• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Performance of SnO2/Graphite Nanocomposites as Anode Material for Lithium-Ion Batteries

    2015-08-11 14:01:04BAIXuejun白雪君WANGBiaoCHENGXuJIANGJianming江建明
    關鍵詞:白雪

    BAI Xue-jun(白雪君),WANG Biao(王 彪),2*,CHENG Xu(程 旭),JIANG Jian-ming(江建明)

    1 College of Material Science and Engineering,Donghua University,Shanghai 201620,China

    2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620,China

    Electrochemical Performance of SnO2/Graphite Nanocomposites as Anode Material for Lithium-Ion Batteries

    BAI Xue-jun(白雪君)1,WANG Biao(王 彪)1,2*,CHENG Xu(程 旭)1,JIANG Jian-ming(江建明)1

    1 College of Material Science and Engineering,Donghua University,Shanghai 201620,China

    2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620,China

    SnO2/graphite nanocompositeswith differentSnO2contents were successfully prepared by a co-precipitation method.The nanocomposites,used as the anode material for lithium-ion batteries(LIBs),were characterized by X-ray diffraction(XRD),thermogravimetric analysis(TGA),and transmission electron microscopy(TEM).The SnO2particles had the average size of about 15 nm and their distribution on graphite matrix much depended on the contents of SnO2in the nanocomposites.The galvanostatic charge-discharge cycles were used to investigate the effects of SnO2contents on the electrochemical performance of these composites.The results show that the initial specific capacities increase with the SnO2contents.However,the cyclic stabilities are determined by the distribution of SnO2particles in composites.For 55% by weight SnO2/graphite composites,the initial specific capacity is 740 mAh g-1and 70%of the initial specific capacity(518 mAh·g-1)can still be retained after 50 charge-discharge cycles.

    tin oxide;graphite;anode material;lithium-ion batteries (LIBs)

    Introduction

    Due to the reasonably low potential for Li+insertion and high capacities, SnO2appears to be alternative to the commercial graphite anode for the lithium-ion batteries(LIBs).However,its capacity fading under charge-discharge cycles remains a key issue for practical application.Such material deficiency is mainly caused by a large initial irreversible capacity because of the formation of Li2O and the strong volume changes(about 200%)during Li+insertion and extraction[1],which leads to mechanical failure and pulverization of the anode films.

    Promising approaches to overcome these deterrents are to create SnO2anode with nanoscale structures or/and to prepare SnO2-based materials with composite structures.Various types of SnO2nanostructure materials such as nanoparticles[2],hollow sphere[3-5],nanowires[6-8],and nanotubes[9-10]have been reported with some improved cycleability.Although smaller particles and special nanostructures are considered to moderate volume changes and thereby improve batteries'performances,these nanostructure materials are still unable to address fully the cycleability issue associated with the application of SnO2.Recently,composites consisting of and carbonaceous matrices,such as amorphous carbon[11-14],graphite[15-17],CNTs[18-20],and graphene[21-24]have attracted much attention.In these cases,carbon components havebeen found effectivefor improving cycleability,where carbon functions as physical buffering layer for the large volume change of SnO2during electrochemicalreaction with Li+. Using graphite (the commercial anode material)as the matrix to prepare the SnO2- based composite anode materials for LIBs is an effective way to suppress the volume effects of SnO2.Because the volume expansion of graphite on lithium intercalation is only about 9% which can partly accommodate the volume changes of SnO2.However,in SnO2/graphite nanocomposites,both components are contributed to the overall capacities,and the detailed influence of content ratio of SnO2/graphite composites on electrochemical performence as lithium battery anode materials is still unclear.The contribution of distribution structure of SnO2nanoparticles on graphite to the cyclic stability is still lacking.In this paper,SnO2/graphite composites with different SnO2contents have been prepared.The effects of SnO2content and distribution on the electrochemical performance of these composites have been discussed in detail.

