• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銨根離子在水溶液中的跳躍轉(zhuǎn)動(dòng)機(jī)理

    2015-09-03 07:45:59趙東霞
    物理化學(xué)學(xué)報(bào) 2015年8期
    關(guān)鍵詞:化學(xué)系水溶液氫鍵

    張 強(qiáng) 程 程 張 霞 趙東霞

    (1渤海大學(xué)化學(xué)系,遼寧 錦州 121000; 2遼寧師范大學(xué)化學(xué)系,遼寧 大連 116029)

    銨根離子在水溶液中的跳躍轉(zhuǎn)動(dòng)機(jī)理

    張 強(qiáng)1,*程 程1張 霞1趙東霞2

    (1渤海大學(xué)化學(xué)系,遼寧 錦州 121000;2遼寧師范大學(xué)化學(xué)系,遼寧 大連 116029)

    銨根離子的動(dòng)力學(xué)行為與生命體內(nèi)的生物和化學(xué)過程密切相關(guān).依據(jù)流體力學(xué)理論,由于銨根離子與水分子之間存在多個(gè)強(qiáng)氫鍵,其轉(zhuǎn)動(dòng)應(yīng)較慢,但實(shí)驗(yàn)結(jié)果并非如此,其轉(zhuǎn)動(dòng)的微觀機(jī)理尚不清晰.本文分子動(dòng)力學(xué)模擬研究表明,水溶液中銨根離子主要以快速、大角度的跳躍方式進(jìn)行轉(zhuǎn)動(dòng),像水分子一樣遵從擴(kuò)展分子跳躍轉(zhuǎn)動(dòng)模型.通過微觀轉(zhuǎn)動(dòng)模式的分解和兩種轉(zhuǎn)動(dòng)弛豫時(shí)間的比較發(fā)現(xiàn),相對(duì)其氫鍵骨架的擴(kuò)散轉(zhuǎn)動(dòng),跳躍轉(zhuǎn)動(dòng)對(duì)其轉(zhuǎn)動(dòng)速率貢獻(xiàn)更大,并隨濃度增大不斷強(qiáng)化.與水分子氫鍵交換方式相比,銨根離子更傾向于在非氫鍵相連的水分子間發(fā)生交換.

    銨根離子; 跳躍轉(zhuǎn)動(dòng); 氫鍵; 分子動(dòng)力學(xué)模擬; 擴(kuò)展跳躍模型

    1 Introduction

    Ions have significant impact on the structures and dynamics of water in aqueous solution,which have been extensively explored by the experimental and theoretical methods.1–10The rel-evant phenomena are brought into sharp focus in recent years,such as ion pairing5,6and ion specific effect on the biological systems.1,7–9In recent years,the ion disturbance on the motion of the water molecules has been extensively explored by the modern spectroscopy techniques3,4,10–13and the theoretical methods.14,15But the dynamic properties of ion itself in aqueous solutions are not well addressed at the microscopic level,for example ammonium ion.

    The dynamics of ammonium ion and ammonium moieties plays an important role in the chemical,environmental,and biological processes.16–18Ammonium transport across the membranes is a crucial life-process for growth of plants,fungi,and bacteria.The transport mechanism of ammonium ion and ammonia in the protein channels of the ubiquitous ammonium transporter/methylamine permease/rhesus(Amt/MEP/Rh) family is far from understood.18The previous measurements of the nuclear magnetic resonance(NMR) suggested that the observed solvent dependence of the rotational mobility of ammonium ion showed a poor correlation with the hydrodynamic Stokes-Einstein-Debye(SED) model.19–23There is stronger short-range friction between ammonium ion and water due to the multiple strong hydrogen bonds(HBs) than that between ammonium ion and methanol.However,rotates rather fast in aqueous solutions comparing to that in other solvents such as methanol.This is unexpected for the hydrodynamic theories.The further simulations with the classical,non-additive,and electronic structure methods show that a discontinuous jump rotation possibly contributes to this unexpected fast rotation in aqueous solution.23–31However,the rotational mechanism of ammonium ion at the molecular level,is not well clarified intuitively and quantitatively until now.

    The extended jump model(EJM) developed from Ivanov jump model,32,33shows that the rotation of water in aqueous solutions is determined by a large-amplitude angular jump and a less significant diffusive “frame diffusion”.14,15,32,33It has been applied to explore the rotational mechanism of water in the electrolyte solutions and on the hydrophobic interfaces combined with infrared(IR) spectroscopy and molecular dynamics simulations.32

    In this work,the fast rotation ofin previous experiments was also observed in our simulations.The rotation of ammonium ion in NH4Cl aqueous solutions also follows the EJM like water molecule.It is mainly due to the large-amplitude angular jump during the HB switching processes offrom one acceptor to another in aqueous solutions.Two characteristic jump angles observed in our simulations are 50° and 65° for water and ammonium ion,respectively.Water prefers the former over the later,but conversely for ammonium ion.

