.H.Straub,M.C.Wheeler,S.N.Tulich, K.Kikuchi,K.M.Weickmann,and M.J.Ventrice,2014:A comparisonofOLRandcirculation-basedindicesfortracking the MJO.Mon.Wea.Rev.,142,1697–1715.doi:http://dx.doi. org/10.1175/MWR-D-13-00301.1.

    Kyr¨ol¨a,E.,and Coauthors,2004:GOMOS on Envisat:an overview.Advances in Space Research,33,1020–1028.

    Lau,W.K.-M.,and D.E.Waliser,2012:Intraseasonal Variability in the Atmosphere-ocean Climate System.2nd ed.Springer, Heidelberg,Germany,581 pp.

    Li,K.-F.,B.Tian,D.E.Waliser,M.J.Schwartz,J.L.Neu,J.R. Worden,and Y.L.Yung,2012:Vertical structure of MJO-related subtropical ozone variations from MLS,TES,and SHADOZ data.Atmos.Chem.Phys.,12,425–436.

    Liebman,B.,and C.A.Smith,1996:Description of a com-plete(interpolated)outgoinglongwaveradiationdataset.Bull. Amer.Meteor.Soc.,77,1275–1277.

    Liu,C.X.,Y.Liu,Z.N.Cai,S.T.Gao,D.R.L¨u,and E.Kyr¨ol¨a, 2009:A Madden-Julian Oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric“l(fā)ow-ozone pockets”.Geophys. Res.Lett.,36,L15830,doi:10.1029/2009GL039025.

    Liu,C.X.,Y.Liu,Z.N.Cai,S.T.Gao,J.C.Bian,X.Liu, and K.Chance,2010:Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001.J.Geophys.Res.,115,D18311,doi: 10.1029/2009JD013130.

    Liu,C.X.,B.J.Tian,K.-F.Li,G.L.Manney,N.J.Liversey, Y.L.Yung,and D.E.Waliser,2014:Northern Hemisphere mid-wintervortex-displacementandvortex-splitstratospheric sudden warmings:Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation.J.Geophys.Res.,119, 12 599–12 620,doi:10.1002/2014JD021876.

    Madden,R.A.,and P.R.Julian,1971:Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific.J.Atmos. Sci.,28,702–708.

    Madden,R.A.,and P.R.Julian,1972:Description of global-scale circulation cells in the tropics with a 40–50 day period.J.Atmos.Sci.,29,1109–1123.

    Rahpoe,N.,C.von Savigny,M.Weber,A.V.Rozanov,H.Bovensmann,and J.P.Burrows,2013:Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model.Atmospheric Measurement Techniques,6, 2825–2837,doi:10.5194/amt-6-2825-2013.

    Sabutis,J.L.,J.L.Stanford,and K.P.Bowman,1987:Evidence for 35-50 day low frequency oscillations in total ozone mapping spectrometer data.Geophys.Res.Lett.,14,945–947.

    Sofieva,V.F.,and Coauthors,2013:Harmonized dataset of ozone profiles from satellite limb and occultation measurements.Earth System Science Data,5,349–363,doi:10.5194/essd-5-349-2013.

    Tamminen,J.,and Coauthors,2010:GOMOS data characterisation and error estimation.Atmos.Chem.Phys.,10,9505–9519,doi:10.5194/acp-10–9505-2010.

    Tian,B.J.,Y.L.Yung,D.E.Waliser,T.Tyranowski,L.Kuai, E.J.Fetzer,and F.W.Irion,2007:Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation.Geophys.Res.Lett.,34,L08704, doi:10.1029/2007GL029451.

    Tian,B.J.,D.E.Waliser,R.A.Kahn,and S.Wong,2011:Modulation of Atlantic aerosols by the Madden-Julian Oscillation.J.Geophys.Res.,116,D15108,doi:10.1029/2010JD015201.

    Tian,B.,and D.E.Waliser,2012:Chemical and biological impacts.Intraseasonal Variability in the Atmosphere-Ocean Climate System,2nd ed.,W.K.M.Lau and D.E.Waliser,Eds., Springer-Verlag,Berlin,Heidelberg,569–585.

    Ventrice,M.J.,M.C.Wheeler,H.H.Hendon,C.J.Schreck III,C. D.Thorncroft,andG.N.Kiladis,2013:Amodifiedmultivariate Madden-Julian Oscillation index using velocity potential.Mon.Wea.Rev.,141,4197–4210,doi:10.1175/MWR-D-12–00327.1.

