• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bred Vectors of the Lorenz63 System

    2015-09-04 02:49:05YingZHANGKayoIDEandEugeniaKALNAY
    Advances in Atmospheric Sciences 2015年11期

    Ying ZHANG,Kayo IDE,and Eugenia KALNAY

    Department of Atmospheric and Oceanic Science,University of Maryland,College Park,Maryland,USA

    Bred Vectors of the Lorenz63 System

    Ying ZHANG?,Kayo IDE,and Eugenia KALNAY

    Department of Atmospheric and Oceanic Science,University of Maryland,College Park,Maryland,USA

    The breeding method has been widely used in studies of data assimilation,predictability and instabilities.The bred vectors(BVs),which are the nonlinear difference between the control and perturbed runs,represent the time-evolving rapidly growing errors in dynamic systems.The Lorenz(1963)model(hereafter Lorenz63 model)has chaotic dynamics similar to weather and climate.This study investigates the features of BVs of the Lorenz63 model and its impact on regime prediction of the Lorenz63 model.The results show that the Lorenz63 model has two different BVs for each breeding cycle,and the two BVs approach being identical when growth rate is high.The duration of the current and next regime is associated with the relative directions between the BV with high growth rate and the model trajectory.

    bred vectors,chaos,Lorenz63 model,regime prediction

    1.Introduction

    The breeding method proposed by Toth and Kalnay (1993,1997)is designed to estimate dynamic forecast errors and produceperturbationsfor ensemble forecasting.The steps of breeding are adding a small random initial perturbation to a control run,integrating forward,and periodically rescaling the difference between the perturbed and control runs to the size of initial perturbation at the end of each f xed rescaling interval.The difference between the perturbed and control runs is called the bred vector(BV)and the process during a f xed rescaling interval is called a breeding cycle.

    The breeding method generates time-evolving perturbations in directions where errors have grown fast.It is easy to apply and computationally inexpensive,and thus it has been used not only in data assimilation(e.g.,Kalnay,2003; Yang et al.,2006;Yang et al.,2009)but also in other applications.For example,it has been used for producing initial perturbations for operational ensemble forecasts at the National Centers for Environmental Prediction(NCEP)since December 1992(Toth and Kalnay,1997).Besides this,it was employed to study the“error of the day”(e.g.,Kalnay and Toth,1994;Kalnay,2003),to investigate the structure of background error covariance(Corazza et al.,2003;Yang et al.,2009),and to discover the intrinsic predictability and instabilities of chaotic systems,such as the atmosphere of Mars(Newman et al.,2003;Greybush et al.,2013),baroclinic rotating annulus(Young and Read,2008),and global upper ocean(Hoffman et al.,2009).

    The Lorenz(1963)model(hereafter Lorenz63 model) was designed to represent forced dissipative hydrodynamic f ow.The equations of the model are

    where the original valuesa=10,b=8/3 andr=28 are chosen for chaotic behavior(Lorenz,1963).The trajectory of the Lorenz solutions in three-dimensional(3D)phase space exhibits a“butterf y”shape and the two wings of the butterf y attractor are regarded as“warm”(x>0 andy>0)and“cold”(x<0 andy<0)regimes,respectively.Transitions between the two regimes take place aperiodically.The solutions of the equations are also nonperiodic and sensitive to small changes in initial conditions.Hence,due to its chaotic dynamics,similar to those of weather and climate,this model has been widely used for predictability studies in meteorology.

    Evans et al.(2004)studied the possible prediction of regime transitions in the Lorenz63 model using breeding and foundtwo rules:(1)regimetransitions happenedafter the appearanceof highBV growthrate[indicatedby the red stars in Fig.4 of Evans et al.(2004)],and(2)the duration of the new regime was proportionalto the number of red stars[as shown in Fig.5 of Evans et al.(2004)].This study was carried out on the basis of one BV for each breeding cycle.However,is it possible that this 3D model has more than one BV for eachbreeding cycle?Moreover,if so,do they perform differently in predicting regime transitions?These questions have not been previously studied.

    The goal of the present study is to examine whether the Lorenz63 system has more than one BV for each breeding cycle and how those BVs affect the prediction of regime transitions.The remainder of the paper is organized as follows: The experiment design is described in section 2.In section 3, we examine whether the Lorenz63 system has more than one BV for each breeding cycle and the impacts of those BVs on predicting regime transitions.Finally,the results are summarized in section 4.

    2.Experiment design

    There are three key parameters in breeding:the rescaling interval,size of initial perturbation,and direction of initial perturbation.In the nonlinear breeding method,the perturbation initially grows linearly and then becomes saturated. Hence,for a short rescaling interval and/or small initial perturbation,the linear growth dominates;whereas,for a long rescaling interval and/or large initial perturbation,the linear growth of the perturbation will saturate and then nonlinear growth will dominate.