    1 Experimental

    1.1 Material synthesis

    At first,graphite(Aladdin,China,99.95%)was stirred in a mixed acid solution of HNO3and HCl(1∶3 v/v)for 24 h to activate the surface of graphite,then washed with distilled water and dried by the vacuum freeze-drying method.The precursors were prepared by a co-precipitation method.The typical procedure to prepare S-6 was as follows.The activated graphite (0.1 g)was dispersed in 0.25 M SnCl4·5H2O(Aladdin,China,AR)aqueous solution(10 mL).Then under vigorous stirring,0.25 M NaOH aqueous solution(60 mL)was added dropwise.After 2 h of stirring,the precursors were washed several time with distilled water and dried at 80℃ for 12 h in a vacuum oven.At last,the precursors were calcined at 500℃ for 2 h in air to obtain the SnO2/graphite composites.Other samples (S-1 to S-5)were prepared by using the similar method as S-6.The only difference was the weight of activated graphite.

    1.2 Structural characterization

    The composites were characterized by X-ray diffraction (XRD,Cu Ka,λ=1.54056 ?,D/max-2550Pc,Rigaku).Precise SnO2contents in composites were determined using thermogravimetric analysis(TGA,209 F1 Iris,Netzsh),from room temperature to 900℃ at a heating rate of 10℃/min in air.The morphology was characterized by transmission electron microscopy(TEM,2100F,JEOL).

    1.3 Electrochemical measurement

    Electrochemical performances were evaluated by assembling two-electrrode coin-type(CR2016)half cells in argon filled glovebox.The cells consisted of SnO2/graphite composites,acetylene black and poly(vinylidene fluoride)8∶1∶1(w/w)as the working eletrodes,Li metal foil as counter electrodes,and Celgard 2400(DuPont,USA)as sepatator.The electrolyte was 1.0 M LiPF6in a mixture of ethylene carbonate/diethyl carbonate 1∶1(w/w).The cells were cycledat a current density of 100 mA·g-1between 0.01 and 2.0 V using Battery Tester(CT2001A,LAND).

    2 Results and Discussion

    SnO2/graphite composites with six kinds of SnO2contents (sample S-1 to S-6,see Table 1)were prepared and the SnO2contents(%by weight)were determined by TGA[25].TEM images of these composites are shown in Fig.1.All the prepared SnO2particles are about 15 nm and the particle-size distributions are very narrow.The density of the particles on graphite increases with the SnO2contents.The high-resolution TEM(HRTEM)image(insert in Fig.1(d))displays the lattice fringe with a spacing of 0.33 nm,corresponding to the (110)face of tetragonal SnO2,which confirms the presence ofSnO2on graphite. However, there are significant differences between the six samples in terms of particles distributions on graphite.The nanoparticles with lower SnO2contents(S-1 to S-3)are slightly aggregated because of the buffer effects of graphite.When the SnO2contents increase to 55% by weight or 73% by weight(S-4 and S-5),the particles form a network structure.When the SnO2contents increase to 80% by weight(S-6),heavy aggregation of particles can be observed.

    The XRD patterns of SnO2/graphite composites with different SnO2contents are presented in Fig.2.All reflection peaks are in accordance with a tetragonal SnO2(JCPDS No.41-1445)and a hexagonal graphite(JCPDS No.12-0212).No significant changes of reflection peaks for the samples with various SnO2contents are detected.XRD confirmed the coexisting ofphases oftetragonalSnO2and hexagonal graphite.

    Table 1 SnO2contents,initial specific capacity,and coulombic efficiency of the SnO2/graphite composites

    Fig.1 TEM images of various SnO2/graphite composites:(a)S-1,(b)S-2,(c)S-3,(d)S-4 with an inset showing the HRTEM image,(e)S-5,and(f)S-6

    Fig.2 XRD patterns ofSnO2/graphitecomposites with different SnO2contents

    The initial specific capacity and coulombic efficienty of SnO2/graphite composites were measured between 0.01 and 2.0 V,in 100 mA·g-1current density.The results are listed in Table 1.The initial specific capacity increases with SnO2contents,while the coulombic efficiency decreases obviously owing to the reduction of SnO2and the formation of solid electrolyte interfae(SEI)layers on graphite and Sn surface (formulas(1)-(4))[17].This phenomenon can also be reflected on the difference in the specific charge/discharge profiles of these composites(Fig.3).With the SnO2contents increasing,the plateaus at about 0.8 V in initial discharge curve become more apparent which indicates more Li2O formation.While the plateaus disappear in the 5th discharge curve,indicating the irreversible reactions mainly exist in the first several cycles.

