• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Engaging Characteristics of Wet Clutch in Automatic Transmission

    2015-08-11 14:01:04LIUYanfang劉艷芳GUOWeiZHANGJingXUXiangyang徐向陽(yáng)
    關(guān)鍵詞:向陽(yáng)

    LIU Yan-fang(劉艷芳),GUO Wei(郭 偉),ZHANG Jing(張 婧),XU Xiang-yang(徐向陽(yáng))

    1 School of Transportation Science&Engineering,Beihang University,Beijing 100191,China

    2 International Education College,Hefei University,Hefei 230001,China

    3 National PCAT Engineering Research Center,Weifang 2612206,China

    Dynamic Engaging Characteristics of Wet Clutch in Automatic Transmission

    LIU Yan-fang(劉艷芳)1*,GUO Wei(郭 偉)1,3,ZHANG Jing(張 婧)2,XU Xiang-yang(徐向陽(yáng))1

    1 School of Transportation Science&Engineering,Beihang University,Beijing 100191,China

    2 International Education College,Hefei University,Hefei 230001,China

    3 National PCAT Engineering Research Center,Weifang 2612206,China

    Wetclutch isan importantshifting componentin automatic transmission,and its properties will affect the gear shift performance.By comparing the calculated and test results,the static friction torque model was proved to be capable of describing the real pressure and torque only in the situation of high-energy engagement.Therefore,a dynamic torque model was proposed on basis of hydrodynamic properties between friction surfaces,in which the clutch engagement was divided into three phases for hydrodynamic lubrication,mixed lubrication, and mechanicalcontact.The proposed dynamic torque model was validated by comparing the calculated and test results.The effects of temperature,pressure,and pressure changing rate of automatic transmission fluid(ATF)on the clutch torque were analyzed.Based on these results,the clutchto-clutch torque control during shifting in automatic transmission was optimized,and as a result,the shifting comfort was significantly improved since the problems such as the fluctuation and sudden drop of the engine rotating speed during shifting were eliminated.

    automatic transmission; wet clutch; dynamic characteristics;torque control;friction

    Introduction

    Hydraulic automatic transmission with wet clutches is widely used owing to its smooth shift.By engaging or opening some clutches,a new gear is shifted so as to change the power flow in automatic transmission and satisfy the vehicle's torque and speed requirements.The shift quality is determined by the friction torque of wet clutches,and thus it is necessary to build up a precise model to describe the dynamic clutch torque during shifting.

    Berger et al.proposed a finite element model[1]and an analytical solution[2]to model the torque response of the grooved wet clutch during engagement.Yang et al.[3]proposed an axial symmetric model to describe the heat transfer in a wet clutch.The temperature prediction based on the above models is consistent favorably with experimental measurements.Jang and Khonsari[4]put forward a comprehensive Reynolds equation considering thepermeability,roughness,wavinessofthe friction material,and the deformability and centrifugal force in wet clutches.Experimental methods are commonly used to characterize wet clutches.The aeration at high rotational speed was confirmed by experiment[5].It was pointed out that the deficit of the fluid film was due to the cavitations and gas entering from inner radius of clutches[6].However,the pressure can barely be enough low for cavitations at clutch speed less than 4000 r/min,and the deficit of the fluid film starts from the out radius.

    Static torque model is often used in clutch control.An adaptive temperature compensation method based on the static torque model was proposed to reduce the shift shock under low temperature[7].The oncoming clutch speed slip can be controlled with fuzzy logic,which is used to optimize the target fill pressure in fill phase and shorten the shifting time[8-10].

    In this paper,the static toque model is tested by experiment first.Based on the Reynolds equation,the dynamic clutch torque model is built up,which is proved to be capable of precisely describing the dynamic characteristics of clutch torque during the course of engagement.According to the dynamic characteristics,a pressure correction method is proposed based on the transmission end of line test when the clutch is engaging.The optimized pressure control is adjusted to reduce the transmission's shift impact and shift time.