    Waliser,D.E.,2012:Predictability and forecasting.Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed.,W.K.M.Lau and D.E.Waliser,Eds.,Springer-Verlag,Berlin,Heidelberg,433–476.

    Wheeler,M.C.,and H.H.Hendon,2004:An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon.Wea.Rev.,132,1917–1932.

    Zhang,C.D.,2005:Madden-JulianOscillation.Rev.Geophys.,43, RG2003,doi:10.1029/2004RG000158.

    Zhang,C.D.,2013:Madden-Julian Oscillation:Bridging weather and climate.Bull.Amer.Meteor.Soc.,94,1849–1870.

    :Zhang,Y.L.,Y.Liu,C.X.Liu,and V.F.Sofieva,2015:Satellite measurements of the Madden–Julian Oscillation in wintertime stratospheric ozone over the Tibetan Plateau and East Asia.Adv.Atmos.Sci.,32(11),1481–1492,

    10.1007/s00376-015-5005-y.

    8 January 2015;revised 18 May 2015;accepted 27 May 2015)

    ?Corresponding author:LIU Chuanxi

    Email:lcx@mail.iap.ac.cn

    晚上一个人看的免费电影| 中文字幕免费在线视频6| 亚洲三级黄色毛片| 中文亚洲av片在线观看爽| 日产精品乱码卡一卡2卡三| 我的女老师完整版在线观看| 六月丁香七月| 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| 亚洲av成人av| 日本一二三区视频观看| 国产高清三级在线| 全区人妻精品视频| 国产精品久久久久久精品电影| 日日干狠狠操夜夜爽| 夜夜夜夜夜久久久久| 成人美女网站在线观看视频| 亚洲成人久久性| 爱豆传媒免费全集在线观看| 在现免费观看毛片| 大又大粗又爽又黄少妇毛片口| 国产高清不卡午夜福利| 国产成年人精品一区二区| av卡一久久| 亚洲欧美精品综合久久99| av在线亚洲专区| 神马国产精品三级电影在线观看| 淫秽高清视频在线观看| 欧美丝袜亚洲另类| 日韩国内少妇激情av| 最好的美女福利视频网| 91在线精品国自产拍蜜月| 啦啦啦啦在线视频资源| 在线国产一区二区在线| 国产真实伦视频高清在线观看| a级毛片a级免费在线| 简卡轻食公司| 黄色欧美视频在线观看| 亚洲精品亚洲一区二区| 免费观看人在逋| 国产精品一二三区在线看| 看黄色毛片网站| 在线观看av片永久免费下载| 久久久久久大精品| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看| 欧美+亚洲+日韩+国产| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 成人欧美大片| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产激情偷乱视频一区二区| 亚洲精品自拍成人| 免费看美女性在线毛片视频| 国产91av在线免费观看| 精品熟女少妇av免费看| 国产亚洲91精品色在线| 麻豆国产av国片精品| 晚上一个人看的免费电影| 在线播放国产精品三级| av在线老鸭窝| 亚洲av电影不卡..在线观看| 高清毛片免费看| 亚洲不卡免费看| 中文在线观看免费www的网站| 久久久久免费精品人妻一区二区| av福利片在线观看| 亚洲中文字幕一区二区三区有码在线看| 中文字幕av成人在线电影| 日本色播在线视频| 日日撸夜夜添| 成人特级av手机在线观看| 久久综合国产亚洲精品| 男女视频在线观看网站免费| 久久久久网色| 啦啦啦啦在线视频资源| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 国产精品久久久久久av不卡| 久久人妻av系列| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 午夜精品国产一区二区电影 | 日日摸夜夜添夜夜爱| 国产真实乱freesex| av黄色大香蕉| 日韩欧美在线乱码| 色哟哟哟哟哟哟| eeuss影院久久| 综合色av麻豆| 久久久国产成人免费| 欧美成人精品欧美一级黄| 中文字幕久久专区| 亚洲电影在线观看av| 亚洲精品亚洲一区二区| 亚洲乱码一区二区免费版| 91av网一区二区| 国产蜜桃级精品一区二区三区| 久久久久久久久久黄片| 听说在线观看完整版免费高清| 99久久无色码亚洲精品果冻| 日本欧美国产在线视频| 女人被狂操c到高潮| 久久久a久久爽久久v久久| 精品少妇黑人巨大在线播放 | 