• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation

    2015-09-04 02:49:05TimLIZHANGLeiandHiroyukiMURAKAMI
    Advances in Atmospheric Sciences 2015年11期

    Tim LI,ZHANG Lei,and Hiroyuki MURAKAMI

    1AORC/IPRC and Department of Atmospheric Sciences,University of Hawaii,2525Correa Rd.,Honolulu HI96822,USA

    2International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing210044

    3Climate Research Department,Meteorological Research Institute,Tsukuboda,Ibaraki305-0052,Japan

    Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation

    Tim LI1,2,ZHANG Lei?1,and Hiroyuki MURAKAMI3

    1AORC/IPRC and Department of Atmospheric Sciences,University of Hawaii,2525Correa Rd.,Honolulu HI96822,USA

    2International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing210044

    3Climate Research Department,Meteorological Research Institute,Tsukuboda,Ibaraki305-0052,Japan

    MostclimatemodelsprojectaweakeningoftheWalkercirculationunderglobalwarmingscenarios.Itisargued,basedon a global averaged moisture budget,that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase,which leads to a decrease in ascending motion.Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator,we find that the Walker circulation is strengthened under a uniform 2-K SST warming,even though the global mean rainfall–moisture relationship remains the same.Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere.As a result,a“double-cell”circulation change pattern with a clockwise(anti-clockwise)circulation anomaly in the upper(lower)troposphere forms,and the upper tropospheric circulation change dominates.The mechanism for the formation of the“double cell”circulation pattern is attributed to a larger(smaller)rate of increase of diabatic heating than static stability in the upper(lower)troposphere.The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.

    Walker circulation,global warming,aqua-planet simulation

    1.Introduction

    Considerable debate exists among climate scientists as to how the tropical Walker circulation and sea surface temperature(SST)pattern will change due to the emissions of greenhouse gases under the influence of anthropogenic activities (Knutson and Manabe,1995;Clement et al.,1996;Held and Soden,2006;Vecchi et al.,2006,2008;IPCC,2007,2013; Vecchi and Soden,2007;Dinezio et al.,2009,2010;Schneider et al.,2010;Merrifield,2011;Bayr et al.,2014;Sandeep et al.,2014).Clement et al.(1996)suggested,from a purely oceanographic point of view,that a La Ni?na–like SST pattern with a strengthened Walker circulation will occur under global warming due to the increase of upper-ocean stratif ication.Held and Soden(2006)argued,from a global atmospheric moisture budget point of view,that because global meanprecipitationincreasesatasmallerrate(around1%–2% per 1 K of warming)than that of moisture(around 6%–7% per 1 K of warming),the global mean mass flux or ascending motion must decrease in the future warmer state.The cause of the rainfall–moisture“mismatch”is attributed to the global atmospheric energy balance constraint that precipitation or latent heating increase is to a large extent balanced by the changeofradiativecooling,whichdependsonthesquareroot of moisture in the air column(Shine et al.,1990).A recent theoretical study suggests that an El Ni?no–like warming or a weakening of the Walker cell is primarily determined by the current climate mean state through a longwave radiative–evaporative damping mechanism(Zhang and Li,2014).

    Inthetropics,dueto theweak horizontaltemperaturegradient,atmospheric adiabatic cooling associated with ascending motion is approximately balanced by diabatic heating in either present-day(PD)or global warming(GW)climate states.The anthropogenic forcing may induce two competing processes in changing vertical motion.On the one hand,SST warming causes an increase of lower-tropospheric moisture, which can strengthen ascending motion through enhanced diabatic heating.On the other hand,upper-tropospheric temperature increases at a higher rate than lower-tropospheric temperature and,as a result,the atmosphere becomes more stable,which leads to the decrease of ascending motion(Knutson and Manabe,1995).Thus,the change of the ascending branch of the Walker circulation would depend on the relative importance of these two competing processes.

    The motivation behind the present study is based on the observational analysis results reported by Hsu and Li(2012), who found there is competition between the monsoon and surrounding circulation systems(such as the intertropical convergence zones over the equatorial Indian Ocean in boreal summer and over the Atlantic in boreal winter)under global warming,and that only“the richest becomes richer”.It is also motivated by the fact that land surface warming is much greater than ocean warming under global warming.To eliminate the monsoon and land impacts and examine the“pure”Walker circulation response to global warming,we design a set of idealized numerical experiments in an aqua-planet Earth.Through diagnosis of the idealized simulation outputs, we hope to understand the relativeimportance of the moisture effect versus the stability effect in affecting the Walker circulation strength.