    The Lyapunov exponents(LEs),which quantitatively estimate the stability propertiesof a dynamic system,are 0.906, 0,and?14.572 for the Lorenz63 system under the given parameters(Wolf et al.,1985;Wolfe and Samelson,2007). The f rst positive LE is associated with the leading Lyapunov vector and the second LE with the second Lyapunov vector. When an instability exists in a system,all initialperturbations willconvergeto the fastest-growing leading Lyapunov vector. The Lyapunov vectors with f nite amplitude in f nite time,i.e. localLyapunov vectors(LLV),could be extended nonlinearly by severalmethods,such as BVs(Kalnay and Toth,1996)and the nonlinear local Lyapunov vectors(Feng et al.,2014)oriented from the nonlinearlocal Lyapunov exponent(Ding and Li,2007;Li and Wang,2008;Li and Ding,2011).

    In orderto check how many BVs the Lorenz63 model has for each breeding cycle,a series of sensitivity experiments has been designed by randomly changing the direction of initial perturbation but f xing the rescaling interval to eight time steps(d t=0.01 is one time step)and the size of the initial perturbation to 1 for primary focus.If there is only one BV for each breeding cycle,i.e.,one leading LLV(Kalnay and Toth,1996;Kalnay,2003),no matter which direction you add to the initial perturbation,after a f nite period,all the perturbations will converge to the direction of the leading LLV or,equivalently,its opposite direction.Otherwise,perturbations might not merge into just one direction.The direction of the initial perturbation has been altered 14 times,so as to cover most of the 3D space.The model has been integrated for a long time for all the 14 experiments,after spinning up hundreds of time steps from its initial position.Two series of similar sensitivity experiments with the same 14 initial perturbations but shorter rescaling intervals(four and two time steps)and smaller amplitudes of initial perturbations(0.5 and 0.1)have also been carried out to represent more linear cases, in which the BVs have less nonlinear growth than in the primary experiments.The results reported below are from the primary experiments unless otherwise stated.

    3.Results

    3.1.Case of two BVs for each breeding cycle existing in the Lorenz63 system

    The BV growth rates of the 14 experiments merge into two lines after integrating several hundred time steps:ten of them merge into one line and the other four merge into the other line.Hence,14 BVs for each breeding cycle in these experimentsconvergetowards two BVs,denoted by BV1 and BV2 respectively.All BV1s and BV2s in the f guresare composited of the ten BV1 experiments and of the four BV2 experiments,respectively.

    The 3D attractors with both BV1 and BV2 colored with their growth rates are shown in Figs.1a and b.The BV for every breeding cycle(i.e.,every eight time steps)is indicated by a line segment originating from a f lled colored circle on the trajectory and its direction is from the f lled colored circle on the trajectory to the unf lled black one.The arrows denote the moving direction of the trajectory.One difference between the two f gures is obvious;that is,for each breeding cycle,the BV1 points to different directions from the corresponding BV2 and they tend to be opposite when the colored head is red(growth rate>6.4),even on the same trajectory. To clearly present this difference,a few BV1s(denoted by thick line segments)at the bottom of the warm regime are added in Fig.1b.Hence,it is suggested that BV1 and BV2 are distinct;otherwise,they would point to exactly the same or opposite directions.

    In order to further verify if BV1 and BV2 for each breeding cycle really are two different BVs,the exact angle between them during the whole integration period is calculated, as shown in Fig.2a.None of the angles(colored with the growth rate of BV1)exactly equals 0°or 180°,even for more linear cases(shorter rescaling interval and smaller initial perturbation).Overall,the angle evolves closer to 180°for more linear cases.Hence,for each breeding cycle,BV1 and BV2 are not identical,but are two differentvectors.In addition,almost all the red stars occur nearest to 180°.This proves that BV1 and BV2 with high growth rates(>6.4)tend to head in opposite directions in Fig.1,i.e.,they tend to become identical(exceptforthe sign),as exemplif ed by the black rectangle in Fig.1b.

