• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高倍率性能納微結(jié)構(gòu)鋰離子電池正極材料0.6Li2MnO3-0.4LiNi0.5Mn0.5O2的簡(jiǎn)易制備

    2015-09-03 07:46:39史俠星廖世宣鐘艷君鐘本和劉郭孝東
    物理化學(xué)學(xué)報(bào) 2015年8期
    關(guān)鍵詞:高倍率四川大學(xué)立方體

    史俠星 廖世宣 袁 炳 鐘艷君 鐘本和劉 恒 郭孝東,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065; 2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    高倍率性能納微結(jié)構(gòu)鋰離子電池正極材料0.6Li2MnO3-0.4LiNi0.5Mn0.5O2的簡(jiǎn)易制備

    史俠星1廖世宣1袁 炳1鐘艷君1鐘本和1劉 恒2郭孝東1,*

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065;2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    采用快速共沉淀法合成了立方體的層狀無(wú)鈷富鋰固溶體正極材料0.6Li2MnO3-0.4LiNi0.5Mn0.5O2.通過(guò)X射線衍射(XRD),X射線光電子能譜(XPS),電感耦合等離子體(ICP),掃描電子顯微鏡(SEM),透射電子顯微鏡(TEM)及電性能測(cè)試等手段對(duì)材料進(jìn)行了表征.結(jié)果表明,材料具有典型的α-NaFeO2六方層狀晶體結(jié)構(gòu)且具有與目標(biāo)材料相似的化學(xué)組成.SEM和TEM結(jié)果表明,材料由粒徑為40–200 nm的納米顆粒組裝成立方體結(jié)構(gòu).在文中給出了一個(gè)立方團(tuán)聚體可能的形成機(jī)理.電化學(xué)性能測(cè)試(2.0–4.8 V電壓范圍內(nèi)(vs Li/Li+))顯示該材料具有優(yōu)異的倍率性能,0.1C和10C倍率下的放電比容量分別是243和143 mAh·g–1.此外,該材料具有良好的循環(huán)穩(wěn)定性,即使在大倍率測(cè)試后,0.5C倍率下循環(huán)72次仍顯示出90.7%的高容量保持率.這種具有簡(jiǎn)易操作步驟和優(yōu)異結(jié)果的共沉淀方法是一種經(jīng)濟(jì)的能夠促進(jìn)鋰離子電池正極材料大規(guī)模應(yīng)用的技術(shù)手段.

    正極材料; 簡(jiǎn)易快速共沉淀; 立方體結(jié)構(gòu); 電化學(xué)性能; 鋰離子電池

    1 Introduction

    Among the cathode materials used at present,Li-rich layered oxide materials zLi2MnO3-(1–z)LiMO2(0 < z < 1,M=Mn0.5Ni0.5,MnxNiyCo(1–x–y),0 < x,y < 0.5) are extremely attracti·ve because of the high specific capacity over 250 mAhg–1,1–3though they suffer from some problems such as large irreversible capacity loss in the first cycle,unsatisfactory rate capacity performance,inferior cyclic stability and so on.In particular,xLi2MnO3-(1–x)Li(Mn1/3Ni1/3Co1/3)O2materials have been proved to be glamorous in terms of superior electrochemical performance.4–7Nevertheless,in large-scale applications,those Co-doped Li-rich layered manganese oxide materials(xLi2MnO3-(1–x)Li(Mn1/3Ni1/3Co1/3)O2) are less competitive than the Co-free materials(xLi2MnO3-(1–x)LiMn0.5Ni0.5O2) due to the expensiveness and toxicity of cobalt resource.Generally,the physical and chemical properties(i.e.,crystal structure,particle size,morphology,and tap density,etc.),the determining factors of the electrochemical performance of cathode powders,are related directly to the synthetic routes.8,9Therefore,to optimize the physical and chemical properties,numerous research articles have been focused on the synthetic aspects of these materials so far.Shojan et al.10prepared 0.3Li·2MnO3-0.7LiMn0.5Ni0.5O2with capacity less than 200 mAhg–1(0.1C) and poor cycle performance by sol-gel method.Wei et al.4synthesized nanoplate Li(Li0.17Ni0.25Mn0.58)O2material with excellent electrochemical performance,but there are still plenty of limiting factors for the industrialization of the hydrothermal method.Nowadays,co-precipitation method in combination with solid state has become a primary preparation technique for these materials.However,these traditional coprecipitation methods in combination with solid state10–12are complex and time-consuming for the slow precipitation reaction,pH control,filtering,and mixing of Li-source.In some cases,preventing Mn(II) oxidation with inert gas in the synthesis process induces operation complexity.11,13

    In this work,we proposed a facile quick co-precipitation approach to synthesize the layered composites 0.6Li2MnO30.4 LiMn0.5Ni0.5O2with cuboid hierarchical micro/nanostructure.(1) This approach adopts quick waterfall-addition with subsequent evaporation to replace complicated processes including slow dropwise-addition,aged procedure,filtering and drying step,and mixing of Li-source process of the traditional co-precipitation method.(2) Oxalate is chosen as precipitant to avoid using of inert gas protection(The inert gas is used to control the valence state of Mn(II)).13,14With the implementation of two changes mentioned above,the co-precipitation method has been greatly simplified.In the previous reports,12,15–17the primary nanoparticles prepared by oxalic precipitation can’t self-assemble to secondary particles with special morphology,unless polyethylene glycol-assisted,hydrothermal method or solvothermal route are used.Herein,we obtained a cuboid hierarchical micro/nanostructured 0.6Li2MnO3-0.4LiMn0.5Ni0.5O2material composed of the accumulation of small nanoparticles by masterly utilizing the properties of oxalate.Encouragingly,the assynthetized novel cuboid aggregates deliver an excellent electrochemical performance,especially rate capability.