    2 Methods

    2.1 Rotational correlation function

    The rotational correlation function,C2(t),of water along OH bond vector oralong NH bond vector,u,can be expressed as:

    where P2is the second-rank Legendre polynomial.C2(t) is usually employed to obtain the rotational relaxation time in simulations,which corresponds to the NMR and the ultrafast IR spectrum measurements.32The rotational correlation functions can be decomposed into two sub-processes(Fig.1),a short-time libration and a long-time rotational relaxation.The rotational relaxation times of two processes can be approximately obtained by fitting the following function:

    where A is a prefactor of the exponential functions.τ1is the librational time.τ2is the rotational relaxation time related to the measurements of the ultrafast IR spectrum.4,12,13,32The integration value of C2(t) within a long-time window is usually used for the rotational relaxation time by NMR measurements.The parameters in Eq.(2),τ1and τ2were determined from a fit of equation(2) within 0–8 ps as previous works.4,12,13,32

    Fig.1 Rotation correlation functions(C(t)),the HB correlation functions(1―CW-W(t)) and the rotation correlation functions of HB frame(Cf(t)) of the water and ammonium for the HB exchange between water molecules in NH4Cl solution at 0.5 mol·L–1

    2.2 Extended jump model

    The jump rotation of water or ammonium is triggered by the HB switching from initial HB acceptor to a new one(Fig.2).32Before a HB exchange(t < 0 for the time window of the HB exchange process),O*H*or N*H*rotates diffusively with its HB frame axis of O*···Oaor N*···Oa.The average direction is assumed to be the same as the frame axis,neglecting the libra-tion of O*H*or N*H*in local HB frame axis.When a new HB acceptor is available,a fast HB switching happens.H*jumps from initial acceptor to a new one within the local frame of OaO*Obor OaN*Ob(Fig.2,Oaand Ob:the HB initial and final acceptors(oxygen atoms of water);H*:the HB donating hydrogen).When a new HB forms,the time window of the HB exchange process takes at t > 0.The middle time between the ending moment of old HB and the beginning time of new HB,is taken as the time origin(t=0) within the HB exchange process.The jump angle φ is the angle between initial HB frame vector and the new HB frame vector at t=0(Fig.2).

    Fig.2 Definitions of the geometric variables along the HB exchange path

    Based on the assumptions above,the rotational correlation function of molecule along the vector u(O*H*and N*H*bond vectors for water and ammonium ion,respectively),C2(t),can be further decomposed into two sub-processes after an initial fast libration decay(Fig.2):32(1) a sudden large-amplitude angular jump rotation of uv(uvis the O*H*or N*H*bond vector within the local HB frame uf,which is the O*···Oaor N*···Oavector of HB pair) and(2) a slow diffusive rotation of the frame vector uf.The correlation functions of two sub-processes(a jump rotational correlation function CJ(t) and a frame rotational correlation function Cf(t)) are both assumed to be exponential.

    In NH4Cl aqueous solutions,the possible HB donors are the hydrogen atoms of water and.The possible HB acceptors are the water oxygen and chloride ion.Four HB exchange processes can be defined according to the types of initial and final HB acceptors:from water to water(W-W),from water to Cl–(W-Cl),from Cl–to water(Cl-W),and from Cl–to Cl–(Cl-Cl).The HB exchange can be traced along the trajectories of simuθH*O*Ob< 30° for water-water HB as previous work,32RO*Oalations,if the HB criteria are defined.The HB criteria:RO*Oa(RO*Ob) < 0.350 nm,RH*Oa(RH*Ob) < 0.245 nm and the HB angle(RO*Ob) < 0.345 nm,RH*Oa(RH*Oa) < 0.235 nm and the angle θH*O*Ob< 30° for the-water HB according to the radial distribution functions.34Rijis the distance between two atoms i and j of two HB connected molecules.θH*O*Obis the angle between the vectors O*H*and O*Ob.

    For a HB exchange of O*H*or N*H*from initial acceptor i to new acceptor j(Fig.2),the rotational relaxation time τi-jaccording to Eq.(3),can be written as

    Ai-jandare the fraction and the rotational time of O*H*or N*H*with an initial acceptor i and a final acceptor j.

    According to the Ivanov model,33the jump rotational relaxation timeis derived from

    fi-j(φi-j) is a function of jump angle φi-jdefined in Fig.2.φi-jis the average value of jump angle during the HB exchange from initial HB acceptor i to final acceptor j.The jump angle has a unsymmetrical distribution around the average value,32so a numerical integration value Fi-j(φ) over φi-jfrom 0 to π,is adopted in this work instead of the average value in previous work,32

    P(φi–j) is the possibility of the HB exchange from i to j with jump angle φ.32

    2.3 Simulation protocol

    The cubic bulks were constructed for pure water and NH4Cl aqueous solutions by inserting the water and ions into the empty box randomly,then the simulations were performed.2000 waters were filled into each sample box,thenand Cl–were inserted into the box until the concentration of solution is approximately equal to 0.5,1,2,and 5 mol·L–1.The SPC/E water model35was used and ammonium force field was taken from the previous publication by Jungwirth and his workfellows(Model I).34In their work,the properties,such as the solvation structures,ion clustering tendency in ammonium halide aqueous solutions,were well presented with the current combined potentials in this work.34Another force field of ammonium(Model II)26was used to explore the effect of force field in simulations on the rotation of ammonium ion.The jump behaviors of ammonium ion and water are similar for two models(see Section 3.1).A little shorter HB relaxation time is observed for Model II than that for Model I.Additionally,previous work suggests that a classical force field is sufficient for the jump rotation behavior of water.14The jump rotation was also found in ab initio simulations.28,29The quantum effect on the rotation of ammonium ion should be further discussed,but the rotational mechanism of ammonium ion is expected to be not changed.