    Furthermore,examining the ensemble dimension(i.e.,E-dimension)of the Lorenz63 model is another way to prove that BV1 and BV2 are different.The E-dimension,which was introduced by Patil et al.(2001)and further examined by Oczkowski et al.(2005),gives the effective number of dominant directions in the subspace spanned by an M-member set of perturbations at a given time:where smis the m-th singular value of the matrix constructed by the M local bred vectors in descending order.The E=1 case indicates the perturbations are conf ned to a single direction;while the E=M case means the uncertainty is evenly distributed in M directions.The E-dimension of the Lorenz63 system using the initial perturbations selected in the 14 experiments is colored with the BV growth rate averaged for the 14 experiments and presented in Fig.2b.The E-dimension is less than 2 but greater than 1 during the entire integration period,and it is closer to 1 for the more linear cases in which the rescaling interval is four or two time steps and the initial amplitude is 0.5 or 0.1.This conf rms that the BVs in the Lorenz63 model have converged into two dominant directions and they approach one direction in more linear cases.Moreover,nearly all red stars occur when the E-dimension approaches 1.This again verif es that BV1 and BV2 for each breeding cycle in the 14 experiments tend to become identical when growth rates exceed 6.4.After high growthrateoccurs,theangledoesnotsuddenlydropfaraway from 180°,but graduallydecreases,as does the E-dimension.

    Figure 2c,which is a scatter plot of the E-dimension and the angle between BV1 and BV2,shows an apparent parabolic pattern:the E-dimension is closest to 2 when BV1 is perpendicular to BV2(angle=90°),and it is closest to 1 when BV1 is nearly opposite/parallel to BV2(indicated by the red rectangular box).This implies that BV1 and BV2 approach being identical not only during the high growth rate period,but also afterwards.The approximate parabolic pattern is broken in more linear cases,since BV1 and BV2 become more identical and the scatters are concentrated around the red rectangular box in Fig.2c.Hence,the nonlinear growth of BVs is necessary to allow BVs to grow in more than one direction.

    When comparing the evolutions of the angle and E-dimension with that of x,which denotes regime duration and transitions,it seems that the angle drops away from 180°and the E-dimensionstays near 2 when the regimelasts for a long time;while the angle stays near 180°and the E-dimension is close to 1 when the duration of the regime is short.

    Therefore,it can be concluded that the Lorenz63 system has two BVs for each breeding cycle and that the two BVs tend to become identical(i.e.,the angle between BV1 and BV2 is close to 180°)when they have high growth rate.This is complementary to the f ndings of Norwood et al.(2013), that the leading Lyapunov vector of the Lorenz63 system, LV1,grows fastest globally;the second Lyapunov vector, LV2,does not grow globally but usually grows faster than LV1 locally.BVs,which are associated with the LLV,grow towardsthefastest growinglocalLyapunovvector.Normally, the BV is parallel to the LV1,but when the LV2 grows faster than LV1 locally,the BV becomes parallel to the LV2.

    3.2.Impacts of BV1 and BV2 on predicting regime transitions

    Evans et al.(2004)discovered the fast-growing BV is a predictor for regime transitions of the Lorenz63 model.The above analysis has indicated that the Lorenz63 model has two BVs for each breeding cycle and,thus,the impacts of this f nding on predicting regime duration and transitions are worth exploring.

    Regime transitions include transitions from warm to cold regime and those from cold to warm regime.However,if these two types of transitions are not separated as in Evans et al.(2004),there is no obviousdistinction between the predictions of the two BVs with high growth rate for each breeding cycle.Actually,in Fig.1,BV1s with high growth rate(indicated by red dots)are dragged by the trajectory in the warm regime but forward along the trajectory in the cold regime; while the situation is opposite for BV2.Hence,the two BVs mightperformdifferentlyintermsofpredictionwhenthetwo types of transitions are considered separately.

    Figure 3 shows the predictionof transitions from warm to cold regime and from cold to warm regime by BV1 and BV2. For the same numberof red stars(BVs with highgrowthrate) in warm regimes,the next cold regime predicted by BV1 in the warm regime(opposite to the direction of the model trajectory)will last for a shorter time than that by BV2 in the warm regime(in the same direction as the model trajectory). Conversely,for the same number of red stars in cold regimes, the next warm regime predicted by BV1 in the cold regime (in the same direction as the model trajectory)will last for a longer time than that by BV2 in the cold regime(opposite to the direction of the model trajectory).This indicates that the length of the next regime is associated with the relative direction between the high-growth BV and the moving trajectory.For the total number of red stars,more high-growth BVs are found when their directions are against the direction of the model trajectory,such as BV1 in warm regimes,shown by grey circles in Fig.3a,and BV2 in cold regime,shown by black crosses in Fig.3b.This is also consistent with more red dots in the warm regime than in the cold regime in Fig.1a, and more red dots in cold regimes than in warm regimes in Fig.1b.This implies a longer duration of the current regime when more high-growth BVs point in the opposite direction to the model trajectory.

    Lorenz(1963)found that if the value of maximumzis gradually increasing in one regime then the trajectory will moveto anotherregimeafterthe value of maximumzreaches a critical value.This f nding is also supported by the value ofminimumz:if the value of minimumzis gradually decreasing in one regime,up until reaching a critical value,a regime transition will subsequently take place.The relationship between the regime duration and the directions of high-growth BVs and the trajectory could be explained by the f nding in Lorenz(1963).