    2 Experimental

    2.1 Material synthesis

    The reagents 0.16 mol LiOH·H2O(Chengd ·uKelong Chemical Co.,AR,99%),0.02 mol Ni(CH3COO)24H2O(Chengdu Kelong Chemical Co.,AR,98%) and 0.08 mol Mn(CH3COO)2·4H2O(Tianjing Damao Chemical Co.,AR,99%) were respectively dissolved in distilled water in term of the stoichiometric ratio(Li excess 5%).After neutralizing by excess acetic acid(Chengdu Kelong Chemical Co.,AR,99.5%),the LiOH solution was added into the mixture of Ni2+/Mn2+solution(nickel acetate/manganese acetate),resulting in a weakly acidic Li+/Ni2+/Mn2+mixed solution.At the same time,mix 37 g oxalate(Chengdu Kelong Chemical Co.,AR,99.5%) used as both precipitant and structure-directing agent with 100 mL distilled water and heat the mixture until oxalate was dissolved completely(about 60°C).Light blue sediment which contains nickel oxalate and manganese oxalate precipitation was obtained after pouring aqueous solution of oxalate into the weakly acidic Li+/Ni2+/Mn2+mixed solution mentioned above.Then the water in the resulting solution was evaporated at 95°C with continuously stirring until a powder precursor was obtained.Finally,the dried precursor was preheated at 400°C for 3 h,then calcinated orderly at 500°C for 5 h,and 900°C for 10 h in air.

    2.2 Materials characterization

    The X-ray diffraction pattern wa·s conducted with Cu Kαradiation at a scanning rate of 0.06(°)s–1in the 2θ range from 10° to 70°.The general morphology and size of the sample were determined by field emission scanning electron microscopy(SEM)(JEOL JSM-5900 LV).The Li,Mn,and Ni molar ratio in the synthesized sample was analyzed with a Spectro AR-COS FHS12 inductively coupled plasma-atomic emission spectrometer(ICP-AES).The structure of the sample was characterized by a transmission electron microscopy(TEM)(JEM-2100).The valence states of the transition metal ion in the sample were determined by X-ray photoelectron spectroscopy(XPS)(PHI QUANTUM 2000) with monochromatic Al-Kαanode source with pass energy of 1486.6 eV,the binding energy(EB) of XPS was referenced to C1s spectrum of carbon support at 284.6 eV.

    2.3 Electrochemical measurements

    The electrochemical properties of the sample were measured using a CR-2032-type coin cell.The cathode material was prepared as follows:80%(w) active material,13%(w) acetylene black,and 7%(w) polyvinylidene fluoride(PVDF) were mixed with N-methyl pyrrolidinone(NMP) which is selected as solvent.The slurry was spread on Al foil and dried at 100°C for 12 h to obtain positive electrode.A lithium foil and a Celgard 2400 membrane were used as the negative electrode and separator,respectively.The dried positive electrode sheet was cut into disks with diameter of 14 mm and the loading of the active material in the electrode was ~2.5 mg·cm–2.The galvanostatic charge-discharge tests were performed on a battery measurement system(Neware BTS-610,5 V,10 mA) with a cut-off voltage of 2.0–4.8 V(vs Li/Li+) at room temperature.After the initial charge-discharge cycle,the cell was cycled at increasing rates:7 cycles at 0.1C,6 cycles at 0.2C,11 cycles each at 0.5C,1C,2C,5C and 10C,72 cycles at 0.5C,then 51 cycles at 1C,finally 10 cycles at 0.1C in succession.The current value for 1C rate was 200 mA·g–1in our definition.Cyclic voltammetry(CV) curves were recorded from 2.0 to 4.8 V at a scan rate of 0.1 mV·s–1on a LK9805 electrochemical workstation.

    3 Results and discussion

    The crystallinity and crystal phase of the sample are investigated by XRD.The XRD pattern of the as-prepared solid solution sample is shown in Fig.1.This pattern is extremely similar to the pattern of lithium-rich layered oxides reported in the previous literature.18No impurity and overlapping peaks are detected in the XRD pattern.The majority of the diffraction peaks in the pattern can be indexed as a layered α-NaFeO2-type structure(space group Rm,hexagonal),while a few weak super-lattice reflections peaks presented between 21° to 25° are indexed based on a layered Li2MnO3-type structure(space group C2/m),3,7,19,20which are known to be caused by the super-lattice ordering of Li+and Mn4+in the transition metal layers.21In general,the intensity ratio of the I(003)/I(004)can be used to estimate degree of cation mixing between Ni2+and Li+in the Li-layers.22The I(003)/I(004)intensity ratio of the as-prepared cathode material is 1.45(greater than 1.20),which is an indication that the extent of cation disorder between Ni2+and Li+in the crystal structure is low.23,24The clear separation of the pair reflection peaks(006)/(012) and(108)/(110),24and the high c/a ratio(c/a=4.995) reflect the successful formation of a well-ordered layer-structure.

    The Li/Mn/Ni atomic ratio measured by ICP is 1.223:0.615:0.154,which is closely to the theoretical metal atomic ratio of raw Li1.231Mn0.615Ni0.154O2material.To further confirm the chemical valence state of the transition metals in the component,XPS characterization was employed.The Mn2p,Ni2p and O1s XPS spectra of as-prepared sample are shown in Fig.2.The Mn2p spectra(Fig.2(a)) exhibits two major peaks at 642.1 and 653.6 eV without any satellite peak,suggesting a predominantly valence of Mn4+.25,26Four signals are observed in the Ni2p XPS spectra(Fig.2(b)),two strong signals around 872.1 and 854.4 eV correspond to Ni2p1/2and Ni2p3/2,while their shakeup satellite peaks are respectively at 879.0 and 861.2 eV.Such satellite peaks of Ni2p3/2originating from the multiple splitting in the energy level of the Ni-oxides have been observed in other Ni2+containing oxides such as NiO,Li(Mn1.5Ni0.5)O4,and Li(Mn1/3Ni1/3Co1/3)O2.25Fig.2(c) shows O1s peak of the sample.The narrow peak located at 529.35 eV is characteristic of O2–anions belonging to the crystalline network.27The XPS results show that the predominant oxidation states of Ni and Mn in this compound are 2+ and 4+,respectively.According to the electroneutrality principle,the as-prepared composite can be given the formula of Li1.231Mn0.615(Ⅳ)Ni0.154(Ⅱ)O2.28