    The bond lengths and angles of water andwere fixed at the equilibrium values by the SHAKE algorithm.36The Lorentz-Berthelot combination rules37were used for the Lennard-Jones interactions.For each sample,a 2 ns isothermal-isobaric ensemble(NPT) equilibration simulation was carried out to generate the proper size of the simulation box,followed by a 2 ns microcanonical ensemble(NVE) simulation to calculate the dynamic properties.For each NPT simulation,the bulk systems were weakly coupled to a bath with the Nose-Hoover thermostats38,39at the goal temperature with the relaxation time of 0.1 ps.The weak coupling Berendsen scheme was used to control the system pressure at 1.01×105Pa with the coupling time constant of 1 ps.40The equations of motion were integrated using the velocity Verlet integration scheme37and a time step of 2 fs.The long-range Coulombic forces were calculated using the particle-mesh Ewald method.41The non-bonded van der Waals interactions were truncated at 1.2 nm using the switching functions.Minimum image conditions were used.37The simulation configures were saved every 20 fs.All simulations were performed with the Tinker simulation code.42

    3 Results and discussion

    3.1 Jump rotation of

    The rotational diffusion constant DRcan be derived from the mean square displacements(MSDs) of the labeled molecule or ion in the solutions,according to the Einstein relation,43

    According to the ideal diffusive fluid model,44the nth-rank rotational time of() along the NH vector would satisfy the relationship with the rotational diffusion constant DR,The ratios τ1/τ2and τ1/τ3should be equal to the constant values,3 and 6.However they are only 1.97 and 2.71 at 0.50 mol·L–1,which is much lower than the ideal constants.The similar case is also found for water with the values of 1.97 and 2.78.The rotation ofapparently does not follow the diffusive Brownian motion picture.44,45

    Does ammonium ion also follow the EJM like water?32,33An instantaneous and large-amplitude angular jump of water is motivated by the HB exchanges.The HB exchange can be considered as a chemical reaction from the reactant state O*H*···Oato the product state O*H*···Ob.This process passes through an dangling or bifurcated HB state of O*H*,which is a transition state with a very short lifetime,much shorter than the stable single HB reactant and product states.32,33Indeed in the NH4Cl solution at 1 mol·L–1,a very fast decay of the HB state correlation function to the value below 0.1 is observed within 0.1 ps for ammonium ion hydrogen with the dangling,and bifurcated HBs comparing to the single HB state(Fig.3).The lifetime ofhydrogen with dangling HB state and bifurcated HBs is evidently shorter than those of water correspondingly.The facts above suggest that a transition state passes during the HB exchanges of ammonium ion like water molecule.

    For ammonium ion,we can construct a similar HB exchange reaction system as water molecule.This exchange reaction systemis made of three molecules(ammonium ion,its initial and final HB acceptors).The configurations of remaining water molecules and ions in bulk solution are considered as the average background effect.The reaction coordinates of the HB exchange(Fig.2),which are the distance between N*and Oa(RN*Oa),the distance between N*and Ob(RN*Oa) and the angle(θ) between the N*H*bond and bisector plane of OaN*Ob,are analyzed from more than 250000 successful HB exchanging events.A·mong the possible HB exchanges in NH4Cl solution at 0.5 molL–1,the fraction of W-W HB exchange of N*H*(Fig.1) has the highest value,0.93(the definitions of HB exchange type in method part).

    Fig.3 HB state correlation functions of the hydrogen atom of water and

    Fig.4 Reaction coordinates Rij,θ,and φalong the path of the W-W HB exchange of ammonium ion and water

    Fig.5 Jump angle populations of W-W HB switching for water and ion

    An intuitive picture is presented in Fig.4 for the HB exchange reaction of ammonium.The departure of initial acceptor Oaand the arrival of new acceptor Obtake place cooperatively during the HB exchange process.A sudden and largeamplitude angular rotation of N*H*within the local HB frame of OaN*Obis observed at t=0.It is reasonable to assume that the local HB frame of OaN*Obdoes not change during the transient jump rotation of N*H*.32This is suggested by the value ofφ(definition in Fig.2),which nearly does not change during the W-W HB exchange(Fig.4).Jump angle populations of water andN H+4are shown in Fig.5.For water,a main peak locates at 50° and a shoulder peak at 65°.However,only one peak is visible at 65° for the jump angle of N H+4.The jump angle distribution of N H+4is almost symmetrical around the average value.The different features for the jump angles of water andNH+4suggest that the configurations at the transition state(t=0) are different.RN*Oaand RN*Obare not sensitive to the configuration of the transition state due to the strong HB interaction,so the jump angle is mainly determined by the distance(ROaOb) of HB acceptors,Oaand Ob.The possibility of jump angle at about 500 is much lower for ammonium ion than that for water,if a hydrogen bond is formed between the initial HB acceptor water and final HB acceptor water.The distances of N*···Oa,N*···Ob,and Oa···Ob,are about 0.31,0.31,and 0.28 nm for N*H*(Figs.2 and 4).The average jump angle at 65° is identified for both waterand ammonium ion for the HB exchange event without hydrogen bond between two HB acceptor water molecules at the transition 46 state.The distances of N*···Oa,N*···Ob,and Oa···Obare about 0.31,0.31,and 0.35 nm for anmonium ion,about 0.33,0.33,and 0.38 nm for the water.The possibility of the HB exchange between two HB water molecules without formation of HB each other,is higher for ammonium ion than that for water.This is mainly due to less available new HB acceptor around N*H*than O*H*.