在线观看av片永久免费下载| 九色成人免费人妻av| 午夜激情欧美在线| 岛国毛片在线播放| 国产精品人妻久久久影院| 成人性生交大片免费视频hd| 国产精品人妻久久久久久| 美女大奶头视频| 少妇猛男粗大的猛烈进出视频 | 男女边吃奶边做爰视频| 成人鲁丝片一二三区免费| www.av在线官网国产| 久久婷婷人人爽人人干人人爱| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 欧美日韩在线观看h| 欧美在线一区亚洲| 久久久久久久亚洲中文字幕| 久久99精品国语久久久| 岛国在线免费视频观看| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久亚洲av鲁大| 女人十人毛片免费观看3o分钟| 久久精品国产鲁丝片午夜精品| 精品熟女少妇av免费看| 观看美女的网站| 国产91av在线免费观看| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美| 久久精品国产亚洲网站| 免费无遮挡裸体视频| 99热只有精品国产| 啦啦啦啦在线视频资源| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 国产日本99.免费观看| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 观看美女的网站| 国产乱人偷精品视频| 亚洲成人久久性| 久久综合国产亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 嫩草影院精品99| 中文字幕制服av| 熟女电影av网| or卡值多少钱| 国产又黄又爽又无遮挡在线| 亚洲精品久久久久久婷婷小说 | 麻豆国产av国片精品| 欧美日本视频| 日韩三级伦理在线观看| 国产v大片淫在线免费观看| 欧美区成人在线视频| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| 精品久久久久久久久久久久久| 国产一区二区激情短视频| 国产黄a三级三级三级人| 亚洲av熟女| 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| 男人舔奶头视频| 一级毛片电影观看 | 久久精品91蜜桃| 免费看a级黄色片| 精品午夜福利在线看| 69人妻影院| 麻豆精品久久久久久蜜桃| 亚洲人成网站高清观看| 一个人看视频在线观看www免费| 日韩一本色道免费dvd| 在线免费观看的www视频| 久久6这里有精品| 美女高潮的动态| 麻豆一二三区av精品| 亚洲第一区二区三区不卡| 亚洲精品成人久久久久久| 成人午夜高清在线视频| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 国产综合懂色| 少妇丰满av| 麻豆国产av国片精品| 精品熟女少妇av免费看| 免费人成视频x8x8入口观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩av片在线观看| 国产成人aa在线观看| 少妇高潮的动态图| 最近视频中文字幕2019在线8| 尤物成人国产欧美一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 亚洲av.av天堂| 久久99热6这里只有精品| 99视频精品全部免费 在线| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 内射极品少妇av片p| 亚洲自偷自拍三级| 晚上一个人看的免费电影| 男的添女的下面高潮视频| 99国产精品一区二区蜜桃av| 成人欧美大片| 国产成年人精品一区二区| 91精品国产九色| 国产高潮美女av| 99久久无色码亚洲精品果冻| 国产精品人妻久久久久久| 国产精品一及| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 精品久久久久久久人妻蜜臀av| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 一夜夜www| 又黄又爽又刺激的免费视频.| 黄片无遮挡物在线观看| 午夜爱爱视频在线播放| 成年女人看的毛片在线观看| 久久午夜福利片| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| 日本在线视频免费播放| 婷婷色综合大香蕉| 国产精品一二三区在线看| 国产午夜福利久久久久久| 久久6这里有精品| 少妇的逼水好多| 亚洲av.av天堂| 亚洲精品456在线播放app| 一区二区三区高清视频在线| 国内精品宾馆在线| 国产黄片美女视频| av视频在线观看入口| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 成年av动漫网址| 99国产极品粉嫩在线观看| 国内精品宾馆在线| 国产精品久久久久久久电影| 嫩草影院入口| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 国产在线男女| 亚洲内射少妇av| 国产乱人偷精品视频| 97人妻精品一区二区三区麻豆| 国产精品一区www在线观看| 精品不卡国产一区二区三区| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 