    Fig.1 XRD pattern for the sample

    As is well-known,the morphology and structure of lithium cathode materials have great influence on the electrochemical performances.Fig.3(a–c) present SEM images of the precipitation,the precursor calcined at 400°C for 3 h,and final product powder of the sample synthesized with oxalic acid,respectively.As shown in Fig.3(a),the cuboid precipitation is assembled with acicular particles.After low temperature treatment,the primary particle size of the precursor is about 50 nm and these particles pile closely to form the secondary particles(10–20 μm) with irregular cuboid(Fig.3(b)).Subsequently,as shown in Fig.3(c),the main cuboid shape of the secondary particles can be maintained after high temperature.Here,in this formation process of the cuboid precipitation,oxalate serves a vital function.But from the insert of Fig.3(c),a particular section of a high-resolution image,a slight differences in morphology compared to the precursor can be observed.Obviously,the primary particles liking rock-shaped grains(40–200 nm) of the as-prepared sample are larger and denser than the precursor’s.Ingeneral,nanoparticles with proper particle size can enhance the lithium-ion diffusion by shortening the intergranular and the interior diffusion pathways,29which can improve the rate performance of the materials remarkably.Besides,the number of the pore in the as-prepared sample is increased in comparison to the precursor.These pores deriving from the decomposition of the oxalic acid root provide sufficient contact area to the electrolyte,which is beneficial for the penetration of electrolyte into the materials and the Li-ion insertion/extraction at high current rate.On the other hand,the secondary microstructure yields good structural stability by suppressing the dissolution of the primary nanoparticles into electrolyte.16Thus,this sample with cuboid hierarchical micro/nanostructure may have a superior electrochemical performance.

    Fig.2 XPS spectra of the sample(a) Mn2p;(b) Ni2p;(c) O1s

    Fig.3 SEM images of(a) precipitation,(b) precursor calcined at 400°C,(c) as-prepared sample synthesized with oxalate,and(d) the sample synthesized without adding oxalate

    For the sake of investigating the role of oxalate in the formation of cuboid aggregation,a sample is synthesized via the same way but without adding oxalate.The SEM images of the sample are shown in Fig.3(d).It can be seen clearly that there is no any nearly cuboid aggregation but only unordered nanoparticles in the compound synthesized without adding oxalic acid.The different morphology of the two samples indicates that oxalate plays a vital role in the formation of the cuboid precipitation.Based on these,we propose a formation mechanism of the cuboid aggregation as shown in Scheme 1.In step 1,the saturated oxalate solution of 60°C is poured into the weakly acidic Li+/Ni2+/Mn2+metal ion solution of 30°C.When the saturated oxalate solution at 60°C touches the metal ion solution at apparently lower temperature(30°C),the acicular oxalate crystals begin to crystallize out in the interface of these two kinds of solution.In the following reaction,the tiny acicular oxalate crystals serve as precipitant and structure-directing agent that assists the formation of cuboid micro-sized matrix.With crystallization and precipitation happening in succession,the acicular precipitations self-assemble into the cuboid shape(shown inFig.3(a)).The further growth of the cuboids is achieved under the high calcined temperature.In step 2,the oxalate in precursors is decomposed into gas and oxide,leaving behind nanoparticles in the bulk matrix.This process utilizes thermal variation to realize the dissolution and recrystallization of oxalate,further guiding the formation of cuboid aggregation.

    The TEM characterization of as-synthesized materials is displayed in Fig.4.Homogeneous particles with a size below 200 nm can be seen in Fig.4(a) and Fig.4(b),which agree with the SEM observations above.A high resolution transmission electron micrograph of as-synthesized material is shown in Fig.4(c),from which clear lattice fringes with d-spacing of 0.47 nm can be observed.This value coincides with the interplanar distance of(001) plane of Li2MnO3and/or the(003) plane of LiMO2,which agrees with the XRD analysis results.

    Scheme 1 Schematic illustration of the material preparation process

    Fig.4 (a) TEM image of the sample,(b) a magnified image of a single nanoparticles and(c) HR-TEM image

    Fig.5 Cyclic performance of the samples synthesized with oxalate and without oxalate at different rates

    To investigate the effect of oxalate on the electrochemical properties,the electrochemical performances in terms of rate property and cycling capability for the samples synthesized with and without addition of oxalate are illustrated in Fig.5.It can be clearly observed that material synthesized with oxalate displays better specific capacity at all rates than the material synthesized without oxalate.The cuboid material synthesized with oxalate in this work delivers very excellent electr·ochemical properties with discharge capacity over 160 mAhg–1even under the rate of 5C(in Fig.5(a)).As shown in Fig.5(a) and Fig.6(c),the initial charge and discharge capacities ·at a rate of 0.1C are respectively measured as 319 and 243 mAhg–1corresponding to the coulombic efficiency(CE) of 76.3% which is larger than that of sample synthesized without oxalate(72.0%).When the rate is increased to 0.2C,0.5C,1C,2C,5C and 10C,the discharge capacity· are measured at about 214,188,177,168,163,and 143 mAhg–1,respectively(Fig.5(a)).In contrast,the corresponding capacities for the ·sample without oxalate are 195,165,142,125,90,and 65 mAhg–1,respectively.No obvious fading of discharge capacity is observed at each current rate.Fig.5(b) and Fig.5(c) show the cycle stability under 0.5C and 1C rate of the materials after high rate performance tests.It turns out to be that the discharge capacity can be recovered when the rate turns back to 0.5C after rate capability tests,implying the retentive and stable of sample synthesized with oxalate.In the cycling performance tests,the in·itial discharge capacity at the current rate of 0.5C ·is 193 mAhg–1and the capacity maintains a value of 175 mAhg–1after 72 cycles,yielding the high capacity retention of 90.7%.All above indicate that the assynthesized material has a stable structure.This excellent electrochemical performance,especially superior rate performance is closely related to the nanosized primary particles which enhances the lithium-ion diffusion by shortening the pathway for Li+diffusion.Simultaneously,the porous structure derived from decomposition of oxalate precursors can accelerate electrolyte penetration into the nanoparticles,ensuring the efficient contact area between the electrode and electrolyte.Furthermore,the second cuboid micro-sized matrix structure of the as-prepared material can inhibit the dissolution of the primary particles into electrolyte during the charge-discharge process,revealing a relatively stable structure and better electrochemical performance.In the fur·ther cycles,the ·discharge capacity fades slowly from 160 mAhg–1to 136 mAhg–1at 1C.When the rat·e goes back to 0.1C,the average special capacity is 210 mAhg–1,which is 87.5%· of the discharge capacity in the first seven cycles(~240 mAhg–1).This capacity retention(87.5%) after about 200 cycles including cycles with high current rate is attractive compared to the capacity retention(82.8%) in Gu’s work.30