    Fig.3 Charge-discharge profiles of SnO2/graphite composites(the voltage is between 0.01 and 2.0 V and the current density is 100 mA·g-1)

    Although the initial specific capacity increases with the SnO2contents,the cycle performance does not show the same tendency.Figure 4 shows the cycling performances of SnO2/ graphite composites.The 55% by weightSnO2/graphite composite(S-4) presents much better cycleability which maintains the capacity of 518 mAh·g-1until the 50th cycle.The sample(S-1)with very low SnO2content(3.1% by weight)shows more stable cycle-life performance because of the main attribution of the graphite.Other samples show lower cycle performances than that of the S-4 sample,even though S-5 and S-6 have higher SnO2contents in the composites.In these cases,the cycleability of graphite was assumingly the same[16]and the size and size-distribution of SnO2particles were similar for the six samples,so distribution state of SnO2on graphite could be the main factor to affact the cycle-life performance of the composites.In the several previous reports,the reversible capacities of SnO2are soon decreased if the Sn particles (reduction products,see formula(1)are aggregated during the alloying and dealloying of Li with Sn(formula(3)).In this work,the graphite not only increases the conductivity of the composites but alsoserves as a physical buffer layer to accommodate the volume change of Sn in the lithiation and delithiation process[23].When SnO2contents are relative low,the stack densities of SnO2nanoparticles are small,as S-2 and S-3.These seperated nanoparticles are submitted to dramatic volume change by lithium insertion and extraction and they shed from graphite which become electrically disconnected,leading to a decrease of the reversible capacity[26].With the increase of SnO2contents,SnO2nanoparticles trend to form a network and this network bounds to graphite tightly which could effectively and rapidly transport electrons between SnO2and graphite.The relatively loose SnO2network of S-4 also retards the aggregation of Sn during the Sn alloying to accommodate with volume change.Therefore S-4 shows a better cycle performance.When SnO2contents are higher than 73%(as S-5 and S-6),the SnO2nanoparticles distribute too densely and aggregate seriously which cause severe aggregation of Sn during charge-discharge process,leading to a rapid fading of capacity.Distribution structure ofSnO2on graphite is another important factor affecting the cycle-life performance of these composites which has been ignored previously.

    Fig.4 Cycling performances of SnO2/graphite composites(the voltage is between 0.01 and 2.0 V and the current density is 100 mA·g-1)

    Figure 5 shows the SnO2contributions in sample S-4 assuming constant graphite capacity of 300 mAh· g-1.Capacity of SnO2is calculated according to the following equation[16]:

    where C is the capacity,M is mass fraction.The calculated initial specific capacity of SnO2is 1100 mAh·g-1,which is much higher than SnO2theoretical capacity(782 mAh·g-1).And it maintains 696 mAh·g-1until the 50th cycle,which is still near the theoretical capacity.This phenomenon indicates that sample S-4 is not simply an intimate physical mixture of the two components.There may be a special synergistic effect in the SnO2/graphite composites.The mechanism of this effect is still being investigated in our lab.

    Fig.5 SnO2contributions in sample S-4 assuming constant graphite capacity of 300 mAh·g-1(the voltage is between 0.01 and 2.0 V and the current density is 100 mA·g-1)

    3 Conclusions

    SnO2/graphite composites have been successfully prepared by a co-precipitation method.And 55% by weight SnO2/ graphite sample with a network structure exhibits better cyclic stability,which could guide researchers to design a special distribution structure of SnO2on graphite to improve the cyclelife performance of these composites.Based on the calculation results of capacities of these composites with the physical mixture law,the capacity of SnO2is near the theoretical capacity.

    [1]Huang J Y,Zhong L,Wang C M,et al.In situ Observation of the ElectrochemicalLithiation ofa Single SnO2Nanowire Electrode[J].Science,2010,330(6010):1515-1520.

    [2]Kim S,Lee H,Park C M,et al.Synthesis of Tin Oxide Nanoparticle Film by Cathodic Electrodeposition[J].Journal of Nanoscience and Nanotechnology,2012,12(2):1616-1619.

    [3]Lou X W,Yuan C L,Archer L A.Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls:Cavity Size Tuning and Functionalization[J].Small,2007,3(2):261-265.