九九热线精品视视频播放| av在线老鸭窝| 丰满人妻一区二区三区视频av| 99久国产av精品| 日日啪夜夜撸| 一级黄片播放器| 亚洲一区二区三区色噜噜| 亚洲高清免费不卡视频| 99久久九九国产精品国产免费| 中文字幕熟女人妻在线| 国产在线男女| 97在线视频观看| 99热这里只有是精品50| a级毛色黄片| 国产伦精品一区二区三区四那| 乱码一卡2卡4卡精品| 麻豆一二三区av精品| 十八禁国产超污无遮挡网站| 女的被弄到高潮叫床怎么办| 国产单亲对白刺激| 久久99热6这里只有精品| 女的被弄到高潮叫床怎么办| 久久久精品大字幕| 人妻制服诱惑在线中文字幕| 91久久精品电影网| 黄片wwwwww| 亚洲精品色激情综合| 嫩草影院精品99| 激情 狠狠 欧美| 日日干狠狠操夜夜爽| 国产精品麻豆人妻色哟哟久久 | 欧美又色又爽又黄视频| 久99久视频精品免费| av天堂中文字幕网| 夜夜爽天天搞| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 免费观看的影片在线观看| 看十八女毛片水多多多| 亚洲七黄色美女视频| 欧美高清成人免费视频www| 深夜精品福利| av在线老鸭窝| 色吧在线观看| 一本精品99久久精品77| 色综合亚洲欧美另类图片| 欧美zozozo另类| 69av精品久久久久久| 亚洲欧美日韩无卡精品| 欧美又色又爽又黄视频| 亚洲乱码一区二区免费版| 国产av在哪里看| 搡女人真爽免费视频火全软件| 久久久成人免费电影| 亚洲国产欧美在线一区| av视频在线观看入口| 国产麻豆成人av免费视频| 真实男女啪啪啪动态图| 99久久九九国产精品国产免费| 午夜福利在线观看免费完整高清在 | 午夜视频国产福利| 日本-黄色视频高清免费观看| 少妇丰满av| 成人午夜高清在线视频| 色视频www国产| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| av.在线天堂| 伦精品一区二区三区| 全区人妻精品视频| 色吧在线观看| 毛片一级片免费看久久久久| 老女人水多毛片| 国产一级毛片七仙女欲春2| 免费观看a级毛片全部| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 麻豆成人午夜福利视频| 女的被弄到高潮叫床怎么办| 日本爱情动作片www.在线观看| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 国产精品久久久久久av不卡| 久久人妻av系列| 色哟哟哟哟哟哟| 国产 一区精品| 成年女人永久免费观看视频| 97热精品久久久久久| 久99久视频精品免费| 老司机福利观看| 久久精品国产亚洲av天美| 国产大屁股一区二区在线视频| 亚洲第一电影网av| 国产精品野战在线观看| 日韩国内少妇激情av| 亚洲第一区二区三区不卡| 99久久久亚洲精品蜜臀av| 身体一侧抽搐| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久久久久婷婷小说 | 精品久久久久久久末码| 精品一区二区三区视频在线| 99久国产av精品| 人人妻人人看人人澡| 小说图片视频综合网站| 两个人的视频大全免费| 亚洲成人精品中文字幕电影| 搡女人真爽免费视频火全软件| 亚洲自偷自拍三级| 亚洲无线在线观看| 69人妻影院| videossex国产| 国产综合懂色| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看在线日韩| 婷婷色综合大香蕉| 精品久久久久久久久av| videossex国产| 久久精品国产亚洲av天美| 天堂中文最新版在线下载 | 亚洲第一电影网av| 国产精品一区二区在线观看99 | 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| 久久久久久大精品| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 久久久久国产网址| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区亚洲| 午夜激情福利司机影院| 国产精品野战在线观看| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 麻豆乱淫一区二区| 亚洲三级黄色毛片| 欧美精品一区二区大全| 欧美精品国产亚洲| 18禁在线无遮挡免费观看视频| 成年免费大片在线观看| 免费av观看视频| 亚洲av二区三区四区| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 国产精品伦人一区二区| 国产 一区 欧美 日韩| 男的添女的下面高潮视频| 久久精品国产自在天天线| 亚洲无线在线观看| 日本爱情动作片www.