    2.Idealized model setting

    We consider an idealized water-covered Earth in which there is no monsoon or excessive land warming effect.A zonalwavenumber-1zonalSSTdistributionisspecifiedinthe tropics(within 20°S–20°N).The model used for this study is an atmospheric general circulation model developed at the Japan Meteorological Agency Meteorological Research Institute(MRI).For a detailed description of this model,readers are referred to Yukimoto et al.(2011)and Mizuta et al. (2012).The model resolution is T106,and each simulation is integrated for 10 years.Solar radiation in this idealized experiment is fixed at the equinox.

    Figure 1 shows the idealized SST pattern in the PD climate state.The SST is symmetric about the equator,with maximum amplitude directly on the equator.Along the equator,the highest(lowest)SST is located at 120°E(60°W).In the GW climate state,a global uniform 2-K warming is imposed and the CO2concentration is doubled.

    One of the greatest uncertainties in future projections by climate models is cumulus parameterization(e.g.,Stocker, 2001).To test the sensitivity of the simulation results to the model convective parameterization scheme,three parallel runs with the Yoshimura et al.(2015)(hereafter YS), Arakawa and Schubert(1974)(hereafter AS)and Kain and Fritsch(1990,1993)(hereafter KF)convective parameterization schemes have been carried out for both the PD and GW climate simulations.It has been shown that the MRI model with these schemes can simulate realistic climatological mean states of tropical and monsoon precipitation(Endo et al.,2012)and realistic tropical cyclone distributions(Murakami et al.,2012).

    3.Results

    In the presence of an idealized zonal wavenumber-1 SST distribution,the Walker circulation is well simulated in both the PD and GW states(Fig.2).Maximum ascending motion and precipitation appear over the warmest pool,and minimum rainfall and descending motion appear around 60°W. The most striking difference between the GW and PD simulations lies in the change of the vertical motion profile over the ascending branch of the Walker circulation around 120°E (Fig.2c).The ascending motion is strengthened(weakened) in the upper(lower)troposphere.Consistent with the vertical velocity change,a westerly anomaly appears in the upper and lower levels,while an easterly anomaly appears between (Fig.2c).As a result,an anomalous“double-cell”vertical overturning circulation pattern with a clockwise(counterclockwise)cell in the upper(lower)troposphere forms.The separation line between the upper and lower cells appears at 300 hPa.Figure 3 further confirms that the“double-cell”pattern is a robust signal that can be found in each individual experimentwithdifferentconvectiveparameterizationschemes.

    An important issue is how to quantitatively measure the change of the strength of the Walker circulation.The areaaveraged change of vertical motion at the ascending branch of the Walker circulation is plotted in Fig.4a.The ascending motion is strengthened above 300 hPa but weakened below 300 hPa,and remains unchanged at the maximum vertical velocity level(300 hPa).Thus,the vertical motion over the region cannot be used to determine the change in overall strength of the Walker circulation.In previous studies(e.g., Vecchietal.,2006),thedifferenceofsea-levelpressure(SLP) between the Western and Eastern Hemisphere was used to measure the strength of the Walker circulation.However,as shown in Fig.5 and Table 1,such a definition is highly sensitive to the domain selected in the idealized aqua-planet simulations.For example,the change of the east–west SLP gradient is negative when the domains 60°–0°W and 120°–180°E are used,but becomes positive when the domains 70°–0°W and 110°–180°E(in which the domains are only expanded westward by 10°longitude)are used(Table 1).This suggests that the zonal SLP gradient(which mainly measures low-level zonal wind)is also not a good indicator.

    Table 1.(a)The SLP differences between 60°–0°W and 120°–180°E averaged over three latitudinal bands in the PD and GW simulations and their difference(units:Pa).(b)As in(a)but for the SLP differences between 70°–0°W and 110°–180°E.

    Given the great uncertainty in both the SLP and vertical motion fields,we decide to use the original definition of circulation(Holton,2004)to measure the strength of the Walker circulation.The strength of zonal overturning circulation inthe longitude–height cross section may be calculated according to an area integral of meridional vorticity

    whereωis vertical p-velocity(ω).This circulation def inition contains the combined information of both the vertical motion and the zonal wind in a large longitude–height domain.Figure 6 shows that the climatological maximum westerly(easterly)wind locates at 150 hPa(925 hPa)in both the PD and GW simulations,while the strongest upward motion appears near 120°E.Considering a longitude–height domain of 120°E–60°W and 925–150 hPa,we calculate the percentage change of the intensity of the Walker circulation in the PD and GW simulations averaged over three latitudinal zones(Table 2).The results show that the Walker circula-tion is strengthened under global warming in all three convective parameterization sensitivity experiments,regardless of the latitudinal band chosen.We further test the sensitivity of the result to the longitudinal domain.Given that the Kelvin wave response length scale(in response to a given heating in the warm pool)is greater than the Rossby wave response length scale,additional calculations with greater longitudinal domains,120°E–0°W and 120°–30°E,are performed(Table 2).In the latter case,the Kelvin wave response length scale (270°)is exactly three times as large as the Rossby wave responselengthscale(90°).TheresultindicatesthattheWalker circulation strengthening signal is robust.