    When the high-growth BV tends to align with the trajectory in the current regime,e.g.,the red dots in the cold regime in Fig.1a,it will fall in a high position(large value of minimumz,i.e.,the blue dots atz∈[10,20]in the warm regime in Fig.1a)and be dragged by the trajectory against the f ow direction in the next regime,the current regime will have a short duration(e.g.,BV1 in cold regimes and BV2 in warmregimes),andthenextregimewill havealongduration. Whereas,when the high-growth BV tends to be dragged by the trajectory in the current regime,e.g.,the red dots in the warm regime in Fig.1a,it will penetrate into a low position (small value of minimumz,i.e.,the blue and yellow dots atz∈[10,20]in the cold regime in Fig.1a)and follow the trajectory’s direction in the next regime,the current regime will last a long time(e.g.,BV1 in warm regimes and BV2 in cold regimes),and the next regime will last a short time.

    Therefore,the two BVs perform differently in predicting regime transitions,considering the regime transitions from warm to coldand fromcold to warm separately.When the direction of the BV with high growth rate is parallel(opposite) to the moving direction of the trajectory,the current regime will have a short(long)duration,and the next regime will have a long(short)duration.

    4.Conclusions

    This paper has explored the characteristics of BVs in the Lorenz63 model.By examining BV directions andE-dimensions,it has been found that that the chaotic 3D Lorenz63 model has two different BVs for each breeding cycle,and the two BVs tend to become identical when the growth rate is high.This indicates that,in nonlinear BV growth,initial perturbations from different arbitrary directions will converge into few different directions and the Lorenz63 model has two directions of nonlinear growing instability,which are both detected by the breeding method. The duration of the current regime is associated with the relative directions between the BV with high growth rate and the moving trajectory.If the two directions are the same(opposite),the current regime has a short(long)length and the next regime has a long(short)length.

    Although this study has been performed using the simple 3D Lorenz63 system,it still has implications for nonlinear unstable perturbations in large systems.A nonlinearly growing perturbation may have more than one growing direction and the breeding method is capable of capturing nonlinear instabilities with different directions.The relative direction of the mean f ow and the unstable perturbation is potentially useful for predicting regime transitions.

    Acknowledgements.This work was jointly supported by the ONR(Off ce of Naval Research)(Grant No.N00014-10-1-0557), the Civil,Mechanical and Manufacturing Innovation Division of the NSF(National Science Foundation)(Grant No.CMMI112585),and NASA(National Aeronautic and Space Administration)(Grant No. 5069UMNASAMI3G).

    REFERENCES

    Corazza,M.,and Coauthors,2003:Use of the breeding technique to estimate the structure of the analysis“errors of the day”.Nonlinear Processes in Geophysics,10,233–243.

    Ding,R.Q.,and J.P.Li,2007:Nonlinear f nite-time Lyapunov exponent and predictability.Physics Letters A,364,396–400, doi:10.1016/j.physleta.2006.11.094.

    Evans,E.,N.Bhatti,L.Pann,J.Kinney,M.Pe?na,S.-C.Yang,E. Kalnay,and J.Hansen,2004:RISE:Undergraduates f nd that regimechanges inLorenz’s model arepredictable.Bull.Amer.Meteor.Soc.,85,520–524.

    Feng,J.,R.Q.Ding,D.Q.Liu,and J.P.Li,2014:The Application of nonlinear local Lyapunov vectors to ensemble predictions in the Lorenz systems.J.Atmos.Sci.,71,3554–3567.

    Greybush,S.J.,E.Kalnay,M.J.Hoffman,and R.J.Wilson,2013: Identifying Martian atmospheric instabilities and their physical origins using bred vectors.Quart.J.Roy.Meteor.Soc.,139,639–653,doi:10.1002/qj.1990.

    Hoffman,M.J.,E.Kalnay,J.A.Carton,andS.-C.Yang,2009:Use of breeding to detect and explain instabilities in the global ocean.Geophys.Res.Lett.,36,L12608,doi:10.1029/2009 GL037729.

    Kalnay,E.,2003:Atmospheric Modeling,Data Assimilation,and Predictability.Cambridge University Press,341 pp.

    Kalnay,E.,and Z.Toth,1994:Removing growing errors in the analysis cycle.Tenth Conf.on Numerical Weather Prediction. Amer.Meteor.Soc.,Boston,MA,212–215.

    Kalnay,E.,and Z.Toth,1996:The breeding method.Proc.the Seminar on Predictability,ECMWF,4-8 September 1995. [Available from ECMWF,Shinf eld Park,Reading,Berkshire RG29AX]

    Li,J.P.,and S.H.Wang,2008:Some mathematical and numerical issues in geophysical f uid dynamics and climate dynamics.Communications in Computational Physics,3,759–793.

