• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平衡時溶液的表面吸附

    2015-09-03 07:45:54陳飛武
    物理化學學報 2015年8期
    關鍵詞:平衡條件北京科技大學熱力學

    陳飛武 盧 天 武 釗

    (北京科技大學化學與生物工程學院化學與化學工程系,北京 100083;功能分子與晶態(tài)材料科學與應用北京市重點實驗室,北京 100083)

    平衡時溶液的表面吸附

    陳飛武*盧 天 武 釗

    (北京科技大學化學與生物工程學院化學與化學工程系,北京 100083;功能分子與晶態(tài)材料科學與應用北京市重點實驗室,北京 100083)

    溶液的表面吸附仍是表面熱力學當中的一個具有挑戰(zhàn)性的問題.在本文中我們定義了一個新的熱力學態(tài)函數(shù),表面吸附的平衡條件是這個態(tài)函數(shù)的微分為零.基于這個條件,我們推導了描述平衡時表面吸附的新方程.在推導過程中沒有采用假想分界面.新的表面吸附方程和Gibbs表面吸附方程完全不一樣.還通過分子動力學方法模擬了氯化鈉溶液,模擬結果和我們的理論預測符合較好.

    表面吸附; 平衡條件; 吉布斯吸附方程; 熱力學態(tài)函數(shù); 溶液

    1 Introduction

    It is well known that,for a cup of sugar water,the very thin surface layer of the sugar water will be sweeter than its interior part.Though many progresses have been made so far,1–6yet interpreting this interesting phenomenon quantitatively is still a challenging problem in the thermodynamics of surfaces.For a multicomponent solution,one usually start with the differential form of the Gibbs free energy as follows7

    where S,T,P,V,γ,σ,μB,and nBare the system's entropy,temperature,pressure,volume,surface tension,surface area,chemical potential and the number of moles of the component B,respectively.The third term on the right hand side of Eq.(1) is the surface work.Since the surface area could not increase by itself in most cases and could only be stretched out by its surr-ounding environment,the surface work has a positive sign.The chemical potential of the component B(μB) in a nonelectrolyte solution has the following form

    where v=v++ v–.If the surface and bulk phases are considered,Eq.(1) should be expressed explicitly as

    where the superscripts “s” and “α” are referred to the surface and bulk phases,respectively.

    It is well known qualitatively that the concentrationin the surface region will be bigger than the concentrationin the bulk region if the surface tension decreases with,and vice versa.Since there is no term in Eq.(4) related to the change of the surface tension,Gibbs exploited an analog form of the Gibbs-Duhem equation at constant temperature and pressure to explain these absorption behaviors,which is

    where Γ21,the surface excess of the component B relative to the solvent A,is defined as

    Eq.(6) is only valid for a two-component solution.Recently Menger et al.8–10found experimentally for some systems that the right-hand side of Eq.(6) remained almost unaltered while the surface excess Γ21on the left hand side of Eq.(6) still changed with the concentration of the component B,which led to the arguments on the Gibbs analysis.11–13

    2 Theory

    Based on the facts above,we started to rethink the thermodynamics of surfaces from beginning.It is well known that a change of the concentration of a component B in the surface region due to the surface absorption will lead to changes of the surface tension and the corresponding surface work as shown in Eqs.(1) and(4).Contrary to the surface works in the most cases,this type of the surface work is not done externally by the surrounding environment,but done by the system itself.Therefore,we think that this internal surface work should be –γdσ instead of γdσ as presented in Eqs.(1) and(4).This is the key starting point in the present work.For simplicity and convenience of discussions below,only Eq.(4) is rewritten as

    If γdσ is substituted with d(γσ)–σdγ,Eq.(8) can be expressed as

    where F is defined as

    As will be discussed below,the equilibrium condition of the surface absorption is that the differential of this thermodynamic state function F is zero at constant temperature and pressure.From Eq.(9),the differential form of the chemical potential in the surface phase can be derived

    where SB,m,VB,m,and σB,mare the partial molar entropy,partial molar volume,and partial molar surface area,respectively.In comparison with Eq.(8),the third term on the right hand side of Eq.(9) is directly related to the change of the surface tension,as we expect.The total differential form of the surface tension is written as

    provided that the temperature and pressure remain constant.Substituting Eq.(12) into Eq.(9) leads to