    Since the change of zonal overturning circulation in the equatorial plane exhibits a“double-cell”pattern,with clockwise(counter-clockwise)circulation change in the upper(lower)troposphere(Figs.2 and 3),we further examine which cell dominates the overall strength of the Walker circulation.Our calculation shows that the change of strength of the Walker circulation in the idealized aqua-planet model is primarily controlled by the upper cell circulation change. But what causes the strengthening of the upper-tropospheric vertical motion?In the tropics,where the horizontal temperature gradient is small,for both the PD and GW equilibrium state,the adiabatic cooling associated with vertical motion isapproximatelyinbalancewiththediabaticheatingterm;thus,

    Table 2.The percentage change(GW?PD/PD)of intensity of the Walker circulation(units:%)calculated based on the original definition of circulation in different longitude–latitude domains and from 925 hPa to 150 hPa.The results are derived from the ensemble average of the YS,AS and KF simulations.

    In Eq.(1),S denotes atmospheric static stability and Q1represents apparent heating(Yanai et al.,1973),which includes longwave radiation,condensation heating and divergence of eddy static energy transport.Equation(1)implies that the change of vertical motion under global warming is determined by the combined effect of the static stability and apparent heating changes.It has been shown that global warming leads to an increase of both static stability and diabatic heating.Thus,it is necessary to reveal their relative roles;in particular,how their relative effects change with height.Figure 4 illustrates how the static stability parameter and the diabatic heating change vertically.Whereas the static stability parameter increases throughout the troposphere,apparent heating exhibits a maximum increase in the upper troposphere,which is consistent with a previous study by Huang et al.(2013). The diagnosis of horizontal temperature advection shows that this term is negligible(Fig.4b).Therefore,Eq.(1)is indeed valid in the region of interest.

    To quantitatively measure the relative contributions of the static stability and diabatic heating to vertical motion change in the upper and lower troposphere,we transform Eq.(1)into the following form:

    where Δ represents the difference between the GW and PD state.

    Figure 7 shows the diagnosis results for upper-and lowertropospheric vertical motion based on Eq.(2).The effect of diabatic heating change exceeds(falls behind)that of static stability change above(below)300 hPa.In other words,the strengthened upward motion in the upper troposphere is primarily caused by the diabatic heating effect,whereas the weakened upward motion in the lower troposphere is mainly affected by enhanced atmospheric static stability.The result indicates that a more stable atmosphere does not necessarily lead to weakened vertical circulation.It is the net effect of diabatic heating and static stability changes that determines the final sign change of the vertical motion.

    4.Conclusion and discussion

    Idealized aqua-Planet simulations are performed with the aim to understand how the Walker circulation changes in an idealized world of no competition among monsoon circulations and no influence from excessive land warming.A zonal wavenumber-1 SST distribution is prescribed in the tropics in the PD simulation.It is found that the Walker circulation is strengthened in such an idealized world,given a uniform 2-K SST warming.Diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere.As a result,a“doublecell”circulationchangepatternforms,withaclockwise(anticlockwise)circulation anomaly in the upper(lower)troposphere.The upper tropospheric circulation change dominates the strength change of the Walker circulation.The mechanism for the formation of the“double cell”circulation pattern is attributed to a greater(smaller)rate of increase of diabatic heating than static stability in the upper(lower)troposphere.

    While the Walker circulation is strengthened under global warming,global average upward motion is weakened in the aqua-planet simulations(Table 3).This indicates that the global moisture budget argument put forward by Held and Soden(2006)is valid even in an idealized aqua-Planet model.It is found that global average water vapor content in the current model increases by 19%with a 2-K warming,whereasglobalmeanprecipitationandsurfacelatentheatflux increase only by around 4%.The slower rate of rainfall than moisture increase is consistent with the fact that global mean ascending motion decreases in the model.Therefore,the global moisture budget argument seems to be applicable to changes of global mean upward motion,but may be insuff icient to explain the change of the Walker circulation confined in the equatorial region.

    Table 3.The percentage change rate(GW?PD/PD)of globally averaged column-integrated moisture,upward motion,precipitation rate,net downward radiation at surface(including both longwave and shortwave radiation),and net radiative cooling in the atmosphere.