    [4]Lee Y,Jo M R,Song K,et al.Hollow Sn-SnO2Nanocrystal/ Graphite Composites and Their Lithium Storage Properties[J].ACS Applied Materials&Interfaces,2012,4(7):3459-3464.

    [5]Liu R Q,Li N,Li D Y,et al.Template-Free Synthesis of SnO2Hollow Microspheres as Anode Material for Lithium-Ion Battery[J].Materials Letters,2012,73:1-3.

    [6]Han Y,Wu X,Ma Y,et al.Porous SnO2Nanowire Bundles for Photocatalyst and Li Ion Battery Applications [J].CrystEngComm,2011,13(10):3506-3510.

    [7]Lei D,Zhang M,Hao Q,et al.Morphology Effect on the Performances of SnO2Nanorod Arrays as Anodes for Li-Ion Batteries[J].Materials Letters,2011,65(8):1154-1156.

    [8]Zhang L Q,Liu X H,Perng Y C,et al.Direct Observation of Sn Crystal Growth During the Lithiation and Delithiation Processes of SnO2Nanowires[J].Micron,2012,43(11):1127-1133.

    [9]Wang H E,Xi L J,Ma R G,et al.Microwave-Assisted Hydrothermal Synthesis of Porous SnO2Nanotubes and Their Lithium Ion Storage Properties[J].Journal of Solid State Chemistry,2012,190:104-110.

    [10]Wu F D,Wu M H,Wang Y.Antimony-Doped Tin Oxide Nanotubes for High Capacity Lithium Storage [J].Electrochemistry Communications,2011,13(5):433-436.

    [11]Lou X W,Deng D,Lee J Y,et al.Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties[J].Chemistry of Materials,2008,20(20):6562-6566.

    [12]Lou X W,Li C M,Archer L A.Designed Synthesis of Coaxial SnO2@Carbon Hollow NanospheresforHighly Reversible Lithium Storage[J].Advanced Materials,2009,21(24):2536-2539.

    [13]Liu J,Li W,Manthiram A.Dense Core-Shell Structured SnO2/C Composites as High Performance Anodes for Lithium Ion Batteries[J].Chemical Communications,2010,46(9):1437-1439.

    [14]Li Y,Zhu S M,Liu Q L,et al.Carbon-coated SnO2@C with Hierarchically Porous Structures and Graphite Layers Inside for a High-Performance Lithium-ion Battery[J].Journal of Materials Chemistry,2012,22(6):2766-2773.

    [15]Kilby K T,Jiao S Q,F(xiàn)ray D J.Current Efficiency Studies for Graphite and SnO2-Based Anodes for the Electro-Deoxidation of Metal Oxides[J].Electrochimica Acta,2010,55(23):7126-7133.

    [16]Wang Y,Lee J Y.Microwave-Assisted Synthesis of SnO2-Graphite Nanocomposites for Li-Ion Battery Applications[J].Journal of Power Sources,2005,144(1):220-225.

    [17]Kim J G,Nam S H,Lee S H,et al.SnO2Nanorod-Planted Graphite:An Effective Nanostructure Configuration for Reversible Lithium Ion Storage[J].ACS Applied Materials&Interfaces,2011,3(3):828-835.

    [18]Chen Y J,Zhu C L,Xue X Y,et al.High Capacity and Excellent Cycling Stability of Single-Walled Carbon Nanotube/SnO2Core-Shell Structures as Li-Insertion Materials[J].Applied Physics Letters,2008,92(22):3301.

    [19]Zhang H X,F(xiàn)eng C,Zhai Y C,et al.Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2Nanoparticles:a Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries[J].Advanced Materials,2009,21(22):2299-2304.

    [20]Wang Z,Chen G,Xia D.Coating of Multi-walled Carbon Nanotube with SnO2Films of Controlled Thickness and Its Application for Li-Ion Battery[J].Journal of Power Sources,2008,184(2):432-436.

    [21]Paek S M,Yoo E J,Honma I.Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J].Nano Letters,2009,9(1):72-75.

    [22]Yao J,Shen X P,Wang B,et al.In situ Chemical Synthesis of SnO2-Graphene Nanocomposite as Anode Materials for Lithium-Ion Batteries[J].Electrochemistry Communications,2009,11 (10):1849-1852.