    Since the total amount of moles of the component B,nB=,in the surface and bulk regions are fixed,therefore.With this equality Eq.(13) becomes

    At constant temperature and pressure the equilibrium condition dF=0 results in the following equation

    It is seen clearly from Eq.(15) that the chemical potentials inthe surface and bulk phases are not equal.Substituting the expressions ofandin the Eq.(2) or Eq.(3) into Eq.(15),we finally obtain

    where ζ will be 1 or v if the solute is a nonelectrolyte or electrolyte,respectively.In the above derivation,the standard chemical potentials in the surface and bulk phases are considered to be equal.It is shown from Eq.(16) thatwill be bigger thanif the derivative of the surface tension withis negative,and vice versa.This is in accordance with the surface absorption behavior of the component B in a solution.

    If the solution is very dilute the chemical potentials of the solvent in the surface and bulk phases can be regarded to be approximately equal.Then we get another equation to describe the relationship between the surface tension and the chemical potentials of the solute,i.e.,

    provided that σB,mremains approximately constant.γ0is the surface tension of the pure solvent.Substituting the expressions ofandin Eq.(2) or Eq.(3) into Eq.(17) leads to

    Eqs.(17) and(18) are valid only for a two-component solution.Eq.(18) has also been derived and discussed previously by Nath,14Li15and Yu16et al.

    3 Results and discussion

    In order to test the validity of Eq.(16),molecular dynamic simulations of aqueous sodium chloride solutions have been performed.As will be clear below,the reason to choose aqueous sodium chloride solutions is that these solutions have similar absorption behaviors as observed by Menger et al.8–10First a rectangular box with dimensions of 4 nm × 4 nm × 8 nm was set up and about 4200 water molecules were filled into the center of the box to yield a 8 nm-thick water layer.Then some water molecules were replaced with Na+and Cl–ions.Totally 10 s·ystems with NaCl concentrations ranging· from 0.2 to 2.0 molL–1with increment step of around 2.0 molL–1were investigated.The simulation box was extended in both sides to yield two 4 nm thick vacuum layers.Therefore the final size of simulation box is 4 nm × 4 nm × 16 nm.Gromacs program17,18was employed for simulations at constant volume and temperature.The temperature was maintained at 300 K via Nosé-Hoover thermostat.19,20Kirkwood-Buff force field21,22and SPC/E model23were used to represent NaCl and water,respectively.The water geometry was constrained with SETTLE technique.24Long range electrostatic interactions were evaluated by the Particle Mesh Ewald(PME) approach,25and van der Waals interactions were truncated at the cut-off distance of 0.14 nm.The surface tensions were calculated by26

    where Lzis the length of the box in the z direction which is normal to the surface,the Pxx,Pyy,and Pzzare the diagonal components of the pressure tensor.

    Ten ionic concentration distribution curves are presented in Fig.1.The thickness of a surface layer is determined as the distance at z direction with the density of NaCl starting from zero to the density in bulk.As can be seen from the figure,the surface layers of the above systems are all approximately 0.8 nm thick.One snapshot of molecular dynamic trajectory is presented in Fig.2 to illustrate the distributions of NaCl in solution during the simulation.It is a side view of the whole simulation box.

    Fig.1 Ten density profiles(ranging from 0.2 to 2.0 mol·L–1with incremental size of 2.0 mol·L–1) of NaCl with respect to the distance in z directionN:number density of Nacl pairs

    Fig.2 Snapshot of molecular dynamic trajectory in simulation

    Fig.3 Simulated surface tension versus the number of moles of NaCl in the surface region

    The plot of the simulated surface tension(γ) versus the number of moles of NaCl in the surface region() is shown in Fig.3.It can be seen from Fig.3 that the surface tension increases asbecomes larger.These data were then fitted to a straight line:·.The interception value of 58.607 × 10–3Nm–1corresponds to the pure water surface tension.Though it is in good agreement with recent molecular dynamic simulation,26yet the simulated surface tension of pure SPC/·E water is lower than the experimental value of 71.6 × 10–3Nm–1because no long-range dispersion correction is included.Linear correlation coefficient and root mea·n square deviation of the fitting are 0.984 and 0.277 × 10–3Nm–1,respectively.This linear behavior in the sodium chloride solution was also observed in the other research works.26–28Because of the good linear correlation of the simulated data and also the difficulty to calculate the derivativeby the molecular dynamic simulation,the derivative value of 0.405 × 1021N·m–1·mol–1is directly taken from the fitting and will be used below to calculate the gas constant R in Eq.(16).