    Li,J.P.,and R.Q.Ding,2011:Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs.Mon.Wea.Rev.,139,3265–3283,doi:10.1175/MWR-D-10-05020.1.

    Lorenz,E.N.,1963:Deterministic nonperiodic f ow.J.Atmos. Sci.,20,130–141.

    Newman,C.E.,P.L.Read,and S.R.Lewis,2003:Breeding vectors and predictability in the Oxford Mars GCM.First International Workshop on Mars Atmosphere Modelling and Observations,13–15 Jan 2003,Granada,Spain.

    Norwood,A.,E.Kalnay,K.Ide,S.-C.Yang,and C.Wolfe,2013: Lyapunov,singular and bred vectors in a multi-scale system:An empirical exploration of vectors related to instabilities.Journal of Physics A:Mathematical and Theoretical,46, 254021,doi:10.1088/1751-8113/46/25/254021.

    Oczkowski,M.,I.Szunyogh,and D.J.Patil,2005:Mechanisms for the development of locally low-dimensional atmospheric dynamics.J.Atmos.Sci.,62,1135–1156.

    Patil,D.J.,B.R.Hunt,E.Kalnay,J.A.York,and E.Ott,2001:Local low dimensionality of atmospheric dynamics.Phys.Rev. Lett.,86,5878–5881.

    Toth,Z.,and E.Kalnay,1993:Ensemble forecasting at NMC: The generation of perturbations.Bull.Amer.Meteor.Soc.,74, 2317–2330.

    Toth,Z.,and E.Kalnay,1997:Ensemble forecasting at NCEP and the breeding method.Mon.Wea.Rev.,125,3297–3318.

    Wolf,A.,J.B.Swift,H.L.Swinney,and J.A.Vastano,1985:Determining Lyapunov exponents from a timeseries.Physica D: Nonlinear Phenomena,16,285–317.

    Wolfe,C.L.,and R.M.Samelson,2007:An eff cient method for recovering Lyapunov vectors from singular vectors.Tellus A,59,355–366.

    Yang,S.-C.,E.Kalnay,M.Cai,M.Rienecker,G.Yuan,and Z.Toth,2006:ENSO bred vectors in coupled oceanatmospheric general circulation models.J.Climate,19,1422–1436.

    Yang,S.-C.,C.Keppenne,M.Rienecker,andE.Kalnay,2009:Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation.J.Climate,22,2850–2870.

    Young,R.M.B.,and P.L.Read,2008:Breeding and predictability in the baroclinic rotating annulus using a perfect model.Nonlinear Processes in Geophysics,15,469–487.

    :Zhang,Y.,K.Ide,and E.Kalnay,2015:Bredvectors of the Lorenz63 system.Adv.Atmos.Sci.,32(11),1533–1538,

    10.1007/s00376-015-4275-8.