    [23] Wang X Y,Zhou X F,Yao K,et al.A SnO2/Graphene Composite as a High Stability Electrode for Lithium Ion Batteries[J].Carbon,2011,49(1):133-139.

    [24]Ding S J,Luan D Y,Boey F Y C,et al.SnO2Nanosheets Grown on Graphene Sheets with Enhanced Lithium Storage Properties[J].Chemical Communications,2011,47(25): 7155-7157.

    [25]Xu C H,Sun J,Gao L.Direct Growth of Monodisperse SnO2Nanorods on Graphene as High Capacity Anode Materials for Lithium Ion Batteries[J].Journal of Materials Chemistry,2012,22(3):975-979.

    [26]Billaud D,Balan L,Schneider R,et al.The Influence of the Synthesis Conditions of Graphite/Tin Nanoparticle Materials on Their Electrode Electrochemical Performance in Li-Ion Battery Anodes[J].Carbon,2006,44(12):2508-2515.

    TM 912.9

    A

    1672-5220(2015)03-0379-05

    date:2013-09-02

    s:the Scientific Research Foundation for the Returned Overseas Chinese Scholars;the Shanghai Leading Academic Discipline Project,China(No.B603);the Programme of Introducing Talents of Discipline to Universities,China(No.111-2-04)

    *Correspondence should be addressed to WANG Biao,E-mail:wbiao2000@dhu.edu.cn

    猜你喜歡
    白雪
    小魚捉迷藏
    Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
    Do Softly Pray
    白雪和紅玫(一)
    白雪彤 黃子棋 顧皓哲
    等待白雪的龍門山(外一章)
    散文詩(2017年15期)2018-01-19 03:07:55
    The Ways of Creating “Information Gap Activities” in the Communicative Language Teaching
    韋白雪,我負責給你好日子
    學生天地(2017年4期)2017-05-17 05:48:30
    裴金寶《白雪》尋緣
    蘇州雜志(2016年6期)2016-02-28 16:32:27
    白雪覆蓋山崗
    詩選刊(2015年4期)2015-10-26 08:45:21
    不卡av一区二区三区| 精品熟女少妇八av免费久了| 免费在线观看亚洲国产| 国产熟女xx| 一区二区三区激情视频| 国产精品一及| a在线观看视频网站| 少妇的丰满在线观看| 看黄色毛片网站| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线在线| 听说在线观看完整版免费高清| 俺也久久电影网| 日韩欧美在线二视频| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 国产真人三级小视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 国产av在哪里看| 久久久久久大精品| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡| 91成年电影在线观看| 免费在线观看黄色视频的| 黄色a级毛片大全视频| 国产精品亚洲一级av第二区| 亚洲国产欧洲综合997久久,| 99久久国产精品久久久| 丁香六月欧美| 久久久久亚洲av毛片大全| 黄色视频不卡| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 欧美av亚洲av综合av国产av| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| 国产亚洲欧美98| 国产激情偷乱视频一区二区| 91字幕亚洲| 久久久久久国产a免费观看| 最近在线观看免费完整版| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 午夜福利免费观看在线| 免费在线观看黄色视频的| 丁香六月欧美| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 中文字幕久久专区| 久久精品人妻少妇| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| av福利片在线观看| 岛国视频午夜一区免费看| 两性夫妻黄色片| 国产精品一区二区免费欧美| 18禁观看日本| 