    3.2 Contributions from the jump and frame rotations

    The rotational relaxation times of water and ammonium directly from equations(1,2) and from the EJM with equations(3)–(5),are presented in Fig.6.The tendency of the rotational relaxation times with concentration is well reproduced by the EJM.The rotational relaxation times are a little underestimated by the EJM relative to the direct measurements.The results from EJM suggest that the water rotation along the OH vector can be divided into two sub-processes.One is the large-amplitude and fast jump rotation.The other is the diffusive rotation of HB frame O*Oa.In NH4Cl solution at the lowest concentration(0.5 mol·L–1) of the samples in this work,the jump rotational times of water and ammonium ion are 3.81 and 4.57 ps,respectively.Their frame rotational times are 5.96 and 9.30 ps,respectively.The jump and diffusive rotational times rise to 7.30 and 18.59 ps at 5 mol·L–1.The contribution from the jump rotation to the rotational mobility of ammonium increases with concentration.The rotation time of ammonium ion and water is mainly determined by the jump rotation over the whole range of concentration.

    As for the underestimation of the EJM,this is mainly due to the invalidation of its assumption and its intrinsic limitation.For the jump rotation,the average direction used in the EJM is assumed to be the same as the frame vector,neglecting the libration of O*H*or N*H*in local HB frame.The jump rotation term in fact covers a part of fast libration contribution in its long-time rotation contribution in equation(2).Additionally,the EJM does not consider the rotations of ammonium and water in local basins suggested in reference.50The fast HB exchange in local basin has bigger contribution on the fast decay of the rotational correlation function than the long-time decay.47A faster jump rotation is expected for the EJM,given its intrinsic limitations above.

    Fig.6 Rotational relaxation times of water and ammonium

    4 Conclusions

    The rotational mechanism of ammonium ion is explored by MD simulations and the extended jump model.The fast rotation of N H+4observed in previous experiments is due to the sudden jump rotation.The jump rotation of N H+4is motivated by the HB exchanges.The rotational behavior can be approximately described with the EJM like water in aqueous solutions.The rotational correlation function can be decomposed into a jump rotation and a diffuse rotation of HB frame based on the EJM.The contribution from the fast jump rotation is bigger than the diffusive part.The jump rotation becomes more and more important with concentration.Comparing to the HB exchange of water,the HB exchange of ammonium ion between two water molecules forming HB each other has a lower possibility than water.

    (1)Nostro,P.L.;Ninham,B.W.Chem.Rev.2012,112,2286.doi:10.1021/cr200271j

    (2)Marcus,Y.Chem.Rev.2009,109,1346.doi:10.1021/cr8003828

    (3)Ohtaki,H.;Radnai,T.Chem.Rev.1993,93,1157.doi:10.1021/cr00019a014

    (4)(a) Bakker,H.J.;Skinner,J.L.Chem.Rev.2010,110,1498.doi:10.1021/cr9001879(b) Bakker,H.J.Chem.Rev.2008,108,1456

    (5)Marcus,Y.;Hefter,G.Chem.Rev.2006,106,4585.doi:10.1021/cr040087x

    (6)Collins,K.D.Biophys.J.1997,72,65.doi:10.1016/S0006-3495(97)78647-8

    (7)Mason,P.E.;Dempsey,C.E.;Vrbka,L.;Heyda,J.;Brady,J.W.;Jungwirth,P.J.Phys.Chem.B 2009,113,3227.

    (8)(a) Yang,L.J.;Fan,Y.B.;Gao,Y.Q.J.Phys.Chem.B 2011,115,12456.doi:10.1021/jp207652h(b) Zhang,Q.;Xie,W.;Bian,H.;Gao,Y.Q.;Zheng,J.;Zhuang,W.J.Phys.Chem.B 2013,117,2992.

    (9)Hofmeister,F.Arch.Exp.Pathol.Pharmakol.1888,24,247.doi:10.1016/j.orgel.2008.12.008

    (10)Heisler,I.A.;Mazur,K.;Meech,S.R.J.Phys.Chem.B 2011,115,1863.doi:10.1007/BF01918191

    (11)Engel,G.;Hertz,H.G.Ber.Bunsen.-Ges.Phys.Chem.1968,72,808.doi:10.1021/j100849a009

    (12)Park,S.;Fayer,M.D.Proc.Natl.Acad.Sci.U.S.A.2007,104,16731.doi:10.1073/pnas.0707824104

    (13)Roberts,S.T.;Ramasesha,K.;Tokmakoff,A.Accoutns Chem.Res.2009,42,1239.doi:10.1021/ar900088g

    (14)Laage,D.;Hynes,J.T.Proc.Natl.Acad.Sci.U.S.A.2007,104,11167.doi:10.1073/pnas.0701699104

    (15)Stirnemann,G.;Wernersson,E.;Jungwirth,P.;Laage,D.J.Am.Chem.Soc.2013,135,11824.doi:10.1021/ja405201s

    (16)Moberg,R.;Bokman,F.;Bohman,O.;Siegbahn,H.O.G.J.Am.Chem.Soc.1991,113,3663.doi:10.1021/ja00010a005

    (17)Anderson,T.L.;Charlson,A.J.;Schwartz,S.E.;Knutti,R.;Boucher,O.;Rodhe,H.;Heintzenberg,J.Science 2003,300,1103.doi:10.1126/science.1084777

    (18)(a) Mason,P.E.;Heyda,J.;Fischer,H.E.;Jungwirth,P.J.Phys.Chem.B 2010,114,13853.doi:10.1021/jp104840g(b) Wang,S.;Orabi,E.A.;Baday,S.;Berne`che,S.;Lamoureux,G.J.Am.Chem.Soc.2012,134,10419.(c) Baday,S.;Wang,S.;Lamoureux,G.;Bernèche,S.Biochemistry 2013,52,7091.