    14 December 2014;revised 10 April 2015;accepted 6 May 2015)

    ?Corresponding author:Ying ZHANG

    Email:yzhang@atmos.umd.edu

    捣出白浆h1v1| 国产极品粉嫩免费观看在线| 在线av久久热| 久久青草综合色| av不卡在线播放| 12—13女人毛片做爰片一| 亚洲精品久久成人aⅴ小说| 亚洲av日韩精品久久久久久密| 久久99一区二区三区| 亚洲成a人片在线一区二区| 一级毛片女人18水好多| 热re99久久精品国产66热6| 久久毛片免费看一区二区三区| 亚洲性夜色夜夜综合| av福利片在线| 啦啦啦在线免费观看视频4| 久久久久久免费高清国产稀缺| 在线永久观看黄色视频| 亚洲av欧美aⅴ国产| 国产精品亚洲av一区麻豆| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 老汉色av国产亚洲站长工具| 亚洲精华国产精华精| 国产成人av教育| 久久人妻熟女aⅴ| 精品国产一区二区久久| 黄色毛片三级朝国网站| 老熟妇仑乱视频hdxx| 深夜精品福利| 欧美成狂野欧美在线观看| 伦理电影免费视频| 久久国产精品影院| 日韩欧美一区二区三区在线观看 | 久久国产精品男人的天堂亚洲| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| 久久 成人 亚洲| 飞空精品影院首页| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 青青草视频在线视频观看| 中文亚洲av片在线观看爽 | 一级片免费观看大全| 777米奇影视久久| 超碰成人久久| videos熟女内射| 久久国产精品大桥未久av| 视频区图区小说| 国产1区2区3区精品| 日本黄色视频三级网站网址 | 欧美亚洲 丝袜 人妻 在线| 色尼玛亚洲综合影院| 下体分泌物呈黄色| 精品人妻在线不人妻| 天天操日日干夜夜撸| 777米奇影视久久| 免费日韩欧美在线观看| 国产xxxxx性猛交| 亚洲国产精品一区二区三区在线| 可以免费在线观看a视频的电影网站| 一区二区三区乱码不卡18| 男人舔女人的私密视频| 五月开心婷婷网| 日本一区二区免费在线视频| 大片免费播放器 马上看| 99久久人妻综合| 亚洲人成77777在线视频| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 大陆偷拍与自拍| 操美女的视频在线观看| 老司机深夜福利视频在线观看| 色在线成人网| 满18在线观看网站| 精品欧美一区二区三区在线| 成人三级做爰电影| 窝窝影院91人妻| 18禁观看日本| 黑丝袜美女国产一区| 精品久久久久久电影网| av不卡在线播放| 国产真人三级小视频在线观看| 久久99一区二区三区| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 80岁老熟妇乱子伦牲交| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 9热在线视频观看99| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 99热国产这里只有精品6| 热re99久久国产66热| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 窝窝影院91人妻| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯 | 一级a爱视频在线免费观看| 蜜桃在线观看..| 国产精品成人在线| 午夜福利视频精品| tube8黄色片| 国产成人精品久久二区二区91| 成人18禁在线播放| 国产一区二区三区视频了| 大香蕉久久网| 桃花免费在线播放| 成年版毛片免费区| 男女床上黄色一级片免费看| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 99riav亚洲国产免费| 日本av手机在线免费观看| 老司机靠b影院| 巨乳人妻的诱惑在线观看| 另类亚洲欧美激情| 叶爱在线成人免费视频播放| 在线看a的网站| 亚洲人成伊人成综合网2020| av一本久久久久| 黄色怎么调成土黄色| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 女人高潮潮喷娇喘18禁视频| 波多野结衣av一区二区av| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 免费在线观看黄色视频的| 91大片在线观看| 亚洲专区字幕在线| 午夜精品国产一区二区电影| 国产精品免费一区二区三区在线 | 十八禁网站免费在线| 久久精品熟女亚洲av麻豆精品| 18禁国产床啪视频网站| 久久国产精品大桥未久av| 欧美日韩成人在线一区二区| 国产成人啪精品午夜网站| 最近最新中文字幕大全电影3 | 99re6热这里在线精品视频| 久久中文字幕一级| 51午夜福利影视在线观看| 无人区码免费观看不卡 | 亚洲av日韩精品久久久久久密| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看 | www.999成人在线观看| 久9热在线精品视频| 99精品在免费线老司机午夜| 999精品在线视频| 国产免费av片在线观看野外av| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 亚洲成人手机| 精品福利观看| tube8黄色片| 女性生殖器流出的白浆| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 天堂8中文在线网| 侵犯人妻中文字幕一二三四区| 欧美在线黄色| 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 午夜福利视频精品| 不卡一级毛片| 免费高清在线观看日韩| tocl精华| 丁香六月欧美| av视频免费观看在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 欧美老熟妇乱子伦牲交| e午夜精品久久久久久久| 九色亚洲精品在线播放| 亚洲av电影在线进入| 欧美另类亚洲清纯唯美| 999久久久国产精品视频| 国产免费福利视频在线观看| 怎么达到女性高潮| 午夜福利欧美成人| 国产精品美女特级片免费视频播放器 | 欧美在线黄色| 精品熟女少妇八av免费久了| 国产精品一区二区精品视频观看| 国产在线视频一区二区| 色综合欧美亚洲国产小说| 蜜桃国产av成人99| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| www日本在线高清视频| 十八禁网站免费在线| 精品久久蜜臀av无| 老司机靠b影院| 亚洲av日韩在线播放| xxxhd国产人妻xxx| 