    Fig.6 Discharge curves(a) and the corresponding dQ/dV curves(b) under differentC-rate for 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2electrode;(c) charge-discharge curves of 1st,2nd,3rd,and 198th;(d) cyclic voltammograms profiles

    Fig.6 gives further electrochemical analysis for 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2prepared with oxalate addition.In the discharge voltage curves(Fig.6(a)) under different currents,voltage decay is observed with the increase of current rate and cycle number.This voltage decay signals the layered to spinel transformation,27,30which causes the fading of discharge capacity.The corresponding dQ/dV curves are illustrated in Fig.6(b).A shape peak around 4.5 V in the initial charge process is attributed to the irreversible Li2O removal from the Li2MnO3.31The reduction peak at ~ 4.3 V noted as R1and the reduction peak lower than 3.5 V noted as R2in the first discharge process are associated with the reduction reaction of Ni4+/Ni2+and the reduction of Mn4+to Mn3+which happens in the charge-discharge process after the electrochemical activation of Li2MnO3component,32respectively.Clearly,R1becomes more and more smoothly with the increase of C-rate and the cycle number which indicates the contribution of Ni to capacity is on the decrease.It is also obvious that the R2shifts to the low voltage region clearly with the increase of C-rate and cycle number.At last,this peak is below 3.0 V completely at the rate of 10C.It is considered that the reduction peak below 3.0 V can be attributed to the spinel-like phase.22The weaken of the reduction peak around 4.3 V corresponding to Ni4+/Ni2+and the shift of the reduction peak around 3.0 V demonstrate that parts of the layered structure has been gradually transformed into spinel structure in crystallography(which is corresponding to the result of Fig.6(a)).The charge and discharge curves of 1st,2nd,3rd,and 198th are shown in Fig.6(c).The initial charge profile is composed of a sloping region below 4.5 V and a plateau region ab·ove 4.5 V.The former region provides a capacity of 111 mAhg–1which is attributed to the Li+extraction from the layered LiNi0.5Mn0.5O2by oxidation of Ni2+to Ni4+.Then the lo·ng flat plateau above 4.5 V provides a capacity of 208 mAhg–1.This is a process that Li+extraction from the transition metal layer with the loss of Li2O from the layered Li2MnO3component leads to a large initial irreversible capacity loss(23.7%) and is consistent with the sharp peak at 4.5 V in the first charge process in Fig.6(b).The subsequent cycles(seen the charge and discharge curves of 2nd,3rd,and 198th in Fig.6(c)) indicate that the cycles are almost reversible after the initial irreversible cycle.The voltage decay phenomenon which is contributed to the cycling-driven structural evolution(layered to spinel transformation) can also be observed in Fig.6(c).The plateau between 3.0 and 3.5 V in the 198th charge curve is more noticeable than in the 2nd and 3rd,which indicates more redox reaction of Mn4+/Mn3+.Cyclic voltammogram(CVs) of the prepared material is recorded to gather information about the individual redox process during the charging and discharging,which is shown in Fig.6(d).The first anodic peak around 4.0 V in the initial charging is predominantly associated with Ni oxidation from Ni2+to Ni4+.The second anodic peak at higher potential(> 4.5 V) is corresponding to the removal of Li2O which is consistent with the result of Fig.6(b).The two cathodic peaks at ~ 3.25 V and ~ 3.75 V are associated with the reduction of Mn and Ni,respectively.33The overlap between 2nd,3rd,and 4th cycle profiles indicates the good reversibility of the as-prepared material.These changes mentioned above and the polarization caused by the current rate increasing during charge and discharge result in a gradual capacity fading.Although alterations have occurred to the electrode,the electrode is still a stable one as depicted in 192nd–201st cycles.Furthermore,the electrode shows good reversibility in all cycles(2nd–201st cycles) with high coulombic efficiency nearly 100%.

    4 Conclusions

    In summary,a cuboid nanostructured 0.6Li2MnO3-0.4LiNi0.5Mn0.5O material was successfully synthesized through a facile quick co-precipitation method.The XRD,SEM,and TEM results show that the layered as-synthesized material with pure phase possesses a cuboid morphology consisted of nanoparticles of 40 to 200 nm in size.The charge-discharge experiments demonstrate that the sample exhibits excellent electrochemical properties especially rate performance.At the high rate of 10C,the discharge capacity is measured as high as 143 mAh·g–1which is 58.8% of the average capacity at the rate of 0.1C.Moreover,the as-prepared material has a good cycling stability,even after the high rate measurement,delivering high capacity retention of 90.7% after 72 cycles at 0.5C.This study has thrown a new light upon facile preparation of hierarchical micro/nanostructure which is very promising for large-scale commercialization of the Co-free and Li-rich cathode material xLi2MnO3-(1–x)LiMn0.5Ni0.5O2to synthesize Lirich layered cathode with excellent performance.

    (1)Cheng,F.;Xin,Y.;Chen,J.;Lu,L.;Zhang,X.;Zhou,H.J.Mater.Chem.A 2013,1,5301.doi:10.1039/c3ta00153a

    (2)Tabuchi,M.;Nabeshima,Y.;Takeuchi,T.;Kageyama,H.;Imaizumi,J.;Shibuya,H.;Akimoto,J.J.Power Sources 2013,221,427.doi:10.1016/j.jpowsour.2012.08.055

    (3)Xue,Q.R.;Li,J.L.;Xu,G.F.;Hou,P.F.;Yan,G.;Dai,Y.;Wang,X.D.;Gao,F.Acta Phys.-Chim.Sin.2014,30,1667.[薛慶瑞,李建玲,徐國(guó)峰,侯朋飛,晏 剛,代 宇,王新東,高 飛.物理化學(xué)學(xué)報(bào),2014,30,1667.] doi:10.3866/PKU.WHXB201406251

    (4)Wei,G.Z.;Lu,X.;Ke,F.S.;Huang,L.;Li,J.T.;Wang,Z.X.;Zhou,Z.Y.;Sun,S.G.Adv.Mater.2010,22,4364.doi:10.1002/adma.v22:39