    The plot of the simulated concentration of NaCl in the bulk region versus the concentration of NaCl in the surface region is shown in Fig.4.These data were also fitted to a line2.4806csNaCl-0.0590.The linear correlation coefficient and the root mean square deviation are 0.99602 and 0.06454,respectively.The ratio ofcan be regarded approximately to be 2.4806 because of the interception value(–0.0590) of the fitted line with the axis ofclose to zero.This ratio is also considered approximately as the value of.The reason that the fitted line in Fig.4 passes slightly away from the original point is perhaps due to the numerical noise of molecular dynamic simulation.

    On the other hand,the derivative of the surface tension γ with respect toin the surface phase on right hand side of Eq.(6) is close to a constant,but the surface excess Γ21on the left hand side of Eq.(6) still changes with.This is similar to the experimental observations made by Menger et al.8–10Therefore,it is expected that Eq.(16) may be exploited to solve the problems in the works of Menger et al.

    Fig.4 Simulated concentration of NaCl in the bulk region versus concentration of NaCl in the surface region

    4 Conclusions

    A new thermodynamic state function F is defined to describe the thermodynamics of surfaces.The equilibrium condition of the surface absorption of a solution is that dF=0.Based on this,a new absorption equations such as Eq.(16) are derived.Molecular dynamic similations of aqueous solutions of sodium chloride are in good agreement with our theoretical analysis.Instead of Gibbs absorption equation,it is hopeful that Eq.(16) may be a promising alternative to solve the problems found by Menger et al.8–10

    Acknowledgment:The authors are very grateful to Prof.LI Le-Min of Peking Univeristy for his valuable discussion.

    (1)Cheng,X.H.;Zhao,O.D.;Zhao,H.N.;Huang,J.B.Acta Phys.-Chim.Sin.2014,30,917.[程新皓,趙歐狄,趙海娜,黃建濱.物理化學學報,2014,30,917.] doi:10.3866/PKU.WHXB201403191

    (2)Hu,S.Q.;Ji,X.J;Fan,Z.Y.;Zhang,T.T.;Sun,S.Q.Acta Phys.-Chim.Sin.2015,31,83.[胡松青,紀賢晶,范忠鈺,張?zhí)锾?孫霜青,物理化學學報,2015,31,83.] doi:10.3866/PKU.WHXB201411191

    (3)Wang,K.;Yu,Y.X.;Gao,G.H.J.Chem.Phys.2008,128,185101.doi:10.1063/1.2918342

    (4)Peng,B.;Yu,Y.X.J.Chem.Phys.2009,131,134703.doi:10.1063/1.3243873

    (5)Ghosh,S.;Roy,A.;Banik,D.;Kundu,N.;Kuchlyan,J.;Dhir,A.;Sarkar,N.Langmuir 2015,31,2310.doi:10.1021/la504819v

    (6)Bera,M.K.;Antonio,M.R.Langmuir 2015,31,5432.doi:10.1021/acs.langmuir.5b01354

    (7)Atkins,P.;de Paula,J.Atkins' Physical Chemistry,7th Ed.;Oxford University Press:Oxford,2002.

    (8)Menger,F.M.;Shi,L.;Rizvi,S.A.A.J.Am.Chem.Soc.2009,131,10380.doi:10.1021/ja9044289

    (9)Menger,F.M.;Shi,L.;Rizvi,S.A.A.Langmuir 2010,26,1588.doi:10.1021/la9043914

    (10)Menger,F.M.;Rizvi,S.A.A.Langmuir 2011,27,13975.doi:10.1021/la203009m

    (11)Laven,J.;de With,G.Langmuir 2011,27,7958.doi:10.1021/la200152d

    (12)Menger,F.M.;Rizvi,S.A.A.;Shi,L.Langmuir 2011,27,7963.doi:10.1021/la201219g

    (13)Li,P.X.;Li,Z.X.;Shen,H.H.;Thomas,R.K.;Penfold,J.;Lu,J.R.Langmuir 2013,29,9324.doi:10.1021/la4018344

    (14)Nath,S.J.Colloid Interface Sci.1999,209,116.