国产免费av片在线观看野外av| 一区二区av电影网| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 久久人人97超碰香蕉20202| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片| 色视频在线一区二区三区| 欧美精品高潮呻吟av久久| 久久午夜亚洲精品久久| 国产精品国产高清国产av | 日本一区二区免费在线视频| 在线观看免费视频日本深夜| 一夜夜www| 精品国内亚洲2022精品成人 | 国产在线视频一区二区| 法律面前人人平等表现在哪些方面| 欧美日韩亚洲高清精品| 亚洲精华国产精华精| 在线观看舔阴道视频| 亚洲av美国av| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| cao死你这个sao货| 搡老熟女国产l中国老女人| 宅男免费午夜| 中文字幕色久视频| 久久人人97超碰香蕉20202| 丝袜人妻中文字幕| 女性被躁到高潮视频| 国产亚洲欧美在线一区二区| 亚洲情色 制服丝袜| 欧美在线黄色| 桃花免费在线播放| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 12—13女人毛片做爰片一| av网站免费在线观看视频| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 久久精品国产99精品国产亚洲性色 | 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 免费看十八禁软件| 在线十欧美十亚洲十日本专区| 成年人免费黄色播放视频| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 制服诱惑二区| 亚洲熟女毛片儿| 国产福利在线免费观看视频| 色播在线永久视频| www.999成人在线观看| 夫妻午夜视频| 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 搡老熟女国产l中国老女人| 久久久久精品人妻al黑| 丰满迷人的少妇在线观看| 日韩 欧美 亚洲 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 啪啪无遮挡十八禁网站| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 欧美大码av| 国产又爽黄色视频| 一本色道久久久久久精品综合| 日韩免费av在线播放| 久久精品成人免费网站| 岛国在线观看网站| 叶爱在线成人免费视频播放| 色综合婷婷激情| 天堂动漫精品| 两个人看的免费小视频| 人妻 亚洲 视频| 最新在线观看一区二区三区| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 女人被躁到高潮嗷嗷叫费观| 后天国语完整版免费观看| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影 | 国产av一区二区精品久久| 国产单亲对白刺激| 波多野结衣av一区二区av| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 91国产中文字幕| 少妇 在线观看| 大型av网站在线播放| 午夜福利影视在线免费观看| 色94色欧美一区二区| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看 | 黄片小视频在线播放| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 在线观看66精品国产| 亚洲一码二码三码区别大吗| 亚洲一区中文字幕在线| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 欧美激情高清一区二区三区| 午夜福利影视在线免费观看| 丝袜美腿诱惑在线| 搡老熟女国产l中国老女人| 91成年电影在线观看| 日日爽夜夜爽网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久免费高清国产稀缺| 亚洲av国产av综合av卡| 女同久久另类99精品国产91| 免费看十八禁软件| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 我要看黄色一级片免费的| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 狠狠狠狠99中文字幕| 午夜福利影视在线免费观看| 黄频高清免费视频| 在线 av 中文字幕| av网站免费在线观看视频| 亚洲一区中文字幕在线| 夜夜爽天天搞| 欧美精品亚洲一区二区| 大型av网站在线播放| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| av不卡在线播放| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 亚洲av欧美aⅴ国产| 激情在线观看视频在线高清 | 国产精品久久电影中文字幕 | 日韩三级视频一区二区三区| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 看免费av毛片| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 18禁美女被吸乳视频| 欧美人与性动交α欧美软件| 久久99一区二区三区| 色老头精品视频在线观看| cao死你这个sao货| 国产精品亚洲一级av第二区| 制服诱惑二区| 欧美 日韩 精品 国产| 99香蕉大伊视频| 午夜精品国产一区二区电影| 免费不卡黄色视频| 精品亚洲成a人片在线观看| 三级毛片av免费| 丝瓜视频免费看黄片| 亚洲国产av影院在线观看| 自线自在国产av| 菩萨蛮人人尽说江南好唐韦庄| 免费看a级黄色片| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 国产91精品成人一区二区三区 | 国产一区二区三区在线臀色熟女 | 日日爽夜夜爽网站| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 狠狠婷婷综合久久久久久88av| 日韩免费高清中文字幕av| 精品免费久久久久久久清纯 | 日韩欧美一区二区三区在线观看 | 亚洲欧美一区二区三区久久| 狠狠狠狠99中文字幕| 手机成人av网站| 亚洲精品自拍成人| 999久久久精品免费观看国产| 一区在线观看完整版| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| 久久久国产欧美日韩av| www.