    (5)Cho,T.H.;Shiosaki,Y.;Noguchi,H.J.Power Sources 2006,159,1322.doi:10.1016/j.jpowsour.2005.11.080

    (6)Lei,C.H.;Bare?o,J.;Wen,J.G.;Petrov,I.;Kang,S.H.;Abraham,D.P.J.Power Sources 2008,178,422.doi:10.1016/j.jpowsour.2007.11.077

    (7)Johnson,C.S.;Li,N.;Lefief,C.;Thackeray,M.M.Electrochem.Commun.2007,9,787.doi:10.1016/j.elecom.2006.11.006

    (8)Kim,S.;Johnson,C.S.;Vaughey,J.T.;Thackeray,M.M.;Hackney,S.A.;Yoon,W.;Grey,C.P.Chem.Mater.2004,16,1996.doi:10.1021/cm0306461

    (9)Lin,J.;Mu,D.;Jin,Y.;Wu,B.;Ma,Y.;Wu,F.J.Power Sources 2013,230,76.doi:10.1016/j.jpowsour.2012.12.042

    (10)Shojan,J.;Chitturi,V.R.;Torres,L.;Singh,G.;Katiyar,R.S.Mater.Lett.2013,104,57.doi:10.1016/j.matlet.2013.04.001

    (11)Liu,G.B.;Liu,H.;Shi,Y.F.Electrochim.Acta 2013,88,112.doi:10.1016/j.electacta.2012.10.054

    (12)Wu,F.;Lu,H.;Su,Y.;Li,N.;Bao,L.;Chen,S.J.Appl.Electrochem.2010,40,783.doi:10.1007/s10800-008-0057-2

    (13)Zhu,Z.;Zhu,L.J.Power Sources 2014,256,178.doi:10.1016/j.jpowsour.2014.01.068

    (14)Xue,Q.R.;Li,J.L.;Xu,G.F.;Zhou,H.W.;Wang,X.D.;Kang,F.Y.J.Mater.Chem.A 2014,2,18613.doi:10.1039/C4TA04024D

    (15)Zhang,X.;Cheng,F.;Zhang,K.;Liang,Y.;Yang,S.;Liang,J.;Chen,J.RSC Adv.2012,2,5669.doi:10.1039/c2ra20669b

    (16)Fu,F.;Deng,Y.P.;Shen,C.H.;Xu,G.L.;Peng,X.X.;Wang,Q.;Xu,Y.F.;Fang,J.C.;Huang,L.;Sun,S.G.;Electrochem.Commun.2014,44,54.doi:10.1016/j.elecom.2014.04.013

    (17)Zhang,L.;Borong,W.;Ning,L.;Feng,W.Electrochim.Acta 2014,118,67.doi:10.1016/j.electacta.2013.11.186

    (18)Jiang,Y.;Yang,Z.;Luo,W.;Hu,X.;Huang,Y.Phys.Chem.Chem.Phys.2013,15,2954.doi:10.1039/c2cp44394e

    (19)Kim,D.;Gim,J.;Lim,J.;Park,S.;Kim,J.Mater.Res.Bull.2010,45,252.doi:10.1016/j.materresbull.2009.12.027

    (20)Kim,J.H.;Choi,S.H.;Son,M.Y.;Kim,M.H.;Lee,J.K.;Kang,Y.C.Ceram.Int.2013,39,331.doi:10.1016/j.ceramint.2012.06.029

    (21)Wang,Z.Y.;Li,B.;Ma,J.;Xia,D.G.RSC Adv.2014,4,15825.doi:10.1039/c3ra47044j

    (22)Wu,F.;Wang,Z.;Su,Y.;Guan,Y.;Jin,Y.;Yan,N.;Tian,J.;Bao,L.;Chen,S.J.Power Sources 2014,267,337.doi:10.1016/j.jpowsour.2014.05.097

    (23)Ryu,J.H.;Park,B.G.;Kim,S.B.;Park,Y.J.J.Appl.Electrochem.2009,39,1059.doi:10.1007/s1008-008-9757-2

    (24)Kim,G.Y.;Yi,S.B.;Park,Y.J.;Kim,H.G.Mater.Res.Bull.2008,43,3543.doi:10.1016/j.materresbull.2008.01.011

    (25)Yu,C.;Li,G.;Guan,X.;Zheng,J.;Li,L.;Chen,T.Electrochim.Acta 2012,81,283.doi:10.1016/j.electacta.2012.06.084

    (26)Li,L.;Zhang,X.;Chen,R.;Zhao,T.;Lu,J.;Wu,F.;Amine,K.J.Power Sources 2014,249,28.doi:10.1016/j.jpowsour.2013.10.092

    (27)Sathiya,M.;Rousse,G.;Ramesha,K.;Laisa,C.;Vezin,H.;Sougrati,M.T.;Doublet,M.L.;Foix,D.;Gonbeau,D.;Walker,W.Nat.Mater.2013,12,827.doi:10.1038/nmat3699

    (28)Liao,S.X.;Zhong,B.H.;Guo,X.;Shi,X.X.;Hua,W.B.Eur.J.Inorg.Chem.2013,2013,5436.doi:10.1002/ejic.v2013.31

    (29)Zhang,L.;Wu,B.;Li,N.;Mu,D.;Zhang,C.;Wu,F.J.Power Sources 2013,240,644.doi:10.1016/j.jpowsour.2013.05.019

    (30)Gu,M.;Belharouak,I.;Zheng,J.;Wu,H.;Xiao,J.;Genc,A.;Amine,K.;Thevuthasan,S.;Baer,D.R.;Zhang,J.G.ACS Nano 2012,7,760.