    (15)Li,Z.B.;Li,Y.G.;Lu,J.F.Ind.Eng.Chem.Res.1999,38,1133.doi:10.1021/ie980465m

    (16)Yu,Y.X.;Gao,G.H.;Li,Y.G.Fluid Phase Equilibr.2000,173,23.doi:10.1016/S0378-3812(00)00396-4

    (17)Gromacs Program,Version 4.6.5.http://www.gromacs.org(accessed on Sep 14,2014).

    (18)Hess,B.;Kutzner,C.;van der Spoel,D.;Lindahl,E.J.Chem.Theory Comput.2008,4,435.doi:10.1021/ct700301q

    (19)Hoover,W.G.Phys.Rev.A 1985,31,1695.doi:10.1103/ PhysRevA.31.1695

    (20)Nosé,S.Mol.Phys.1984,52,255.doi:10.1080/00268978400101201

    (21)Weerasinghe,S.;Smith,P.E.J.Chem.Phys.2003,119,11342.doi:10.1063/1.1622372

    (22)Ploetz,E.A.;Bentenitis,N.;Smith,P.E.Fluid Phase Equilib.2010,290,43.doi:10.1016/j.fluid.2009.11.023

    (23)Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys.Chem.1987,91,6269.doi:10.1021/j100308a038

    (24)Miyamoto,S.;Kollman,P.A.J.Comput.Chem.1992,13,952.

    (25)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98,10089.doi:10.1063/1.464397

    (26)Chen,F.;Smith,P.E.J.Phys.Chem.B 2008,112,8975.doi:10.1021/jp711062a

    (27)Jarvis,N.L.;Scheiman,M.A.J.Phys.Chem.1968,72,74.doi:10.1021/j100847a014

    (28)Weissenborn,P.K.;Pugh,R.J.Langmuir 1996,11,1422.

    Surface Absorption of a Solution at Equilibrium

    CHEN Fei-Wu*LU Tian WU Zhao
    (Department of Chemistry and Chemical Engineering,School of Chemistry and Biological Engineering,University of Science and Technology Beijing,Beijing 100083,P.R.China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials,Beijing 100083,P.R.China)

    Surface adsorption of a solution is still a challenging problem in the thermodynamics of surfaces.In this work,a new thermodynamic state function is defined.The equilibrium condition of surface adsorption is that the differential of this state function is equal to zero.Based on this condition,we derived a new equation to describe surface adsorption at equilibrium.No hypothetical dividing surface is needed in this derivation.The new equation is quite different from the Gibbs adsorption equation.We also performed molecular dynamic simulations of aqueous sodium chloride solutions.The simulated results are in good agreement with our theoretical predictions.

    Surface absorption; Equilibrium condition; Gibbs absorption equation; Thermodynamic state function; Solution

    March 4,2015;Revised:June 19,2015;Published on Web:June 19,2015.

    O641

    icle]

    10.3866/PKU.WHXB201506191 www.whxb.pku.edu.cn

    *Corresponding author.Email:chenfeiwu@ustb.edu.cn.