    (19)Perrin,C.L.;Gipe,R.K.J.Am.Chem.Soc.1986,108,1088.doi:10.1021/ja00265a044

    (20)Perrin C.L.;Gipe,R.K.Science 1987,238,1393.doi:10.1126/science.238.4832.1393

    (21)Masuda,Y.J.Phys.Chem.A 2001,105,2989.doi:10.1021/jp003300b

    (22)Einstein,A.Investigations on the Theory of the Brownian Motion;Dover:New York,1956.

    (23)Karim,O.A.;Haymet,A.D.J.J.Chem.Phys.1990,93,5961.doi:10.1063/1.459479

    (24)(a) Chang,T.;Dang,L.X.J.Chem.Phys.2003,118,8813.(b) Dang,L.X.Chem.Phys.Lett.1993,213,541.

    (25)Szasz,G.;Riede,W.O.;Heinzinger,K.Z.Naturforsch.A 1979,34,1083.

    (26)Jorgensen,W.L.;Gao,J.J.Phys.Chem.1986,90,2174.doi:10.1021/j100401a037

    (27)Jensen,K.P.;Jorgensen,W.L.J.Chem.Theory Comput.2006,2,1499.

    (28)Bruge,F.;Bernasconi,M.;Parrinello,M.J.Am.Chem.Soc.1999,121,10883.doi:10.1021/ja990520y

    (29)Bruge,F.;Bernasconi,M.;Parrinello,M.J.Chem.Phys.1999,110,4734.doi:10.1063/1.478360

    (30)Kassab,E.;Evleth,E.M.;Hamou-Tahra,Z.D.J.Am.Chem.Soc.1990,112,103.doi:10.1021/ja00157a016

    (31)Babiaczyk,W.I.;Bonella,S.;Guidoni,L.;Ciccotti,G.J.Phys.Chem.B 2010,114,15018.doi:10.1021/jp106282w

    (32)(a) Laage,D.;Hynes,J.T.Science 2006,311,832.doi:10.1126/science.1122154(b) Laage,D.;Stirnemann,G.;Sterpone,F.;Hynes,J.T.Accoutns Chem.Res.2012,45,53.

    (33)Ivanov,E.N.Sov.Phys.JETP 1964,18,1041.

    (34)Heyda,J.;Lund,M.;On?ák,M.Slaví?ek,P.;Jungwirth,P.J.Phys.Chem.B 2010,114,10843.doi:10.1021/jp101393k

    (35)Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys.Chem.1987,91,6269.doi:10.1021/j100308a038

    (36)Andersen,H.C.J.Comput.Phys.1983,52,24.doi:10.1016/0021-9991(83)90014-1

    (37)Allen,M.P.;Tildesley,D.J.Computer Simulation of Liquids;Clarendon Press:Oxford,1987.

    (38)Nosé,S.Mol.Phys.1984,52,255.doi:10.1080/00268978400101201

    (39)Hoover,W.G.Phys.Rev.A 1985,31,1695.doi:10.1103/PhysRevA.31.1695

    (40)Berendsen,H.J.C.;Postma,J.P.M.;van Gunsteren,W.F.;DiNola,A.;Hauk,J.R.J.Chem.Phys.1984,81,3684.doi:10.1063/1.448118

    (41)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98,10089.doi:10.1063/1.464397

    (42)Ponder,J.W.;Richards,F.M.J.Comput.Chem.1987,8,1016.

    (43)Mazza,M.G.;Giovambattista,N.;Starr,F.W.;Stanley,H.E.;Phys.Rev.Lett.2006,96,057803.doi:10.1103/PhysRevLett.96.057803

    (44)Hansen,J.P.;McDonald,I.R.Theory of Simple Liquids;Academic:London,1986.

    (45)Zasetsky,A.Y.;Petelina,S.V.;Lyashchenko,A.K.;Lileev,A.S.J.Chem.Phys.2010,133,134502.doi:10.1063/1.3486174

    (46)(a) Zhang,X.;Zhang,Q.;Zhao,D.Acta Chim.Sin.2012,70,365.[張 霞,張 強(qiáng),趙東霞.化學(xué)學(xué)報(bào),2012,70,365.](b) Zhang,X.;Zhang,Q.;Zhao,D.X.Acta Phys.-Chim.Sin.2011,27,2547. [張 霞,張 強(qiáng),趙東霞.物理化學(xué)學(xué)報(bào),2011,27,2547.] doi:10.3866/PKU.WHXB20111107

    (47)Qvist,J.;Mattea,C.;Sunde,E.P.;Halleb,B.J.Chem.Phys.2012,136,204505.doi:10.1063/1.4720941

    Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions

    ZHANG Qiang1,*CHENG Cheng1ZHANG Xia1ZHAO Dong-Xia2
    (1Department of Chemistry,Bohai University,Jinzhou 121000,Liaoning Province,P.R.China;
    2Department of Chemistry,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    The dynamic behavior of the ammonium ion is closely related to the biological and chemical processes of life.A fast rotation ofin aqueous solution has been observed in previous experiments,which is unexpected from hydrodynamic theories because of the multiple strong hydrogen bonds(HBs) between ammonium ion and water.The mechanism behind this rotation is still not well understood.The simulations in this work show that a sudden and large-magnitude angular jump rotation occurs during the hydrogen bond exchange processes of the ammonium ion like water.The rotation of the ammonium ion can be approximately described with the extended jump model,and can be decomposed into two independent contributions∶ the jump rotation and the diffusive rotation of the HB frame.The rotational mobility of the ammonium ion is determined by fast jump rotation compared with the slow diffusive rotation.In addition,the contribution of the jump rotation increases with increasingconcentration.Compared with water,prefers to exchange its HB between two water molecules without forming a HB each other.