    (31)Chen,L.;Chen,S.;Hu,D.Z.;Su,Y.F.;Li,W.K.;Wang,Z.;Bao,L.Y.;Wu,F.Acta Phys.-Chim.Sin.2014,30,467.[陳 來(lái),陳 實(shí),胡道中,蘇岳峰,李維康,王 昭,包麗穎,吳 峰.物理化學(xué)學(xué)報(bào),2014,30,467.] doi:10.3866/PKU.WHXB 201312252

    (32)Li,Q.;Li,G.;Fu,C.;Luo,D.;Fan,J.;Li,L.ACS Appl.Mater.Interfaces 2014,6,10330.doi:10.1021/am5017649

    (33)Wang,Y.;Yan,X.;Bie,X.;Fu,Q.;Du,F.;Chen,G.;Wang,C.;Wei,Y.Electrochim.Acta 2014,116,250.doi:10.1016/j.electacta.2013.10.215

    Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery

    SHI Xia-Xing1LIAO Shi-Xuan1YUAN Bing1ZHONG Yan-Jun1ZHONG Ben-He1LIU Heng2GUO Xiao-Dong1,*
    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,P.R.China;
    2College of Materials Science and Engineering,Sichuan University,Chengdu 610065,P.R.China)

    The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method.The prepared material was characterized by X-ray powder diffraction(XRD),X-ray photoelectron spectroscopy(XPS),inductively coupled plasma(ICP) spectroscopy,field-emission scanning electron microscopy(SEM),transmission electron microscopy(TEM),and electrochemical measurements.It was found that the as-prepared material has a typical hexagonal α-NaFeO2layered structure with Rm space group,and the chemical composition of this material is similar to the corresponding target material.SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40–200 nm.A possible formation mechanism of this cuboid aggregation is proposed.The electrochemical tests(in the voltage range 2.0–4.8 V vs Li/Li+) indicate that the as-prepared material exhibits excellent rate capability.It deliversapproximately 243 and 143 mAh·g–1corresponding to 0.1C and 10C,respectively.Moreover,the asprepared material has good cycling stability even after high rate measurement,delivering a high capacity retention of 90.7% after 72 cycles at 0.5C.This co-precipitation approach,which has facile operation processes and good results,is a economic technique that could facilitate the application of Li-rich cathode on a large scale.

    Cathode material; Facile quick co-precipitation; Cuboid structure; Electrochemical performance; Li-ion battery

    April 22,2015;Revised:June 15,2015;Published on Web:June 15,2015.

    O646

    icle]

    10.3866/PKU.WHXB201506151 www.whxb.pku.edu.cn

    *Corresponding author.Email:xiaodong2009@scu.edu.cn;Tel:+86-28-85406702;Fax:+86-28-85405517.

    The project was supported by the Science and Technology Pillar Program of Sichuan University,China(2014GZ0077) and Research Fund for the Doctoral Program of Higher Education,China(20120181120103).