    The project was supported by the National Natural Science Foundation of China(21173020,21473008).國家自然科學基金(21173020,21473008)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    平衡條件北京科技大學熱力學
    《北京科技大學學報(社會科學版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    求解受力平衡問題的多種方法賞析
    《北京科技大學學報(社會科學版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學學報》(社會科學版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    Fe-C-Mn-Si-Cr的馬氏體開始轉變點的熱力學計算
    上海金屬(2016年1期)2016-11-23 05:17:24
    判斷杠桿哪端下沉的方法和技巧
    活塞的靜力學與熱力學仿真分析
    電子制作(2016年19期)2016-08-24 07:49:54
    電網(wǎng)電壓不平衡條件下并網(wǎng)逆變器的動態(tài)相量模型
    電測與儀表(2016年1期)2016-04-12 00:35:20
    共點力平衡條件的應用
    田永訴北京科技大學拒絕頒發(fā)畢業(yè)證、學位證案
    法學與實踐(2015年1期)2015-12-01 03:41:13
    日本猛色少妇xxxxx猛交久久| 韩国av在线不卡| 中文精品一卡2卡3卡4更新| 男女免费视频国产| 亚洲精品一区蜜桃| 亚洲va在线va天堂va国产| 九色成人免费人妻av| 亚洲激情五月婷婷啪啪| .国产精品久久| 赤兔流量卡办理| 亚洲精品一区蜜桃| 一区二区三区乱码不卡18| 91久久精品国产一区二区三区| 中文精品一卡2卡3卡4更新| av网站免费在线观看视频| 亚洲成色77777| 国产精品99久久99久久久不卡 | 建设人人有责人人尽责人人享有的| 国内精品宾馆在线| 日本av手机在线免费观看| 色婷婷av一区二区三区视频| 国产永久视频网站| 亚洲欧美成人精品一区二区| 涩涩av久久男人的天堂| 国产高清有码在线观看视频| 色吧在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲成人av在线免费| 中文字幕久久专区| 最近手机中文字幕大全| 欧美少妇被猛烈插入视频| 日本vs欧美在线观看视频 | 日本av手机在线免费观看| 一边亲一边摸免费视频| 亚洲av.av天堂| 午夜日本视频在线| 午夜影院在线不卡| 久久久久久久国产电影| 国产精品国产三级国产专区5o| 一区二区三区乱码不卡18| 国产精品熟女久久久久浪| 国产av国产精品国产| 丰满乱子伦码专区| .国产精品久久| 久久精品国产亚洲网站| 亚洲综合色惰| 中文资源天堂在线| 亚洲va在线va天堂va国产| 亚洲欧美一区二区三区黑人 | 国产精品不卡视频一区二区| 欧美日韩视频高清一区二区三区二| 色网站视频免费| 亚洲精品日本国产第一区| 国产精品成人在线| 午夜精品国产一区二区电影| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 黑人猛操日本美女一级片| 国产精品国产三级专区第一集| 国产精品一区二区三区四区免费观看| 黄色欧美视频在线观看| 亚洲精品日本国产第一区| 国产精品女同一区二区软件| 亚洲精品乱久久久久久| av在线观看视频网站免费| 久久国产精品大桥未久av | xxx大片免费视频| 国产伦精品一区二区三区视频9| freevideosex欧美| 纵有疾风起免费观看全集完整版| 国产有黄有色有爽视频| 欧美人与善性xxx| 亚洲美女搞黄在线观看| 国产亚洲一区二区精品| 男人和女人高潮做爰伦理| 国产免费一区二区三区四区乱码| 亚洲va在线va天堂va国产| 一二三四中文在线观看免费高清| 国产精品秋霞免费鲁丝片| 永久免费av网站大全| 欧美激情国产日韩精品一区| 老女人水多毛片| 乱人伦中国视频| 青春草国产在线视频| 我要看黄色一级片免费的| 综合色丁香网| 国产成人精品婷婷| 亚洲欧美精品专区久久| 午夜福利,免费看| 久久国内精品自在自线图片| 成人黄色视频免费在线看| 国产免费又黄又爽又色| 黄色怎么调成土黄色| 国内少妇人妻偷人精品xxx网站| 九九爱精品视频在线观看| 久久ye,这里只有精品| 全区人妻精品视频| 免费黄网站久久成人精品| 一级a做视频免费观看| 制服丝袜香蕉在线| 久久久久久久久久久丰满| 一区二区三区四区激情视频| 日本午夜av视频| 亚洲,欧美,日韩| 熟女av电影| 国产成人freesex在线| 青春草视频在线免费观看| 午夜精品国产一区二区电影| 一级黄片播放器| 在现免费观看毛片| 王馨瑶露胸无遮挡在线观看| 毛片一级片免费看久久久久| 久久久久久久久大av| 这个男人来自地球电影免费观看 | 日韩三级伦理在线观看| 视频区图区小说| 成人黄色视频免费在线看| 久久国产乱子免费精品| 