    The use of the traditional circulation de finition implies that the major factor determining the overall strength of the Walker circulation is the zonal wind component,not vertical velocity.If the strength of the Walker circulation is defined based on maximum vertical velocity at the ascending branch of the Walker cell,one might find there is no detectable change in maximum vertical velocity in the middle troposphere under GW(see Fig.4).If the column-integrated vertical velocity is instead used,one might find that the result is highly dependent on the area average( figure omitted).

    It is worth mentioning that the traditional circulation definition depends on the upper and lower boundaries used.By examining the zonal mean zonal wind pro files,we note that the altitude of the maximum easterly(westerly)in the lower (upper)troposphere changes little between the PD and GW simulations in the current idealized aqua-planet model,even though the tropopause may increase under GW(Singh and O’Gorman,2012).Itwouldbeinterestingtoexaminehowthe upper and lower boundaries of the Walker cell might change under GW in a realistic land–sea distribution model.

    The fact that the Walker circulation is strengthened in an aqua-planetsimulationbutweakenedinthefutureprojections of most Coupled Model Intercomparison Project Phase 5 climate models suggests that the weakening of the Walker circulation in the real world must involve factors associated with realistic land–sea distributions.We intend to investigate these factors in future work.

    Acknowledgements.This study was sponsored by the China National 973 Program(Grant No.2015CB453200),the National Natural Science Foundation of China(Grant No.41475084),the China Scholarship Council,and the Office of Naval Research(ONR, GrantNos.N00014-1210450andARCP2013-27NSY-Liu).ThenumericalexperimentswereperformedontheJapan’sEarthSimulator. The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology.This is SOESTcontributionnumber 9475,IPRCcontributionnumber1130, and ESMC contribution number 056.

    REFERENCES

    Arakawa,A.,and W.H.Schubert,1974:Interaction of a cumulus cloud ensemble with the large-scale environment,Part I.J.Atmos.Sci.,31,674–701.

    Bayr,T.,D.Dommenget,T.Martin,and S.B.Power,2014:The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability.Climate Dyn.,43,2747–2763,doi:10.1007/s00382-014-2091-y.

    Clement,A.C.,R.S.Seager,M.A.Cane,and S.E.Zebiak,1996: An ocean dynamical thermostat.J.Climate,9,2190–2196.

    Dinezio,P.,A.Clement,and G.A.Vecchi,2010:Reconciling differing views of tropical Pacific climate change.EOS,Transactions American Geophysical Union,91(16),141–142.

    Dinezio,P.N.,A.C.Clement,G.A.Vecchi,B.Soden,B.P.Kirtman,and S.-K.Lee,2009:Climate response of the equatorial Pacific to global warming.J.Climate,22,4873–4892.

    Endo,H.,A.Kitoh,T.Ose,R.Mizuta,and S.Kusunoki,2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs).J.Geophys.Res.,117,D16118.

    Held,I.M.,and B.J.Soden,2006:Robust responses of the hydrological cycle to global warming.J.Climate,19,5686–5699.

    Holton,J.R.,2004:An Introduction to Dynamic Meteorology.4th ed.,Academic Press,535 pp.

    Hsu,P.-C.,and T.Li,2012:Is“rich-get-richer”valid for Indian Ocean and Atlantic ITCZ?Geophys.Res.Lett.,39,L13705, doi:10.1029/2012GL052399.

    Huang,X.L.,H.W.Chuang,A.Dessler,X.H.Chen,K.Minschwaner,Y.Ming,and V.Ramaswamy,2013:A radiativeconvective equilibrium perspective of weakening of the tropical walker circulation in response to global warming.J.Climate,26(5),1643–1653.

    IPCC,2007:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K. B.Averyt,M.Tignor,H.L.Miller,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY, USA,996 pp.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker,T.F.,and Coauthors,Eds.Cambridge University Press,Cambridge,UnitedKingdomandNewYork,NY,USA, 950 pp.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802.

    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme.The Representation of Cumulus Convection in Numerical Models, Emanuel and Raymond,Eds.,Amer.Meteor.Soc.,165–170.

    Knutson,T.R.,and S.Manabe,1995:Time-mean response overthe tropical Pacific to increased CO2in a coupled oceanatmosphere model.J.Climate,8,2181–2199.

    Merrifield,M.A.,2011:A shift in western Tropical Pacific Sea level trends during the 1990s.J.Climate,24,4126–4138.

    Mizuta,R.,and Coauthors,2012:Climate simulations using the improved MRI-AGCM with 20-km grid.J.Meteor.Soc. Japan,90A,235–260.