    四川大學(xué)科技支撐計(jì)劃(2014GZ0077)和高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20120181120103)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    高倍率四川大學(xué)立方體
    疊出一個(gè)立方體
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    圖形前線
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    立方體星交會(huì)對(duì)接和空間飛行演示
    太空探索(2016年9期)2016-07-12 09:59:53
    折紙
    四川大學(xué)華西醫(yī)院
    少妇的丰满在线观看| 亚洲欧美日韩无卡精品| 免费高清视频大片| 伦理电影免费视频| 色播亚洲综合网| 色在线成人网| 黄色毛片三级朝国网站| 丝袜美腿诱惑在线| 欧美又色又爽又黄视频| 国产成人一区二区三区免费视频网站| 琪琪午夜伦伦电影理论片6080| 日韩免费av在线播放| 午夜日韩欧美国产| 国产私拍福利视频在线观看| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 在线观看www视频免费| 国产精品久久电影中文字幕| cao死你这个sao货| 亚洲美女视频黄频| 国产亚洲av高清不卡| 一级片免费观看大全| www日本黄色视频网| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩高清专用| 男女床上黄色一级片免费看| 亚洲中文字幕一区二区三区有码在线看 | 欧美高清成人免费视频www| 两个人看的免费小视频| 国产高清videossex| 久久草成人影院| 最新在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 给我免费播放毛片高清在线观看| 一本久久中文字幕| 给我免费播放毛片高清在线观看| 国产熟女午夜一区二区三区| 国产真实乱freesex| 黄色片一级片一级黄色片| 国产熟女午夜一区二区三区| 午夜福利视频1000在线观看| 1024手机看黄色片| av福利片在线| 美女 人体艺术 gogo| 免费在线观看亚洲国产| 精品一区二区三区四区五区乱码| 成年免费大片在线观看| 午夜成年电影在线免费观看| 亚洲av电影不卡..在线观看| x7x7x7水蜜桃| 欧美日韩福利视频一区二区| 麻豆成人午夜福利视频| 午夜精品久久久久久毛片777| 免费在线观看黄色视频的| 日韩大码丰满熟妇| a在线观看视频网站| 久久亚洲真实| 麻豆av在线久日| a级毛片在线看网站| 十八禁人妻一区二区| 后天国语完整版免费观看| 亚洲五月婷婷丁香| 亚洲精品久久国产高清桃花| 老鸭窝网址在线观看| 免费看十八禁软件| 亚洲一码二码三码区别大吗| 免费搜索国产男女视频| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av高清一级| 99国产精品一区二区蜜桃av| 色精品久久人妻99蜜桃| 又大又爽又粗| 一本一本综合久久| 亚洲人成电影免费在线| 亚洲黑人精品在线| 国产av不卡久久| 亚洲熟妇中文字幕五十中出| 久久久久久久午夜电影| 丝袜美腿诱惑在线| 亚洲国产精品成人综合色| 狠狠狠狠99中文字幕| 国产成人精品久久二区二区91| 亚洲五月天丁香| 久久性视频一级片| 久9热在线精品视频| 狂野欧美白嫩少妇大欣赏| 中文字幕精品亚洲无线码一区| 中文字幕精品亚洲无线码一区| 久久久久久亚洲精品国产蜜桃av| 精品日产1卡2卡| 成人三级做爰电影| 精品久久久久久成人av| 天堂影院成人在线观看| 午夜精品一区二区三区免费看| 免费观看精品视频网站| 99国产精品99久久久久| 国产成+人综合+亚洲专区| 成人高潮视频无遮挡免费网站| 欧美 亚洲 国产 日韩一| 老司机在亚洲福利影院| 亚洲一区二区三区色噜噜| 久久精品人妻少妇| 日韩成人在线观看一区二区三区| 一级a爱片免费观看的视频| 国内揄拍国产精品人妻在线| 99久久精品热视频| www.999成人在线观看| 亚洲成人国产一区在线观看| 18禁国产床啪视频网站| 国产一区二区在线av高清观看| 精品国产乱码久久久久久男人| 中文字幕熟女人妻在线| 久久久久久久午夜电影| 嫩草影院精品99| 亚洲精品中文字幕一二三四区| 啪啪无遮挡十八禁网站| 青草久久国产| 俺也久久电影网| 成年人黄色毛片网站| 久久九九热精品免费| 在线观看免费午夜福利视频| 免费在线观看亚洲国产| 可以免费在线观看a视频的电影网站| 国产v大片淫在线免费观看| 最新美女视频免费是黄的| 成人欧美大片| 欧美精品啪啪一区二区三区| 精品福利观看| 日本黄大片高清| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 99在线人妻在线中文字幕| 亚洲人成77777在线视频| 国产精品久久视频播放| 国产麻豆成人av免费视频| 久久久久国产一级毛片高清牌| 伦理电影免费视频| 高潮久久久久久久久久久不卡| 亚洲av片天天在线观看| 日韩精品中文字幕看吧| 又紧又爽又黄一区二区| 久久精品人妻少妇| 精华霜和精华液先用哪个| 国内揄拍国产精品人妻在线| 88av欧美| 中文字幕熟女人妻在线| 最近最新免费中文字幕在线| 国产av又大| 国产69精品久久久久777片 | 十八禁人妻一区二区| 桃色一区二区三区在线观看| 日本在线视频免费播放| 国产片内射在线| 精品国内亚洲2022精品成人| 波多野结衣巨乳人妻| 天天一区二区日本电影三级| 国产亚洲av高清不卡| 每晚都被弄得嗷嗷叫到高潮| 丁香欧美五月| 88av欧美| 露出奶头的视频| 免费搜索国产男女视频| 麻豆成人午夜福利视频| 女人被狂操c到高潮| 成年女人毛片免费观看观看9| 欧美国产日韩亚洲一区| 黄色丝袜av网址大全| 最新美女视频免费是黄的| 波多野结衣巨乳人妻| 亚洲色图av天堂| 麻豆久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 亚洲国产看品久久| 丰满人妻一区二区三区视频av | 好男人在线观看高清免费视频| 免费在线观看成人毛片| svipshipincom国产片| 精品第一国产精品| 日本一本二区三区精品| 亚洲第一电影网av| 啦啦啦韩国在线观看视频| 高潮久久久久久久久久久不卡| 波多野结衣巨乳人妻| 天天一区二区日本电影三级| 一级黄色大片毛片| 男人舔女人的私密视频| 国产在线观看jvid| 丰满的人妻完整版| 国产欧美日韩精品亚洲av| 在线观看美女被高潮喷水网站 | 国产高清视频在线观看网站| 国产精品日韩av在线免费观看| 成人午夜高清在线视频| 久久九九热精品免费| 国产成人aa在线观看| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久久久久| 亚洲 欧美一区二区三区| 超碰成人久久| 日本黄色视频三级网站网址| 嫩草影视91久久| 亚洲国产看品久久| 岛国视频午夜一区免费看| 在线免费观看的www视频| 最近视频中文字幕2019在线8| www.www免费av| 久久这里只有精品19| 久久伊人香网站| 日日爽夜夜爽网站| 亚洲欧美日韩东京热| 免费无遮挡裸体视频| 欧美激情久久久久久爽电影| 黄色a级毛片大全视频| 国产高清有码在线观看视频 | 1024手机看黄色片| 特级一级黄色大片| 国产成人啪精品午夜网站| 性欧美人与动物交配| 欧美最黄视频在线播放免费| 国产精品久久久久久久电影 | 桃色一区二区三区在线观看| 精品午夜福利视频在线观看一区| 中文字幕高清在线视频| 国产乱人伦免费视频| av中文乱码字幕在线| 男女床上黄色一级片免费看| 老鸭窝网址在线观看| 国产单亲对白刺激| 免费在线观看日本一区| 欧美不卡视频在线免费观看 | 操出白浆在线播放| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 两个人的视频大全免费| 国产精品av视频在线免费观看| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 亚洲精品在线观看二区| 久久精品影院6| 中亚洲国语对白在线视频| 国产区一区二久久| 久久久久久久久免费视频了| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 露出奶头的视频| 久久亚洲真实| 亚洲人成77777在线视频| 一级作爱视频免费观看| 欧美国产日韩亚洲一区| 亚洲自偷自拍图片 自拍| 国产三级中文精品| av有码第一页| 一级作爱视频免费观看| 欧美一级a爱片免费观看看 | 舔av片在线| 久久这里只有精品19| 怎么达到女性高潮| 国产精品久久久久久久电影 | 国产探花在线观看一区二区| 一边摸一边做爽爽视频免费| 午夜福利欧美成人| videosex国产| 国产熟女午夜一区二区三区| 精品第一国产精品| 制服丝袜大香蕉在线| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 国语自产精品视频在线第100页| 美女午夜性视频免费| 男女之事视频高清在线观看| 国产av又大| 午夜精品一区二区三区免费看| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 成在线人永久免费视频| 亚洲免费av在线视频| 中文字幕av在线有码专区| 亚洲精品国产一区二区精华液| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 亚洲熟妇中文字幕五十中出| 俺也久久电影网| 欧美国产日韩亚洲一区| 成年版毛片免费区| 国产成人系列免费观看| 91av网站免费观看| xxxwww97欧美| 欧美乱色亚洲激情| 18禁黄网站禁片免费观看直播| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 级片在线观看| 小说图片视频综合网站| 日韩欧美一区二区三区在线观看| 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 国产熟女xx| 欧美+亚洲+日韩+国产| 久久精品影院6| 女警被强在线播放| 真人做人爱边吃奶动态| 午夜视频精品福利| 国产av不卡久久| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 亚洲,欧美精品.