国产精品日韩av在线免费观看| 精品熟女少妇八av免费久了| 国产精品亚洲美女久久久| 一区二区三区高清视频在线| 天堂动漫精品| 精品熟女少妇八av免费久了| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆 | 久久香蕉激情| 9191精品国产免费久久| av在线播放免费不卡| a级毛片在线看网站| 欧美国产日韩亚洲一区| 欧美日韩黄片免| 美女高潮喷水抽搐中文字幕| 久久久久性生活片| 国产熟女xx| 97人妻精品一区二区三区麻豆| 亚洲一码二码三码区别大吗| 男女那种视频在线观看| 999精品在线视频| 亚洲精品粉嫩美女一区| 首页视频小说图片口味搜索| 亚洲欧美精品综合一区二区三区| 久久中文看片网| 久久性视频一级片| 国产探花在线观看一区二区| 91字幕亚洲| 欧美性猛交╳xxx乱大交人| 成人国语在线视频| 在线观看66精品国产| 国产精品一及| 精品一区二区三区四区五区乱码| 国产精品一区二区三区四区免费观看 | 午夜激情福利司机影院| 国产精品乱码一区二三区的特点| 国产精品一及| 久久久久性生活片| 亚洲专区国产一区二区| 免费在线观看完整版高清| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 搡老岳熟女国产| 老鸭窝网址在线观看| 成人18禁在线播放| 12—13女人毛片做爰片一| 亚洲中文av在线| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 欧美日本亚洲视频在线播放| 亚洲国产欧美一区二区综合| 中文字幕久久专区| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| 日韩欧美在线乱码| 男女做爰动态图高潮gif福利片| www.www免费av| 夜夜躁狠狠躁天天躁| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 亚洲在线自拍视频| 国产成人系列免费观看| 两性夫妻黄色片| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 久久久久九九精品影院| 欧美日本视频| 国产精品一及| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区免费观看 | 久热爱精品视频在线9| 国产精品,欧美在线| 操出白浆在线播放| 成人国产综合亚洲| 亚洲中文av在线| 免费看日本二区| 在线观看66精品国产| 哪里可以看免费的av片| 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 在线观看美女被高潮喷水网站 | 亚洲男人的天堂狠狠| 精品国产亚洲在线| 日本a在线网址| 国产片内射在线| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看 | 成人亚洲精品av一区二区| 欧美成人午夜精品| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 国产一区二区三区视频了| 90打野战视频偷拍视频| 伦理电影免费视频| 午夜福利18| 亚洲五月天丁香| 99精品在免费线老司机午夜| 国产高清激情床上av| a级毛片在线看网站| 可以在线观看毛片的网站| av中文乱码字幕在线| 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 精品国产亚洲在线| 在线观看美女被高潮喷水网站 | 色噜噜av男人的天堂激情| 十八禁人妻一区二区| 国产精品电影一区二区三区| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 国产黄片美女视频| 亚洲av电影在线进入| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 精品久久久久久久久久免费视频| 99re在线观看精品视频| 国产成人aa在线观看| 欧美精品啪啪一区二区三区| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 又紧又爽又黄一区二区| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 无遮挡黄片免费观看| 国产成人影院久久av| 一区二区三区国产精品乱码| 香蕉av资源在线| 99热6这里只有精品| 手机成人av网站| 麻豆国产97在线/欧美 | av欧美777| 好男人在线观看高清免费视频| 国产午夜精品论理片| 久久中文看片网| 国产97色在线日韩免费| 999精品在线视频| а√天堂www在线а√下载| 精品第一国产精品| 午夜a级毛片| 日本一区二区免费在线视频| 白带黄色成豆腐渣| 亚洲狠狠婷婷综合久久图片| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 无人区码免费观看不卡| 身体一侧抽搐| 男女视频在线观看网站免费 | 久久精品国产亚洲av高清一级| 91老司机精品| 黄色女人牲交| 99久久综合精品五月天人人| 99国产极品粉嫩在线观看| 免费看十八禁软件| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 久久久久久久久免费视频了| 久久婷婷人人爽人人干人人爱| 国内精品久久久久久久电影| 午夜视频精品福利| 俺也久久电影网| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 成人av一区二区三区在线看| 日韩大码丰满熟妇| 国产精品国产高清国产av| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 