精华液| 1024香蕉在线观看| 国产av国产精品国产| 亚洲av日韩精品久久久久久密| 精品国产国语对白av| 肉色欧美久久久久久久蜜桃| 一边摸一边抽搐一进一出视频| av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 亚洲人成电影观看| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| 美女午夜性视频免费| 黑人猛操日本美女一级片| 亚洲精品一二三| 高潮久久久久久久久久久不卡| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 男女之事视频高清在线观看| 久久国产精品影院| 别揉我奶头~嗯~啊~动态视频| www.自偷自拍.com| 亚洲国产欧美在线一区| 蜜桃在线观看..| 怎么达到女性高潮| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 亚洲精品自拍成人| 国产高清视频在线播放一区| tube8黄色片| 久久久久久人人人人人| a在线观看视频网站| 五月天丁香电影| 成在线人永久免费视频| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 欧美精品一区二区免费开放| 99国产综合亚洲精品| 脱女人内裤的视频| 宅男免费午夜| 国产精品欧美亚洲77777| 亚洲第一av免费看| 成人国语在线视频| 丝瓜视频免费看黄片| av福利片在线| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 757午夜福利合集在线观看| 丝袜美腿诱惑在线| 色综合婷婷激情| 性高湖久久久久久久久免费观看| 99精品在免费线老司机午夜| 99国产精品免费福利视频| 久久久久精品国产欧美久久久| av在线播放免费不卡| 操美女的视频在线观看| 日韩免费av在线播放| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲国产一区二区在线观看 | av免费在线观看网站| 久久九九热精品免费| 日韩欧美国产一区二区入口| 国产男女内射视频| 国产一区二区三区综合在线观看| 精品久久久精品久久久| 一边摸一边抽搐一进一小说 | 久久精品人人爽人人爽视色| www日本在线高清视频| 桃红色精品国产亚洲av| 亚洲伊人色综图| 一级片'在线观看视频| 亚洲av美国av| 香蕉久久夜色| 国产成人影院久久av| 在线亚洲精品国产二区图片欧美| 777米奇影视久久| 国产伦理片在线播放av一区| 咕卡用的链子| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 2018国产大陆天天弄谢| 中文字幕人妻丝袜一区二区| 美国免费a级毛片| 久久天躁狠狠躁夜夜2o2o| 久久久久久人人人人人| 欧美成人免费av一区二区三区 | 大陆偷拍与自拍| 亚洲精品一卡2卡三卡4卡5卡| 久9热在线精品视频| 少妇精品久久久久久久| 亚洲精品国产一区二区精华液| 成年动漫av网址| 亚洲欧洲日产国产| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 成年动漫av网址| 免费久久久久久久精品成人欧美视频| 国产一区有黄有色的免费视频| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 韩国精品一区二区三区| 黄色片一级片一级黄色片| 天天躁夜夜躁狠狠躁躁| 久久久精品国产亚洲av高清涩受| 国产在线一区二区三区精| 99热网站在线观看| 新久久久久国产一级毛片| 最新在线观看一区二区三区| videos熟女内射| 国产单亲对白刺激| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面| 午夜福利一区二区在线看| 欧美精品av麻豆av| 亚洲av美国av| 看免费av毛片| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 久久人妻福利社区极品人妻图片| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 水蜜桃什么品种好| 一进一出抽搐动态| 久久久精品免费免费高清| 中文字幕av电影在线播放| 男女下面插进去视频免费观看| 亚洲欧美激情在线| 首页视频小说图片口味搜索| 男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| 后天国语完整版免费观看| 亚洲第一av免费看| 国产精品电影一区二区三区 | 国产成人啪精品午夜网站| 五月开心婷婷网| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 久久天堂一区二区三区四区| 午夜91福利影院| 黄片大片在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| xxxhd国产人妻xxx| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区蜜桃| 欧美精品av麻豆av| 中文字幕人妻丝袜制服| 亚洲国产欧美日韩在线播放| 免费久久久久久久精品成人欧美视频| videosex国产| 黑人巨大精品欧美一区二区mp4| 两人在一起打扑克的视频| 人妻一区二区av| 老司机亚洲免费影院| 久9热在线精品视频| 一区福利在线观看| 亚洲精品久久午夜乱码| 亚洲黑人精品在线| 国产精品影院久久| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 国产欧美日韩一区二区三区在线| 男女高潮啪啪啪动态图| 黑丝袜美女国产一区| 妹子高潮喷水视频| 亚洲精品国产一区二区精华液| 久久久国产精品麻豆| 亚洲精品成人av观看孕妇| 一本—道久久a久久精品蜜桃钙片| 欧美午夜高清在线| 一本大道久久a久久精品| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻在线不人妻| 天天躁日日躁夜夜躁夜夜| tocl精华| 欧美黑人精品巨大| 久久精品国产综合久久久| 欧美成狂野欧美在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产欧美网| 日本av免费视频播放| 在线观看免费视频网站a站| 黑人操中国人逼视频| 如日韩欧美国产精品一区二区三区| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 国产av又大| 成年动漫av网址| 天天躁日日躁夜夜躁夜夜| 麻豆国产av国片精品| 考比视频在线观看| 又黄又粗又硬又大视频| 国产精品美女特级片免费视频播放器 | 可以免费在线观看a视频的电影网站| 19禁男女啪啪无遮挡网站| 亚洲五月色婷婷综合| 欧美一级毛片孕妇| 国产免费现黄频在线看| 久久久久久免费高清国产稀缺| 免费久久久久久久精品成人欧美视频| 日韩视频一区二区在线观看| 亚洲精品国产区一区二| 色尼玛亚洲综合影院| 肉色欧美久久久久久久蜜桃| 男人舔女人的私密视频| 精品第一国产精品| 大型av网站在线播放|