国产黄频视频在线观看| 街头女战士在线观看网站| 亚洲精品久久久久久婷婷小说| 男女边摸边吃奶| 精品熟女少妇av免费看| 国产成人一区二区在线| 亚洲国产日韩一区二区| 欧美人与善性xxx| 亚洲欧美成人精品一区二区| 亚洲欧美成人精品一区二区| 国产一区有黄有色的免费视频| 国产精品蜜桃在线观看| 成人二区视频| 嘟嘟电影网在线观看| 亚洲欧美日韩另类电影网站| 一区二区三区乱码不卡18| 美女内射精品一级片tv| 啦啦啦中文免费视频观看日本| 色吧在线观看| 久久久久久伊人网av| 国产一区二区三区av在线| 亚洲av国产av综合av卡| 久久久午夜欧美精品| 婷婷色麻豆天堂久久| 亚洲精品久久久久久婷婷小说| 在线观看av片永久免费下载| 插逼视频在线观看| 国产女主播在线喷水免费视频网站| 欧美精品人与动牲交sv欧美| 汤姆久久久久久久影院中文字幕| 久久国产乱子免费精品| 一区在线观看完整版| 亚洲精品日韩在线中文字幕| 边亲边吃奶的免费视频| 欧美三级亚洲精品| 免费观看在线日韩| 日本黄大片高清| 一级毛片黄色毛片免费观看视频| 永久网站在线| 日韩一本色道免费dvd| 久久热精品热| 亚洲精品自拍成人| 国产精品偷伦视频观看了| 国产真实伦视频高清在线观看| 看非洲黑人一级黄片| 亚洲国产精品专区欧美| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 男人和女人高潮做爰伦理| 国产深夜福利视频在线观看| 欧美一级a爱片免费观看看| 青春草视频在线免费观看| 久久这里有精品视频免费| 一级爰片在线观看| 亚洲成人手机| 久久青草综合色| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 有码 亚洲区| 啦啦啦视频在线资源免费观看| 午夜福利网站1000一区二区三区| 国产男女超爽视频在线观看| 久久免费观看电影| 亚洲熟女精品中文字幕| 国产精品成人在线| 精品久久久久久久久亚洲| 国产精品秋霞免费鲁丝片| 一级毛片 在线播放| 日韩av免费高清视频| 2021少妇久久久久久久久久久| 搡老乐熟女国产| 青春草亚洲视频在线观看| 日韩成人av中文字幕在线观看| 国产精品久久久久久av不卡| 婷婷色综合www| 最近的中文字幕免费完整| 国产精品久久久久久精品古装| 在线亚洲精品国产二区图片欧美 | 欧美性感艳星| 亚洲国产精品一区二区三区在线| 成人免费观看视频高清| av免费观看日本| 99九九线精品视频在线观看视频| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 黄片无遮挡物在线观看| 免费观看性生交大片5| 久久久久久久大尺度免费视频| 麻豆成人av视频| 免费观看a级毛片全部| 国产精品女同一区二区软件| 久久精品夜色国产| av视频免费观看在线观看| 黄色日韩在线| 成人亚洲欧美一区二区av| 高清午夜精品一区二区三区| 亚洲精品,欧美精品| 欧美精品国产亚洲| 国产综合精华液| 日韩欧美精品免费久久| 男人爽女人下面视频在线观看| 韩国av在线不卡| 免费黄网站久久成人精品| 亚洲精品一区蜜桃| 亚洲无线观看免费| 国产精品.久久久| 日韩人妻高清精品专区| 黄色日韩在线| 色5月婷婷丁香| 久久久国产精品麻豆| 交换朋友夫妻互换小说| 亚洲av欧美aⅴ国产| 久久精品国产自在天天线| 国产精品欧美亚洲77777| 国产综合精华液| 中文字幕精品免费在线观看视频 | 一级毛片黄色毛片免费观看视频| 91午夜精品亚洲一区二区三区| 又大又黄又爽视频免费| 亚洲欧洲日产国产| 久久99热这里只频精品6学生| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 嘟嘟电影网在线观看| 一个人免费看片子| 亚洲欧美成人精品一区二区| 亚洲av二区三区四区| 亚洲av欧美aⅴ国产| 国产欧美另类精品又又久久亚洲欧美| 伦理电影免费视频| 精品国产国语对白av| 亚洲成人一二三区av| 精品久久久噜噜| 看十八女毛片水多多多| 最新的欧美精品一区二区| 久久人人爽人人爽人人片va| 久久综合国产亚洲精品| 免费观看的影片在线观看| 下体分泌物呈黄色| 国产老妇伦熟女老妇高清| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 久久久国产精品麻豆| 亚洲精品aⅴ在线观看| 亚洲av国产av综合av卡| 亚洲自偷自拍三级| 啦啦啦视频在线资源免费观看| 啦啦啦啦在线视频资源| av黄色大香蕉| 人妻制服诱惑在线中文字幕| freevideosex欧美| 男人狂女人下面高潮的视频| 欧美精品高潮呻吟av久久| 国产 一区精品| 日日撸夜夜添| 能在线免费看毛片的网站| 国产一级毛片在线| 日韩一区二区视频免费看| 99精国产麻豆久久婷婷| 欧美日韩视频精品一区| 多毛熟女@视频| 嫩草影院新地址| 精品人妻熟女av久视频| 丁香六月天网| 国产在线视频一区二区| 国产精品国产三级专区第一集| 黑人高潮一二区| 人妻人人澡人人爽人人| av线在线观看网站| 亚洲成色77777| 日日啪夜夜撸| 久久久国产一区二区| 下体分泌物呈黄色| 欧美精品高潮呻吟av久久| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 