日本五十路高清| 黄片大片在线免费观看| 老熟妇乱子伦视频在线观看| 国产精品av久久久久免费| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 在线a可以看的网站| 91av网站免费观看| 亚洲av片天天在线观看| 国产一区二区激情短视频| 国产片内射在线| 日韩欧美精品v在线| 后天国语完整版免费观看| 又黄又爽又免费观看的视频| 亚洲性夜色夜夜综合| 男女那种视频在线观看| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 嫩草影视91久久| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 国产69精品久久久久777片 | 久久中文字幕一级| 亚洲午夜理论影院| 午夜福利免费观看在线| 国产1区2区3区精品| 亚洲激情在线av| 国产v大片淫在线免费观看| 老熟妇仑乱视频hdxx| 国模一区二区三区四区视频 | 国产又色又爽无遮挡免费看| 欧美3d第一页| 午夜福利在线在线| 精品无人区乱码1区二区| 亚洲精品中文字幕在线视频| 毛片女人毛片| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 日本五十路高清| 麻豆国产av国片精品| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 黑人操中国人逼视频| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 99国产极品粉嫩在线观看| 一级片免费观看大全| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 男插女下体视频免费在线播放| 手机成人av网站| 国产黄色小视频在线观看| 一级毛片高清免费大全| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 丁香欧美五月| 欧美一级毛片孕妇| 午夜福利18| 久久这里只有精品19| 不卡一级毛片| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| a级毛片在线看网站| 亚洲国产精品合色在线| 亚洲av熟女| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 亚洲午夜理论影院| 99国产综合亚洲精品| 怎么达到女性高潮| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 成人国语在线视频| 97人妻精品一区二区三区麻豆| 国产区一区二久久| 久久久国产欧美日韩av| 免费看日本二区| 欧美日本亚洲视频在线播放| 国产成人欧美在线观看| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| av在线播放免费不卡| 免费看日本二区| 久久久国产欧美日韩av| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 亚洲avbb在线观看| 日韩精品免费视频一区二区三区| 亚洲国产中文字幕在线视频| 国产av在哪里看| 99热6这里只有精品| 久久精品人妻少妇| aaaaa片日本免费| 日韩免费av在线播放| av福利片在线| 欧美又色又爽又黄视频| aaaaa片日本免费| 欧美又色又爽又黄视频| 欧美黄色淫秽网站| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 亚洲精品一区av在线观看| aaaaa片日本免费| 国产精品影院久久| 中文字幕精品亚洲无线码一区| 麻豆成人午夜福利视频| av欧美777| 久久精品国产99精品国产亚洲性色| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 国产三级中文精品| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| xxxwww97欧美| 国产在线观看jvid| 国产久久久一区二区三区| 久久这里只有精品中国| 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 国产久久久一区二区三区| 两个人免费观看高清视频| 欧美中文综合在线视频| 1024香蕉在线观看| 看免费av毛片| 精品久久久久久久毛片微露脸| 最新美女视频免费是黄的| 久久久久久久久久黄片| 国产精品电影一区二区三区| 久久久精品欧美日韩精品| 香蕉久久夜色| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩高清专用| 久久精品人妻少妇| 国产成人欧美在线观看| 久久这里只有精品中国| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 麻豆一二三区av精品| 淫秽高清视频在线观看| 欧美性长视频在线观看| 亚洲精华国产精华精| 熟女电影av网| 日韩高清综合在线| 一进一出抽搐gif免费好疼| 青草久久国产| 精品电影一区二区在线| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 丰满的人妻完整版| 国产99久久九九免费精品| videosex国产| 欧美乱色亚洲激情| 男女视频在线观看网站免费 | 黄频高清免费视频| 在线观看66精品国产| 91国产中文字幕| 国产高清视频在线播放一区| 免费在线观看成人毛片| 国产不卡一卡二| 日本三级黄在线观看| 亚洲,欧美精品.