    Ammonium ion; Jump rotation; Hydrogen bond; Molecular dynamics simulation;Extended jump model

    April 17,2015;Revised:May 28,2015;Published on Web:June 1,2015.

    O641

    icle]

    10.3866/PKU.WHXB201506013 www.whxb.pku.edu.cn

    *Corresponding author.Email:zhangqiang@bhu.edu.cn.

    The project was supported by the Scientific Research Foundation for Returned Scholars,Ministry of Education of China(No.46) and National Natural Science Foundation of China(21473083).

    教育部留學(xué)回國(guó)人員科研啟動(dòng)基金(46批)和國(guó)家自然科學(xué)基金(21473083)資助項(xiàng)目? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    化學(xué)系水溶液氫鍵
    教材和高考中的氫鍵
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    DMAC水溶液乙酸吸附分離過程
    聚焦水溶液中的三大守恒關(guān)系
    TEA水溶液的流變性研究
    添加酸對(duì)HPP-SO2水溶液熱解吸的影響
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    銥(Ⅲ)卟啉β-羥乙與基醛的碳?xì)滏I活化
    十八禁网站网址无遮挡| 在线观看免费午夜福利视频| 一边亲一边摸免费视频| 国精品久久久久久国模美| 777久久人妻少妇嫩草av网站| 亚洲成人免费av在线播放| 女人久久www免费人成看片| 美女大奶头黄色视频| 一级毛片 在线播放| 亚洲 欧美一区二区三区| 国产黄色视频一区二区在线观看| 国产欧美日韩一区二区三 | 国产成人系列免费观看| 免费观看人在逋| 观看av在线不卡| 久久久久久久久免费视频了| 少妇粗大呻吟视频| 国产在线免费精品| 亚洲国产av新网站| 好男人视频免费观看在线| 悠悠久久av| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 国产高清videossex| 成年人午夜在线观看视频| 精品亚洲成国产av| 国产免费福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 午夜日韩欧美国产| 精品亚洲乱码少妇综合久久| 欧美日韩亚洲综合一区二区三区_| 人人妻人人澡人人看| 一区二区三区四区激情视频| 亚洲国产精品国产精品| 99国产综合亚洲精品| 国产成人av教育| 免费一级毛片在线播放高清视频 | 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 色婷婷av一区二区三区视频| 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 黄频高清免费视频| 欧美国产精品一级二级三级| 超碰97精品在线观看| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 欧美成人精品欧美一级黄| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 最近手机中文字幕大全| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 看免费av毛片| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 一级片'在线观看视频| 我要看黄色一级片免费的| 精品亚洲乱码少妇综合久久| cao死你这个sao货| av一本久久久久| 一级黄片播放器| kizo精华| 午夜av观看不卡| 色视频在线一区二区三区| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 精品人妻一区二区三区麻豆| 日本a在线网址| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 搡老乐熟女国产| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 美女主播在线视频| 人妻人人澡人人爽人人| 午夜福利一区二区在线看| 亚洲精品日韩在线中文字幕| 久久久久久久精品精品| 97在线人人人人妻| 色精品久久人妻99蜜桃| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 又粗又硬又长又爽又黄的视频| 手机成人av网站| 欧美变态另类bdsm刘玥| 国产色视频综合| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频| 久久人妻熟女aⅴ| 一边亲一边摸免费视频| 日韩中文字幕欧美一区二区 | 最近手机中文字幕大全| 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 亚洲欧美中文字幕日韩二区| 在线精品无人区一区二区三| 亚洲免费av在线视频| 日本欧美国产在线视频| 人妻一区二区av| 欧美日韩福利视频一区二区| 天天躁日日躁夜夜躁夜夜| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久 | 新久久久久国产一级毛片| 久久精品国产亚洲av高清一级| svipshipincom国产片| 久久久久国产精品人妻一区二区| 亚洲中文av在线| 一级毛片 在线播放| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免| 国产成人av教育| 高清欧美精品videossex| 成年动漫av网址| 嫁个100分男人电影在线观看 | 欧美xxⅹ黑人| 国产高清videossex| 老司机靠b影院| 欧美日韩综合久久久久久| 国产男人的电影天堂91| 悠悠久久av| 人体艺术视频欧美日本| 在线观看国产h片| 老汉色∧v一级毛片| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 每晚都被弄得嗷嗷叫到高潮| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 久久精品成人免费网站| 午夜91福利影院| 成年动漫av网址| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 欧美激情 高清一区二区三区| 日本一区二区免费在线视频| 狂野欧美激情性bbbbbb| 色网站视频免费| 欧美日韩亚洲国产一区二区在线观看 | 人人妻人人爽人人添夜夜欢视频| 一级毛片 在线播放| 