99视频精品全部免费 在线| 久久国产乱子免费精品| 亚洲情色 制服丝袜| 97精品久久久久久久久久精品| 欧美一级a爱片免费观看看| 老司机影院毛片| 如日韩欧美国产精品一区二区三区 | 深夜a级毛片| 亚洲情色 制服丝袜| 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 亚洲熟女精品中文字幕| 我要看日韩黄色一级片| 51国产日韩欧美| 亚洲国产欧美日韩在线播放 | 男的添女的下面高潮视频| 人人妻人人澡人人看| 七月丁香在线播放| 亚洲一级一片aⅴ在线观看| 久久久久视频综合| 国产精品三级大全| 婷婷色综合www| 熟妇人妻不卡中文字幕| 亚洲国产日韩一区二区| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 晚上一个人看的免费电影| 成年人免费黄色播放视频 | 久久久久视频综合| 国产精品99久久99久久久不卡 | 男人狂女人下面高潮的视频| 男的添女的下面高潮视频| 99九九在线精品视频 | 久久 成人 亚洲| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 精品99又大又爽又粗少妇毛片| 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美| av天堂中文字幕网| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 美女xxoo啪啪120秒动态图| 国产亚洲av片在线观看秒播厂| 日产精品乱码卡一卡2卡三| 中文字幕精品免费在线观看视频 | 国产精品久久久久久久久免| 人妻夜夜爽99麻豆av| 色哟哟·www| 久久精品国产a三级三级三级| 日韩av在线免费看完整版不卡| 搡老乐熟女国产| 成年人午夜在线观看视频| 成年女人在线观看亚洲视频| 久久久久久久久久久久大奶| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 99热这里只有是精品50| 免费观看av网站的网址| 多毛熟女@视频| 99热这里只有精品一区| 美女大奶头黄色视频| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 国产在线视频一区二区| 欧美日韩精品成人综合77777| av一本久久久久| 亚洲av不卡在线观看| www.av在线官网国产| 亚洲天堂av无毛| 日韩成人av中文字幕在线观看| 黄色视频在线播放观看不卡| 中文字幕制服av| 国产毛片在线视频| 伊人亚洲综合成人网| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 欧美+日韩+精品| 人人妻人人澡人人看| 男人和女人高潮做爰伦理| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 国产日韩一区二区三区精品不卡 | 国产欧美另类精品又又久久亚洲欧美| 在线 av 中文字幕| 国产成人午夜福利电影在线观看| 欧美精品一区二区免费开放| 精品少妇久久久久久888优播| av黄色大香蕉| 国产精品一区二区性色av| 成人国产av品久久久| 国产成人免费观看mmmm| 99久久精品国产国产毛片| 欧美97在线视频| 国产极品天堂在线| 青青草视频在线视频观看| 国产爽快片一区二区三区| 欧美日韩综合久久久久久| av又黄又爽大尺度在线免费看| 国产淫片久久久久久久久| 熟女av电影| 最黄视频免费看| 精品久久久精品久久久| h视频一区二区三区| 久久99蜜桃精品久久| 王馨瑶露胸无遮挡在线观看| 国产伦精品一区二区三区四那| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 久久99精品国语久久久| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 欧美bdsm另类| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 国产极品天堂在线| 国产黄片视频在线免费观看| 狠狠精品人妻久久久久久综合| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 一级毛片电影观看| 国产亚洲一区二区精品| 日韩视频在线欧美| 久久99热6这里只有精品| 国产成人freesex在线| 99热网站在线观看| 人妻少妇偷人精品九色| 午夜福利,免费看| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄| 国产视频内射| 我的老师免费观看完整版| 一区二区三区四区激情视频| 久久狼人影院| 国产精品无大码| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 少妇人妻 视频| 麻豆成人午夜福利视频| 尾随美女入室| 国产亚洲91精品色在线| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 午夜久久久在线观看| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 