    Murakami,H.,R.Mizuta,and E.Shindo,2012:Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM.Climate Dyn.,39(9–10),2569–2584.

    Sandeep,S.,F.Stordal,P.D.Sardeshmukh,and G.P.Compo, 2014:Pacific Walker Circulation variability in coupled and uncoupled climate models.Climate Dyn.,43,103–117,doi: 10.1007/s00382-014-2135-3.

    Schneider,T.,P.A.O’Gorman,and X.J.Levine,2010:Water vapor and the dynamics of climate changes.Rev.Geophys.,48, 302–323.

    Shine,K.P.,R.G.Derwent,D.J.Wuebbles,and J.-J.Morcrette,1990:Radiative forcing of climate.Climate Change: The IPCC Scientific Assessment,Houghton et al.,Eds.Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,41–68.

    Singh,M.S,and P.A.O’Gorman,2012:Upward shift of the atmospheric general circulation under global warming:Theory and simulations.J.Climate,25(23),8259–8276.

    Stocker,T.F.,2001:Climate Change 2001:The Scientific Ba-sis.Chapter 7,J.T.Houghton,Eds.,Cambridge Univ.Press, Cambridge,417–470.

    Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation,J.Climate,20,4316–4340.

    Vecchi,G.A.,A.Clement,and B.J.Soden,2008:Examining the tropical Pacific’s response to global warming.Eos,Transactions American Geophysical Union,89,81–83.

    Vecchi,G.A.,B.J.Soden,A.T.Wittenberg,I.M.Held,A.Leetmaa,and M.J.Harrison,2006:Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing.Nature,441,73–76.

    Yanai,M.,S.Esbensen,and J.-H.Chu,1973:Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets.J.Atmos.Sci.,30,611–627.

    Yoshimura,H.,R.Mizuta,and H.Murakami,2015:A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence.Mon.Wea.Rev.,143, 597–621.

    Yukimoto,S.H.,and Coauthors,2011:Meteorological research institute-earth system model Version 1(MRI-ESM1)—Model description.Technical Reports of the Meteorological Research Institute,No.64,96 pp.

    Zhang,L.,and T.Li,2014:A simple analytical model for understanding the formation of sea surface temperature patterns under global warming.J.Climate,27,8413–8421.

    :Li,T.,L.Zhang,and H.Murakami,2015:Strengthening of the Walker circulation under global warming in an aqua-planet general circulation model simulation.Adv.Atmos.Sci.,32(11),1473–1480,

    10.1007/s00376-015-5033-7.