午夜福利影视在线免费观看| 99久久人妻综合| 少妇被粗大的猛进出69影院| 国产高清不卡午夜福利| av片东京热男人的天堂| 久久久精品区二区三区| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 日本午夜av视频| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 日本色播在线视频| 热99国产精品久久久久久7| 18禁国产床啪视频网站| xxx大片免费视频| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 最近中文字幕2019免费版| 男女边吃奶边做爰视频| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 久久精品国产综合久久久| 久热这里只有精品99| 欧美日韩一级在线毛片| 日日夜夜操网爽| 天天躁狠狠躁夜夜躁狠狠躁| 日本色播在线视频| 一二三四在线观看免费中文在| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 久久久久久久精品精品| 国产主播在线观看一区二区 | 搡老岳熟女国产| 日韩大码丰满熟妇| 国产精品久久久久成人av| 国产91精品成人一区二区三区 | 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 满18在线观看网站| netflix在线观看网站| 精品第一国产精品| 电影成人av| 亚洲情色 制服丝袜| 黄色 视频免费看| 性色av乱码一区二区三区2| 搡老乐熟女国产| 亚洲精品一区蜜桃| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 日韩中文字幕视频在线看片| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 狠狠婷婷综合久久久久久88av| 久久国产精品人妻蜜桃| 国产在线观看jvid| 精品一区二区三区四区五区乱码 | 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 亚洲图色成人| av福利片在线| 超碰97精品在线观看| 亚洲一码二码三码区别大吗| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 午夜久久久在线观看| 国产高清视频在线播放一区 | 国产精品 欧美亚洲| 男人舔女人的私密视频| 国产成人影院久久av| 日韩免费高清中文字幕av| 国产成人一区二区在线| 国产片内射在线| 精品亚洲成国产av| 国产精品一国产av| 亚洲精品日本国产第一区| 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 波多野结衣av一区二区av| 亚洲熟女精品中文字幕| 9热在线视频观看99| 久久久国产精品麻豆| 男女国产视频网站| av欧美777| 99久久精品国产亚洲精品| 啦啦啦啦在线视频资源| 亚洲人成电影观看| 精品福利观看| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 国产精品国产av在线观看| 国产成人免费观看mmmm| 亚洲图色成人| 国产黄频视频在线观看| 久久久久网色| 亚洲七黄色美女视频| 热re99久久国产66热| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 亚洲 国产 在线| 这个男人来自地球电影免费观看| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 亚洲自偷自拍图片 自拍| av有码第一页| 亚洲,一卡二卡三卡| 午夜免费男女啪啪视频观看| 欧美中文综合在线视频| 一个人免费看片子| 七月丁香在线播放| 亚洲av成人不卡在线观看播放网 | 丁香六月欧美| 19禁男女啪啪无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 亚洲人成电影观看| 午夜激情av网站| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 亚洲人成电影免费在线| 婷婷成人精品国产| 欧美精品一区二区免费开放| 亚洲三区欧美一区| 嫁个100分男人电影在线观看 | 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 不卡av一区二区三区| 国产成人精品在线电影| 丝袜美足系列| 国产成人精品在线电影| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 99热网站在线观看| 精品亚洲成a人片在线观看| 又大又黄又爽视频免费| 欧美+亚洲+日韩+国产| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 欧美精品啪啪一区二区三区 | 亚洲一区二区三区欧美精品| 狂野欧美激情性bbbbbb| 1024视频免费在线观看| 一级黄片播放器| 母亲3免费完整高清在线观看| 久久久精品免费免费高清| e午夜精品久久久久久久| 中文字幕制服av| 如日韩欧美国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 婷婷色麻豆天堂久久| 国产精品一区二区精品视频观看| 久久久亚洲精品成人影院| a级毛片黄视频| 中文字幕人妻丝袜制服| 夜夜骑夜夜射夜夜干| 老司机影院毛片| 99国产精品99久久久久| 性高湖久久久久久久久免费观看| 亚洲成人手机| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 国产三级黄色录像| 精品高清国产在线一区| 国产av精品麻豆| 99九九在线精品视频| 波野结衣二区三区在线| 一本久久精品| 51午夜福利影视在线观看| 亚洲国产欧美网| 女性生殖器流出的白浆| 国产99久久九九免费精品| 考比视频在线观看| 国产精品三级大全| 国产不卡av网站在线观看| 欧美国产精品一级二级三级| 国产91精品成人一区二区三区 | 国产精品三级大全| 国产又色又爽无遮挡免| 人人澡人人妻人| 午夜福利,免费看| 亚洲av电影在线观看一区二区三区| 赤兔流量卡办理| 国产精品 欧美亚洲| 久热这里只有精品99| 多毛熟女@视频| 成人午夜精彩视频在线观看| 夫妻午夜视频| 熟女av电影| 中国国产av一级| 国产伦理片在线播放av一区| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 亚洲欧美清纯卡通| 大型av网站在线播放| 亚洲精品日本国产第一区| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 下体分泌物呈黄色| 亚洲人成电影观看| 欧美成人精品欧美一级黄| 最黄视频免费看| 欧美成人精品欧美一级黄| 波多野结衣一区麻豆| 老司机靠b影院| 亚洲人成电影免费在线| 丝瓜视频免费看黄片| 日韩一卡2卡3卡4卡2021年| 亚洲av在线观看美女高潮| 国产成人免费观看mmmm| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 