在线观看| 日韩一区二区三区影片| 赤兔流量卡办理| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 免费av毛片视频| 亚洲无线在线观看| 亚洲精品456在线播放app| 小说图片视频综合网站| 99热网站在线观看| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 亚洲欧美成人精品一区二区| 亚洲七黄色美女视频| 亚洲av二区三区四区| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 欧美丝袜亚洲另类| 亚洲乱码一区二区免费版| 中文字幕制服av| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 一个人观看的视频www高清免费观看| 一区二区三区免费毛片| 色视频www国产| 高清午夜精品一区二区三区 | 别揉我奶头 嗯啊视频| 国产精品一区二区性色av| 在线观看美女被高潮喷水网站| 国产在视频线在精品| 亚洲av中文av极速乱| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区视频9| 国产真实乱freesex| 伦理电影大哥的女人| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品久久久久久婷婷小说 | 日本一二三区视频观看| kizo精华| av免费在线看不卡| 美女 人体艺术 gogo| 国产精品.久久久| 欧美精品国产亚洲| 美女cb高潮喷水在线观看| 18+在线观看网站| 亚洲美女视频黄频| 久99久视频精品免费| 中文资源天堂在线| 91麻豆精品激情在线观看国产| 人妻少妇偷人精品九色| 免费看光身美女| 床上黄色一级片| 亚洲久久久久久中文字幕| 国产乱人视频| 一边摸一边抽搐一进一小说| 尾随美女入室| 长腿黑丝高跟| 一卡2卡三卡四卡精品乱码亚洲| 久久精品人妻少妇| 午夜免费激情av| 亚洲欧美日韩东京热| 成人漫画全彩无遮挡| 成人一区二区视频在线观看| 中文欧美无线码| 国产精品久久视频播放| 一级毛片aaaaaa免费看小| 亚洲精品日韩在线中文字幕 | 亚洲精华国产精华液的使用体验 | 国产精品久久电影中文字幕| 哪个播放器可以免费观看大片| 国产视频内射| 日产精品乱码卡一卡2卡三| 99热全是精品| 午夜福利在线在线| 99热6这里只有精品| 午夜福利高清视频| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 国产黄色视频一区二区在线观看 | 亚洲精品成人久久久久久| 女的被弄到高潮叫床怎么办| 少妇被粗大猛烈的视频| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 别揉我奶头 嗯啊视频| 国产精品,欧美在线| 国产成人精品一,二区 | 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| 免费大片18禁| 精品少妇黑人巨大在线播放 | 国产精品精品国产色婷婷| 特级一级黄色大片| 亚洲最大成人手机在线| av天堂在线播放| 国产av一区在线观看免费| 亚洲av成人精品一区久久| 亚洲av一区综合| 你懂的网址亚洲精品在线观看 | 免费av观看视频| 午夜福利在线观看吧| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频| 狂野欧美激情性xxxx在线观看| 三级男女做爰猛烈吃奶摸视频| 美女 人体艺术 gogo| www.色视频.com| 看黄色毛片网站| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 直男gayav资源| 中文字幕熟女人妻在线| 夫妻性生交免费视频一级片| 51国产日韩欧美| 国产成人91sexporn| 亚洲精华国产精华液的使用体验 | 久久久午夜欧美精品| 日韩欧美国产在线观看| 深爱激情五月婷婷| 在线a可以看的网站| 国产亚洲欧美98| 黑人高潮一二区| 日韩国内少妇激情av| 亚洲国产色片| 亚洲欧美成人综合另类久久久 | 日本五十路高清| 国产又黄又爽又无遮挡在线| 国产黄色小视频在线观看| 麻豆久久精品国产亚洲av| 亚洲av不卡在线观看| 亚洲内射少妇av| 亚洲av二区三区四区| 日韩一区二区三区影片| 亚洲精品色激情综合| 九草在线视频观看| 亚洲成人久久爱视频| 国产成人91sexporn| 国产午夜精品论理片| 午夜精品在线福利| 精华霜和精华液先用哪个| 联通29元200g的流量卡| 男女视频在线观看网站免费| 日本五十路高清| 久久久精品大字幕| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 国产精品永久免费网站| 欧美一区二区亚洲| 成人毛片60女人毛片免费| 亚洲久久久久久中文字幕| 我要看日韩黄色一级片| 国内精品美女久久久久久| 内地一区二区视频在线| 成人漫画全彩无遮挡| 麻豆久久精品国产亚洲av| 亚洲不卡免费看| 最近视频中文字幕2019在线8| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 狂野欧美激情性xxxx在线观看| 免费观看在线日韩| 99热这里只有精品一区| or卡值多少钱| 日本-黄色视频高清免费观看| 精品99又大又爽又粗少妇毛片| 最近视频中文字幕2019在线8| 寂寞人妻少妇视频99o| 亚洲美女搞黄在线观看| 久久久精品欧美日韩精品| .国产精品久久| 国产一级毛片在线| 成人特级av手机在线观看| 国产午夜福利久久久久久| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| 我的老师免费观看完整版|