    30 January 2015;revised 27 April 2015;accepted 27 May 2015)

    ?Corresponding author:ZHANG Lei

    Email:zhanglei@hawaii.edu

    av天堂久久9| 91精品三级在线观看| 99国产精品一区二区蜜桃av| 亚洲avbb在线观看| 成人精品一区二区免费| 18禁观看日本| or卡值多少钱| 99久久精品国产亚洲精品| 91老司机精品| 午夜福利高清视频| 免费高清视频大片| 日本精品一区二区三区蜜桃| 97人妻精品一区二区三区麻豆 | 91在线观看av| 欧美乱码精品一区二区三区| 熟妇人妻久久中文字幕3abv| 少妇粗大呻吟视频| 99久久久亚洲精品蜜臀av| 无遮挡黄片免费观看| 欧美午夜高清在线| 欧美日韩乱码在线| 国产成人影院久久av| 高清毛片免费观看视频网站| 黄色片一级片一级黄色片| 精品午夜福利视频在线观看一区| 久久影院123| 久久久久久久久中文| 美女国产高潮福利片在线看| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 国产欧美日韩一区二区三| 国产亚洲欧美在线一区二区| 大型av网站在线播放| 国产色视频综合| 亚洲免费av在线视频| 亚洲第一电影网av| 日日摸夜夜添夜夜添小说| 欧美性长视频在线观看| 日韩免费av在线播放| 久久国产乱子伦精品免费另类| 一进一出好大好爽视频| 淫秽高清视频在线观看| 久久久久久久久久久久大奶| 免费在线观看黄色视频的| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕久久专区| 亚洲最大成人中文| 欧美亚洲日本最大视频资源| 免费看a级黄色片| 他把我摸到了高潮在线观看| 露出奶头的视频| 久久精品91无色码中文字幕| 日本一区二区免费在线视频| 亚洲国产中文字幕在线视频| 亚洲色图综合在线观看| 9热在线视频观看99| 日韩免费av在线播放| 在线观看免费视频网站a站| 天堂√8在线中文| 18美女黄网站色大片免费观看| 少妇的丰满在线观看| 黄色毛片三级朝国网站| 中文字幕精品免费在线观看视频| 激情在线观看视频在线高清| 日本黄色视频三级网站网址| 国产精品久久久久久亚洲av鲁大| 久热这里只有精品99| 国产精品九九99| 国产成人精品无人区| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜福利在线观看视频| 人人澡人人妻人| 国产精品乱码一区二三区的特点 | 国产色视频综合| 久久草成人影院| 中文字幕久久专区| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 啦啦啦 在线观看视频| 操出白浆在线播放| 中文字幕精品免费在线观看视频| 日本欧美视频一区| 免费看十八禁软件| 可以在线观看毛片的网站| 日韩免费av在线播放| 90打野战视频偷拍视频| 成人三级做爰电影| 亚洲中文字幕日韩| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 九色亚洲精品在线播放| 日本精品一区二区三区蜜桃| 亚洲免费av在线视频| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 青草久久国产| 韩国av一区二区三区四区| 波多野结衣高清无吗| 免费看美女性在线毛片视频| 精品久久久久久成人av| 不卡av一区二区三区| 欧美+亚洲+日韩+国产| 黄色女人牲交| 精品免费久久久久久久清纯| 欧美日韩一级在线毛片| 久久久久国产一级毛片高清牌| 国产99久久九九免费精品| 欧美不卡视频在线免费观看 | 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 黄色 视频免费看| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 黄色 视频免费看| 精品国产美女av久久久久小说| 成在线人永久免费视频| 国产高清有码在线观看视频 | 50天的宝宝边吃奶边哭怎么回事| 在线十欧美十亚洲十日本专区| 亚洲成人久久性| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 日韩高清综合在线| 老司机午夜福利在线观看视频| 久久 成人 亚洲| 亚洲电影在线观看av| 欧美在线黄色| 大陆偷拍与自拍| 一区在线观看完整版| 午夜成年电影在线免费观看| 咕卡用的链子| 亚洲国产欧美日韩在线播放| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 精品无人区乱码1区二区| 又黄又粗又硬又大视频| 国产成年人精品一区二区| 国产国语露脸激情在线看| 亚洲专区字幕在线| 91精品三级在线观看| 国产成人一区二区三区免费视频网站| 女性被躁到高潮视频| 亚洲视频免费观看视频| 精品无人区乱码1区二区| 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| av片东京热男人的天堂| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 一边摸一边做爽爽视频免费| 国产精品爽爽va在线观看网站 | 9色porny在线观看| www日本在线高清视频| 午夜福利18| 黄色视频,在线免费观看| 亚洲avbb在线观看| 亚洲全国av大片| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 嫩草影视91久久| 高清黄色对白视频在线免费看| 国产av一区在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品精品国产色婷婷| 亚洲精品国产一区二区精华液| 亚洲人成网站在线播放欧美日韩| 久久中文字幕人妻熟女| 国产成人av激情在线播放| 国产男靠女视频免费网站| cao死你这个sao货| 色播在线永久视频| 丰满的人妻完整版| 午夜老司机福利片| 超碰成人久久| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 亚洲色图综合在线观看| 国产又爽黄色视频| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 法律面前人人平等表现在哪些方面| 免费在线观看影片大全网站| 麻豆av在线久日| 成人精品一区二区免费| 欧美午夜高清在线| 婷婷丁香在线五月| www.