免费av中文字幕在线| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 亚洲av美国av| 啦啦啦视频在线资源免费观看| 美女高潮到喷水免费观看| 91精品伊人久久大香线蕉| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 亚洲人成77777在线视频| 中文字幕高清在线视频| 久久女婷五月综合色啪小说| 午夜福利视频精品| 十八禁网站网址无遮挡| 亚洲国产精品一区三区| 国产精品九九99| 色视频在线一区二区三区| 亚洲国产看品久久| 又粗又硬又长又爽又黄的视频| 精品人妻在线不人妻| svipshipincom国产片| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 99国产综合亚洲精品| 免费日韩欧美在线观看| 这个男人来自地球电影免费观看| 超碰97精品在线观看| 欧美日韩一级在线毛片| 亚洲成人免费av在线播放| 成年女人毛片免费观看观看9 | 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品第一综合不卡| av网站在线播放免费| 国产午夜精品一二区理论片| 中文字幕最新亚洲高清| av有码第一页| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 亚洲成人免费电影在线观看 | 国产xxxxx性猛交| 国产亚洲午夜精品一区二区久久| 亚洲av美国av| 亚洲av片天天在线观看| 国产伦人伦偷精品视频| 久久国产精品影院| 在线观看免费午夜福利视频| 国产爽快片一区二区三区| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美日韩在线播放| 国产精品国产三级专区第一集| 女性被躁到高潮视频| 色网站视频免费| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| svipshipincom国产片| 美女中出高潮动态图| av片东京热男人的天堂| 男人舔女人的私密视频| 午夜av观看不卡| 国产日韩欧美视频二区| 纵有疾风起免费观看全集完整版| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 尾随美女入室| av一本久久久久| 日韩精品免费视频一区二区三区| 中文字幕色久视频| 久久国产精品男人的天堂亚洲| 男女国产视频网站| 国产一区二区激情短视频 | 午夜影院在线不卡| 欧美大码av| 亚洲中文av在线| 热99国产精品久久久久久7| 视频在线观看一区二区三区| 久久久久久久国产电影| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 免费在线观看影片大全网站 | 亚洲 国产 在线| 91麻豆av在线| 99re6热这里在线精品视频| 午夜91福利影院| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 老司机午夜十八禁免费视频| 亚洲人成网站在线观看播放| 91精品伊人久久大香线蕉| 男女免费视频国产| 久久久久久免费高清国产稀缺| 性少妇av在线| 两个人免费观看高清视频| 国产av国产精品国产| 中文字幕人妻丝袜制服| 天堂俺去俺来也www色官网| 国产一区二区在线观看av| 欧美黑人精品巨大| 国精品久久久久久国模美| 成人亚洲欧美一区二区av| 亚洲欧美精品综合一区二区三区| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 国产成人a∨麻豆精品| 亚洲成色77777| 久久天躁狠狠躁夜夜2o2o | 午夜免费观看性视频| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 十分钟在线观看高清视频www| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 亚洲国产精品国产精品| 国产97色在线日韩免费| 91成人精品电影| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 国产精品免费大片| av欧美777| 欧美精品av麻豆av| 尾随美女入室| 久久久久久久精品精品| 美女高潮到喷水免费观看| 热re99久久国产66热| 国产精品av久久久久免费| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 99国产精品一区二区三区| 欧美精品一区二区大全| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 乱人伦中国视频| 久久久精品94久久精品| videosex国产| 亚洲欧美一区二区三区国产| 亚洲国产av影院在线观看| 80岁老熟妇乱子伦牲交| 色播在线永久视频| 国产黄色免费在线视频| 精品亚洲乱码少妇综合久久| 久久国产精品人妻蜜桃| 国产伦人伦偷精品视频| 免费在线观看影片大全网站 | 在线亚洲精品国产二区图片欧美| 国产一区亚洲一区在线观看| 亚洲精品美女久久av网站| 男人爽女人下面视频在线观看| 一区在线观看完整版| 男女无遮挡免费网站观看| 久久 成人 亚洲| 电影成人av| 人人妻,人人澡人人爽秒播 | av欧美777| 国精品久久久久久国模美| 最近最新中文字幕大全免费视频 | 婷婷丁香在线五月| 欧美激情极品国产一区二区三区| 国产精品一区二区精品视频观看| 菩萨蛮人人尽说江南好唐韦庄| 熟女av电影| 欧美性长视频在线观看| 欧美日韩福利视频一区二区| av欧美777| 王馨瑶露胸无遮挡在线观看| 久久精品亚洲av国产电影网| 国产xxxxx性猛交| 国产1区2区3区精品| 日韩av在线免费看完整版不卡| 成人国产一区最新在线观看 | 日韩免费高清中文字幕av| 视频在线观看一区二区三区| 丁香六月天网| 校园人妻丝袜中文字幕| av网站免费在线观看视频| 亚洲精品一区蜜桃| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 纯流量卡能插随身wifi吗| 黑人猛操日本美女一级片| 亚洲九九香蕉| 亚洲精品国产区一区二| 欧美中文综合在线视频| 欧美日韩综合久久久久久| 黄网站色视频无遮挡免费观看| 各种免费的搞黄视频| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| 在线观看免费午夜福利视频| 成年动漫av网址| 91九色精品人成在线观看| 久久性视频一级片| 国产又爽黄色视频| 亚洲,一卡二卡三卡| 婷婷色麻豆天堂久久| 中文字幕制服av| 国产精品免费大片| 国产欧美亚洲国产| 一级黄片播放器| 老司机午夜十八禁免费视频| 久久亚洲精品不卡| 国精品久久久久久国模美| 久久中文字幕一级| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 三上悠亚av全集在线观看| 激情五月婷婷亚洲| 天堂中文最新版在线下载| 成人国产一区最新在线观看 | 大香蕉久久网| 久久久久国产精品人妻一区二区| 爱豆传媒免费全集在线观看| 日韩熟女老妇一区二区性免费视频|