91久久精品国产一区二区成人| 欧美97在线视频| 日韩精品有码人妻一区| 午夜激情福利司机影院| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 两个人的视频大全免费| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 99久久精品国产国产毛片| 久久久久国产网址| 国产男女内射视频| 中文在线观看免费www的网站| 国产极品天堂在线| 亚洲精品国产av成人精品| 尾随美女入室| 亚洲av福利一区| 中文字幕免费在线视频6| 亚洲av国产av综合av卡| 亚洲国产精品成人久久小说| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| av在线老鸭窝| 精品久久久久久久久亚洲| 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 九九久久精品国产亚洲av麻豆| 麻豆乱淫一区二区| 日本-黄色视频高清免费观看| 久久97久久精品| 亚洲人成网站在线观看播放| 七月丁香在线播放| 国产精品蜜桃在线观看| 一级,二级,三级黄色视频| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| 亚洲自偷自拍三级| 国产爽快片一区二区三区| 只有这里有精品99| 在现免费观看毛片| 免费观看av网站的网址| 春色校园在线视频观看| 欧美区成人在线视频| 亚洲成人手机| 午夜福利,免费看| 国产成人精品婷婷| 精品亚洲乱码少妇综合久久| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 久久青草综合色| 日韩成人伦理影院| 午夜久久久在线观看| 欧美精品高潮呻吟av久久| 极品人妻少妇av视频| 久久久久久久国产电影| 国产精品无大码| 99热全是精品| 美女大奶头黄色视频| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 久久精品久久精品一区二区三区| kizo精华| 卡戴珊不雅视频在线播放| 国产成人午夜福利电影在线观看| 黑人高潮一二区| 少妇精品久久久久久久| 女人精品久久久久毛片| 久久久久久人妻| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 免费人妻精品一区二区三区视频| 少妇人妻精品综合一区二区| av网站免费在线观看视频| 麻豆成人午夜福利视频| 日本黄大片高清| 亚洲av免费高清在线观看| 久久人妻熟女aⅴ| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 热re99久久国产66热| 欧美激情极品国产一区二区三区 | 观看免费一级毛片| 少妇人妻 视频| 香蕉精品网在线| 亚洲精品,欧美精品| 狂野欧美激情性bbbbbb| 三级国产精品欧美在线观看| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 中文字幕av电影在线播放| 人妻一区二区av| 国产亚洲最大av| 国产av一区二区精品久久| 国产国拍精品亚洲av在线观看| 青春草视频在线免费观看| av免费在线看不卡| 免费黄网站久久成人精品| 3wmmmm亚洲av在线观看| 亚洲精品中文字幕在线视频 | 大片电影免费在线观看免费| av在线老鸭窝| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 国产爽快片一区二区三区| 69精品国产乱码久久久| 男人狂女人下面高潮的视频| 国产精品无大码| 特大巨黑吊av在线直播| 一区在线观看完整版| 成人二区视频| 亚洲天堂av无毛| 香蕉精品网在线| 五月伊人婷婷丁香| 国产一级毛片在线| 69精品国产乱码久久久| 成人二区视频| 欧美日韩视频精品一区| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 如何舔出高潮| 又大又黄又爽视频免费| av黄色大香蕉| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 欧美精品国产亚洲| 成人午夜精彩视频在线观看| 久久久精品94久久精品| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图 | 欧美精品亚洲一区二区| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 国产亚洲一区二区精品| 久久国产乱子免费精品| 欧美成人午夜免费资源| 一本—道久久a久久精品蜜桃钙片| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 在线观看免费视频网站a站| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 国产日韩一区二区三区精品不卡 | 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 91成人精品电影| 久久ye,这里只有精品|