| 成人一区二区视频在线观看| 丝袜美腿诱惑在线| 国产精品98久久久久久宅男小说| 国产av又大| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 男女那种视频在线观看| 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院| 色精品久久人妻99蜜桃| 国产99白浆流出| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| 熟女少妇亚洲综合色aaa.| 国产私拍福利视频在线观看| 国产精品久久久久久人妻精品电影| 特级一级黄色大片| 免费看十八禁软件| 18禁观看日本| 99久久综合精品五月天人人| 丰满人妻一区二区三区视频av | 国产成人av教育| 少妇人妻一区二区三区视频| 法律面前人人平等表现在哪些方面| 久久中文看片网| 日日摸夜夜添夜夜添小说| 中文字幕熟女人妻在线| 精品福利观看| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 成人三级做爰电影| 99精品欧美一区二区三区四区| 国内精品久久久久精免费| 亚洲av电影在线进入| 国内精品一区二区在线观看| 国模一区二区三区四区视频 | 亚洲av日韩精品久久久久久密| 搞女人的毛片| 桃红色精品国产亚洲av| 久久久久亚洲av毛片大全| 亚洲av电影不卡..在线观看| 香蕉av资源在线| 可以在线观看毛片的网站| 制服丝袜大香蕉在线| 一级黄色大片毛片| 99久久国产精品久久久| 国产又色又爽无遮挡免费看| 欧美一级a爱片免费观看看 | 夜夜看夜夜爽夜夜摸| 可以在线观看的亚洲视频| 日韩欧美精品v在线| 国产高清videossex| 床上黄色一级片| 又黄又粗又硬又大视频| 黄片大片在线免费观看| 亚洲真实伦在线观看| 亚洲国产精品久久男人天堂| 老汉色av国产亚洲站长工具| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 男男h啪啪无遮挡| 国产成人精品无人区| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 男女下面进入的视频免费午夜| 夜夜躁狠狠躁天天躁| 欧美日韩亚洲综合一区二区三区_| 亚洲精品一卡2卡三卡4卡5卡| 国产真实乱freesex| 丁香欧美五月| 高潮久久久久久久久久久不卡| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| 桃色一区二区三区在线观看| 一进一出好大好爽视频| 人人妻人人看人人澡| 日韩av在线大香蕉| 老熟妇仑乱视频hdxx| 91麻豆av在线| 天堂√8在线中文| 国产免费男女视频| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 成人18禁在线播放| 露出奶头的视频| 亚洲欧美精品综合一区二区三区| 无人区码免费观看不卡| 黄色女人牲交| 亚洲成av人片在线播放无| 麻豆av在线久日| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 天堂动漫精品| 欧美日韩瑟瑟在线播放| 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 中文字幕久久专区| 一夜夜www| 动漫黄色视频在线观看| 性欧美人与动物交配| 国产私拍福利视频在线观看| 欧美乱码精品一区二区三区| 午夜免费激情av| 欧美日本亚洲视频在线播放| xxx96com| 亚洲av第一区精品v没综合| 久久精品91蜜桃| 性欧美人与动物交配| 国产成年人精品一区二区| 亚洲自偷自拍图片 自拍| tocl精华| 日韩成人在线观看一区二区三区| 淫妇啪啪啪对白视频| 性色av乱码一区二区三区2| 身体一侧抽搐| 熟女少妇亚洲综合色aaa.| av有码第一页| 三级男女做爰猛烈吃奶摸视频| 老司机午夜十八禁免费视频| 婷婷六月久久综合丁香| 99国产精品99久久久久| 午夜福利在线观看吧| 女人高潮潮喷娇喘18禁视频| 久久久久久久久免费视频了| 狠狠狠狠99中文字幕| 亚洲成人久久性| 亚洲男人的天堂狠狠| 色综合站精品国产| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 久9热在线精品视频| 美女午夜性视频免费| 欧美最黄视频在线播放免费| 免费看美女性在线毛片视频| 999精品在线视频| 美女扒开内裤让男人捅视频| 亚洲无线在线观看| 亚洲中文字幕日韩| 久久草成人影院| 国产精品免费一区二区三区在线| 国产亚洲精品一区二区www| 成人手机av| 丁香欧美五月| 麻豆一二三区av精品| 久久久久国内视频| 久久人人精品亚洲av| 看免费av毛片| 中亚洲国语对白在线视频| 国产亚洲精品第一综合不卡| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 国产精品亚洲av一区麻豆| 久久久水蜜桃国产精品网| 亚洲欧美精品综合一区二区三区| e午夜精品久久久久久久| 亚洲片人在线观看| 一区二区三区国产精品乱码| 桃红色精品国产亚洲av| 啦啦啦免费观看视频1| 亚洲中文日韩欧美视频| 成人手机av| 日本 av在线| 好看av亚洲va欧美ⅴa在| 欧美成狂野欧美在线观看| 国产精品香港三级国产av潘金莲| 日韩欧美在线乱码| 18禁裸乳无遮挡免费网站照片| 久久国产乱子伦精品免费另类| 国产99久久九九免费精品| 中国美女看黄片| 97人妻精品一区二区三区麻豆| 免费一级毛片在线播放高清视频| 国产成人影院久久av| 国产真人三级小视频在线观看| 午夜日韩欧美国产| 真人一进一出gif抽搐免费| 亚洲精品久久成人aⅴ小说| 国产午夜精品论理片| 欧美日韩一级在线毛片| 国产精品久久久人人做人人爽|