自偷自拍.com| 69av精品久久久久久| 99久久精品国产亚洲精品| 一级a爱视频在线免费观看| av在线播放免费不卡| 国产精品久久久久久人妻精品电影| 国产99久久九九免费精品| 国产在线观看jvid| 99久久国产精品久久久| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 欧美一级a爱片免费观看看 | 无遮挡黄片免费观看| 91国产中文字幕| 午夜福利影视在线免费观看| 变态另类丝袜制服| 国产av一区在线观看免费| 亚洲av成人不卡在线观看播放网| 欧美成狂野欧美在线观看| 又黄又粗又硬又大视频| 色综合站精品国产| 91老司机精品| 色综合亚洲欧美另类图片| 人人妻人人澡人人看| 午夜激情av网站| 色综合站精品国产| 伦理电影免费视频| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 亚洲精品在线美女| 中亚洲国语对白在线视频| 波多野结衣巨乳人妻| 精品人妻在线不人妻| 国产麻豆成人av免费视频| av免费在线观看网站| 91成年电影在线观看| av视频免费观看在线观看| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 男女下面插进去视频免费观看| 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 国产区一区二久久| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 亚洲av成人一区二区三| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 日韩高清综合在线| 777久久人妻少妇嫩草av网站| 亚洲狠狠婷婷综合久久图片| 黄色毛片三级朝国网站| www.999成人在线观看| 大码成人一级视频| 日本五十路高清| 国产av又大| 欧美 亚洲 国产 日韩一| 久久狼人影院| 免费看十八禁软件| 中文字幕最新亚洲高清| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 亚洲天堂国产精品一区在线| 精品国产超薄肉色丝袜足j| 变态另类丝袜制服| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 国产又色又爽无遮挡免费看| 一边摸一边抽搐一进一小说| 黑人欧美特级aaaaaa片| 悠悠久久av| 日韩视频一区二区在线观看| www国产在线视频色| 9热在线视频观看99| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 极品人妻少妇av视频| 一区二区三区激情视频| 亚洲国产欧美一区二区综合| 色婷婷久久久亚洲欧美| 一夜夜www| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 高清在线国产一区| 亚洲国产精品sss在线观看| 一进一出抽搐动态| 午夜视频精品福利| 男人操女人黄网站| 亚洲精品在线美女| 午夜福利视频1000在线观看 | 午夜精品在线福利| 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载| 亚洲av片天天在线观看| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 亚洲激情在线av| 大码成人一级视频| 日本欧美视频一区| 91麻豆av在线| 国产男靠女视频免费网站| 99香蕉大伊视频| 亚洲中文字幕日韩| 国产精华一区二区三区| 亚洲电影在线观看av| 精品欧美一区二区三区在线| 国产精品久久久av美女十八| 欧美丝袜亚洲另类 | 中出人妻视频一区二区| 丁香欧美五月| 亚洲欧美精品综合久久99| 女人高潮潮喷娇喘18禁视频| 97超级碰碰碰精品色视频在线观看| 午夜视频精品福利| 99精品久久久久人妻精品| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 久久精品亚洲熟妇少妇任你| 男女之事视频高清在线观看| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 精品久久久久久久人妻蜜臀av | 国产高清videossex| 国产一区在线观看成人免费| 人妻久久中文字幕网| 欧美日韩黄片免| 久久中文字幕人妻熟女| 正在播放国产对白刺激| 午夜免费观看网址| 两个人看的免费小视频| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址 | 美国免费a级毛片| 久久精品人人爽人人爽视色| 色综合婷婷激情| 亚洲精品国产精品久久久不卡| 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 中文字幕久久专区| 亚洲中文av在线| 中文字幕av电影在线播放| 国产欧美日韩精品亚洲av| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 久久影院123| 国产欧美日韩一区二区三| svipshipincom国产片| avwww免费| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 国产区一区二久久| 桃色一区二区三区在线观看| 嫩草影视91久久| 国产国语露脸激情在线看| ponron亚洲| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| av中文乱码字幕在线| x7x7x7水蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 亚洲少妇的诱惑av| 性少妇av在线| 一级a爱片免费观看的视频| 成人国语在线视频| 国产不卡一卡二| 色av中文字幕| 精品人妻在线不人妻| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 日韩欧美国产在线观看| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| videosex国产| 亚洲一区二区三区不卡视频| 满18在线观看网站| 久久国产精品影院| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| bbb黄色大片| 自线自在国产av| 人人妻人人澡人人看| 神马国产精品三级电影在线观看 | 一级作爱视频免费观看| 此物有八面人人有两片| 久久久国产成人精品二区| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| 怎么达到女性高潮| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 亚洲欧美精品综合一区二区三区| 天堂影院成人在线观看| 亚洲成人国产一区在线观看| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 香蕉丝袜av| 