| 久久精品成人免费网站| 99热这里只有精品一区 | 免费在线观看亚洲国产| 欧美在线一区亚洲| 无人区码免费观看不卡| 9191精品国产免费久久| 国产av在哪里看| 麻豆国产97在线/欧美 | 久久久久精品国产欧美久久久| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 我要搜黄色片| 精品欧美一区二区三区在线| 欧美绝顶高潮抽搐喷水| 97碰自拍视频| 19禁男女啪啪无遮挡网站| 最近在线观看免费完整版| 久久热在线av| 999久久久精品免费观看国产| 岛国视频午夜一区免费看| 亚洲人与动物交配视频| 国产亚洲精品综合一区在线观看 | 国产熟女午夜一区二区三区| 免费观看精品视频网站| 久久久久久人人人人人| 99在线人妻在线中文字幕| 精品一区二区三区四区五区乱码| 可以在线观看毛片的网站| 人人妻,人人澡人人爽秒播| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 俺也久久电影网| 精品国产乱子伦一区二区三区| 欧美又色又爽又黄视频| 亚洲av熟女| 九色国产91popny在线| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 亚洲美女黄片视频| 日韩av在线大香蕉| 黄色丝袜av网址大全| 老汉色∧v一级毛片| 国产精品爽爽va在线观看网站| 成人国语在线视频| 无限看片的www在线观看| 国产真人三级小视频在线观看| а√天堂www在线а√下载| 午夜成年电影在线免费观看| 又紧又爽又黄一区二区| 长腿黑丝高跟| 国产日本99.免费观看| 好看av亚洲va欧美ⅴa在| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 成人18禁在线播放| 日韩欧美国产一区二区入口| av视频在线观看入口| www.熟女人妻精品国产| 国产高清视频在线播放一区| 黄色视频,在线免费观看| 少妇的丰满在线观看| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 免费在线观看黄色视频的| 国产精品亚洲美女久久久| 国产精品av视频在线免费观看| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 极品教师在线免费播放| www.精华液| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 色老头精品视频在线观看| 欧美黄色片欧美黄色片| 午夜老司机福利片| 色老头精品视频在线观看| 亚洲18禁久久av| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| 精品电影一区二区在线| 亚洲av电影在线进入| 日本三级黄在线观看| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 久久久久久免费高清国产稀缺| 淫秽高清视频在线观看| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 亚洲男人天堂网一区| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 黄色丝袜av网址大全| 91字幕亚洲| 亚洲av熟女| 日日夜夜操网爽| 免费看a级黄色片| 1024视频免费在线观看| 天堂av国产一区二区熟女人妻 | 国产av不卡久久| xxxwww97欧美| 一二三四在线观看免费中文在| 亚洲国产欧洲综合997久久,| 精品久久蜜臀av无| 久热爱精品视频在线9| 天堂√8在线中文| 中出人妻视频一区二区| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 一个人免费在线观看的高清视频| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 757午夜福利合集在线观看| 午夜福利欧美成人| 一本一本综合久久| 亚洲国产欧美网| 久久亚洲精品不卡| 一级作爱视频免费观看| 岛国在线观看网站| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 国产成+人综合+亚洲专区| 在线观看www视频免费| 999久久久国产精品视频| 嫩草影院精品99| 欧美国产日韩亚洲一区| ponron亚洲| 老鸭窝网址在线观看| 国产精品野战在线观看| 午夜a级毛片| xxxwww97欧美| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 国产激情欧美一区二区| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 亚洲av片天天在线观看| 岛国视频午夜一区免费看| av片东京热男人的天堂| 成人特级黄色片久久久久久久| 免费在线观看完整版高清| 桃红色精品国产亚洲av| 波多野结衣巨乳人妻| 97碰自拍视频| 叶爱在线成人免费视频播放| 级片在线观看| 色在线成人网| 禁无遮挡网站| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 高清在线国产一区| 精品久久久久久,| 国产欧美日韩一区二区精品| 在线a可以看的网站| 免费观看人在逋| 一级毛片高清免费大全| 香蕉av资源在线| 欧美一级毛片孕妇| 久久久久亚洲av毛片大全| 毛片女人毛片| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 亚洲美女黄片视频| 国产麻豆成人av免费视频| 久久精品91蜜桃| 一夜夜www| 在线国产一区二区在线| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 操出白浆在线播放| 精品国产超薄肉色丝袜足j| 色播亚洲综合网| 久久久久久久久中文| 亚洲av成人av| 在线播放国产精品三级| 美女免费视频网站| 两人在一起打扑克的视频| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看 | 欧美日韩国产亚洲二区| 亚洲av成人av| 久久人妻av系列| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 成人av一区二区三区在线看| 国模一区二区三区四区视频 | 一级毛片高清免费大全| 午夜免费观看网址| 校园春色视频在线观看| 男人舔女人的私密视频| 成年人黄色毛片网站| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 黄色女人牲交| 成人三级做爰电影| 国产精品久久久av美女十八| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 一本久久中文字幕| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 国产精品乱码一区二三区的特点| 丝袜美腿诱惑在线| 久久久久久久久中文| 女生性感内裤真人,穿戴方法视频| 男女那种视频在线观看| 午夜免费观看网址| 国产av一区在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 动漫黄色视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 不卡一级毛片| 麻豆国产av国片精品| 日韩免费av在线播放| 在线看三级毛片| 美女大奶头视频| 欧美中文综合在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 人人妻人人看人人澡| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3| 国产蜜桃级精品一区二区三区| 欧美另类亚洲清纯唯美| 国产真人三级小视频在线观看| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 欧美+亚洲+日韩+国产| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 午夜老司机福利片| 又粗又爽又猛毛片免费看| 无人区码免费观看不卡| 国产精品影院久久| 亚洲免费av在线视频| 国产精品久久久av美女十八| 精品日产1卡2卡| 少妇被粗大的猛进出69影院| 亚洲天堂国产精品一区在线| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 亚洲国产欧洲综合997久久,| 精品国产乱子伦一区二区三区| 国产三级黄色录像| 99久久99久久久精品蜜桃| 久久人妻福利社区极品人妻图片| 欧美日韩国产亚洲二区| 亚洲精品中文字幕一二三四区| 日本熟妇午夜| 男女视频在线观看网站免费 | 叶爱在线成人免费视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 日日干狠狠操夜夜爽| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 一区二区三区激情视频| 一级作爱视频免费观看| 此物有八面人人有两片| 成年女人毛片免费观看观看9| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面| 国产精品一及| 窝窝影院91人妻| 亚洲九九香蕉| 老熟妇乱子伦视频在线观看| 免费看十八禁软件| 不卡一级毛片| 国产成人av教育| 久久久国产欧美日韩av| 成人亚洲精品av一区二区| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 一二三四社区在线视频社区8| 脱女人内裤的视频| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| www.www免费av|