超碰成人久久| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 非洲黑人性xxxx精品又粗又长| 老司机靠b影院| 女警被强在线播放| 久久国产乱子伦精品免费另类| 大码成人一级视频| 免费av毛片视频| 久久热在线av| 久久久久久久午夜电影| 久久精品亚洲精品国产色婷小说| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 精品欧美国产一区二区三| 麻豆成人av在线观看| 久久九九热精品免费| 麻豆久久精品国产亚洲av| 香蕉丝袜av| 亚洲色图综合在线观看| 色综合亚洲欧美另类图片| 人人妻人人澡人人看| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站 | 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 精品国产国语对白av| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 巨乳人妻的诱惑在线观看| 国产精品秋霞免费鲁丝片| 身体一侧抽搐| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 美女高潮喷水抽搐中文字幕| 多毛熟女@视频| 中文字幕人成人乱码亚洲影| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| 精品一区二区三区av网在线观看| 好男人电影高清在线观看| 午夜福利在线观看吧| 在线观看舔阴道视频| 国产午夜精品久久久久久| 9色porny在线观看| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看| 97碰自拍视频| 欧美色视频一区免费| 在线观看www视频免费| 一边摸一边抽搐一进一小说| 精品久久久久久久人妻蜜臀av | 女生性感内裤真人,穿戴方法视频| √禁漫天堂资源中文www| 嫩草影视91久久| 制服诱惑二区| 亚洲中文字幕一区二区三区有码在线看 | 老汉色av国产亚洲站长工具| 日韩大尺度精品在线看网址 | 我的亚洲天堂| 男女做爰动态图高潮gif福利片 | 国产精品99久久99久久久不卡| 少妇裸体淫交视频免费看高清 | 亚洲欧美一区二区三区黑人| 国产成人免费无遮挡视频| 成人免费观看视频高清| 国产成人精品久久二区二区免费| АⅤ资源中文在线天堂| 正在播放国产对白刺激| 午夜福利,免费看| 国产高清videossex| 男女做爰动态图高潮gif福利片 | 亚洲精品在线美女| 69精品国产乱码久久久| 老熟妇仑乱视频hdxx| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 色av中文字幕| 中文字幕人成人乱码亚洲影| 精品国产一区二区久久| 亚洲全国av大片| 国产麻豆69| 亚洲av成人不卡在线观看播放网| 97超级碰碰碰精品色视频在线观看| 成人三级黄色视频| 美女扒开内裤让男人捅视频| 日本 av在线| 午夜福利成人在线免费观看| 美女大奶头视频| 女人被狂操c到高潮| 99re在线观看精品视频| 色尼玛亚洲综合影院| 久久中文看片网| 国产激情欧美一区二区| 久久香蕉国产精品| 真人做人爱边吃奶动态| 欧美激情 高清一区二区三区| 成人18禁在线播放| 精品国产一区二区三区四区第35| 久久精品国产99精品国产亚洲性色 | 精品电影一区二区在线| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 久久精品91蜜桃| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 中文字幕人妻熟女乱码| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 99国产极品粉嫩在线观看| 日本vs欧美在线观看视频| 最好的美女福利视频网| 少妇的丰满在线观看| 国产又色又爽无遮挡免费看| 欧美中文综合在线视频| 免费av毛片视频| 九色国产91popny在线| 黄片小视频在线播放| 窝窝影院91人妻| 久久久久久久精品吃奶| 日韩免费av在线播放| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 成人国产综合亚洲| 女警被强在线播放| 久久婷婷人人爽人人干人人爱 | 啪啪无遮挡十八禁网站| 好男人电影高清在线观看| 亚洲国产精品久久男人天堂| av有码第一页| 亚洲专区国产一区二区| 欧美色欧美亚洲另类二区 | 精品国产国语对白av| 又大又爽又粗| 亚洲美女黄片视频| 九色国产91popny在线| 免费观看人在逋| 激情视频va一区二区三区| 国产单亲对白刺激| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产不卡一卡二| 久久 成人 亚洲| 最近最新免费中文字幕在线| 韩国精品一区二区三区| 日韩欧美国产在线观看| 制服丝袜大香蕉在线| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区| 长腿黑丝高跟| 国产精品99久久99久久久不卡| 非洲黑人性xxxx精品又粗又长| 亚洲视频免费观看视频| 又黄又粗又硬又大视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜a级毛片| 精品卡一卡二卡四卡免费| 国产成人影院久久av| 精品久久久久久,| 午夜免费鲁丝| 啪啪无遮挡十八禁网站| av天堂在线播放| 91老司机精品| 日韩av在线大香蕉| 乱人伦中国视频| 国产精品一区二区免费欧美| 两个人视频免费观看高清| 亚洲专区中文字幕在线| 久久久久精品国产欧美久久久| 免费看美女性在线毛片视频| aaaaa片日本免费| 88av欧美| 老熟妇乱子伦视频在线观看| 国内精品久久久久久久电影| 午夜福利,免费看| 亚洲国产精品合色在线| 国产成人av教育| 国产精品,欧美在线| 日韩国内少妇激情av| 国产欧美日韩综合在线一区二区| 色综合亚洲欧美另类图片| 一本大道久久a久久精品| 99香蕉大伊视频| 精品国产美女av久久久久小说| 无限看片的www在线观看| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 99国产精品一区二区三区| 女警被强在线播放| 在线免费观看的www视频| 欧美日韩瑟瑟在线播放| x7x7x7水蜜桃| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 老司机午夜十八禁免费视频| 欧美在线黄色| 欧美一级a爱片免费观看看 | 成年版毛片免费区| www.www免费av| 嫩草影视91久久| svipshipincom国产片| 国产一区二区在线av高清观看| 欧美乱色亚洲激情| 中亚洲国语对白在线视频|