    1 Structure and Working Principle of Clutch

    Figure 1 shows the basic structure of a wet clutch in automatic transmissions.The hydraulic system of automatic transmission feeds oil from the hole into the cylinder.The piston is pulled to overcome the resistance of the return spring and the friction force until the gap between friction discs is eliminated and the clutch is engaged;and vice versa.Because of the friction between clutch discs,the torque is transmitted.Therefore,the pressure force on clutch friction discs can be calculated as:

    where P is the pressure of active oil cylinder;S is the area of piston;FCFAand FCFBare the centrifugal forces of the active and balance cylinders,respectively;k is the stiffness of the return spring;Fsealis the friction force of sealing materials;Δx is the displacement;and sgn()is the sign function.

    Fig.1 Schematic of a wet clutch in an automatic transmission

    2 The Static Torque Model of Clutch

    According to coulomb friction law,the friction torquebetween friction and steel discs can be calculated as:

    where N is the number of friction surfaces;Fappis the pressure force;μ is the friction coefficient described with Stribeck's equation[11];Rmis the equivalent frictional radius;Roand Riare the externaland internaldiameters of friction surface,respectively.

    To verify the above model,three types of tests are completed considering the variations of initial clutch slip ω0,the oil pressure rise time Δt,and the final apply pressure Papp1.Figure 2 shows the data of calculated and experimental torque.Clearly,there is a delay between the real torque and the calculated torque,which can be reduced by increasing the clutch pressure during the engagement with small clutch slip(Figs.2 (a)and(d)).The large difference between the calculated and experimental torques is due to the low applied pressure(Fig.2 (a)),because the oil between the clutch discs cannot be extruded in a short time.Then the friction characteristics are quite different by comparing the clutch condition with complete contact.The real torque is obviously overshoot with large clutch slip(low pressure)or high pressure changing rate(Figs.2(b) and(c)).The calculated static torque matches the real torque well at high clutch pressure(Figs.2(d),(e),and(f)).The calculated torque matches the real torque well at low pressure changing rate(Figs.2(c)and(f)).Therefore,it can be deduced that the static torque model of clutch is suitable only for high-energy engagement since the hydrodynamic characteristics of the automatic transmission fluid(ATF)in clutch discs are neglected.Therefore,a more accurate dynamic clutch model is required to characterize the real clutch torque.

    Fig.2 Comparison of the calculated clutch torque with the static torque model with experimental data

    3 The Dynamic Torque Model of Clutch

    While a wet clutch is open and has relative rotational speed,there are fluid films between clutch discs,which lead to resistance forces.With the pressure Fappshown in Fig.3,the clutch starts to engage and the clutch torque varies with the thickness of the fluid film[12].

    Initially,the film thickness is so large that there is only viscous friction between discs.With the clutch discs pressed increasingly tighter,the fluid between discs will be exhausted gradually,which leads to larger viscous friction.The above process is called hydrodynamic lubrication phase.

    When the fluid film thickness reaches the friction disc's coarse surface and when there is relative rotational speed between discs,the clutch torque would be dominated by coarse contact friction and viscous friction.This above process is called the mixed lubrication phase.

    When there is no relative rotational speed,there is only contact friction that can generate clutch torque,and this process is called the mechanical contact phase.

    The delay and overshoot of torque would occur in the dynamic lubrication phase and the mixed lubrication phase.

    Thus,the clutch torque T is the sum of the viscosity torque Tvand the contact torque Tc:

    Fig.3 Schematic of plate-type wet clutch

    To calculate the changing rate of fluid film thickness,two assumptions are used here.

    (1)The thickness of the fluid film is constant within normal contact area,and the pressure in the grooves is equal to zero.

    (2)The temperature of ATF is constant within normal clutch contact area,and the kinematic viscosity is irrelative withpolar coordinates r and θ.

    Thus,the changing rate of fluid film thickness in this phase can be described by Reynolds equation,

    where h is the thickness of fluid film,Φ is the osmosis of friction material,φ(h)is the flow factor,η is the dynamic viscosity of ATF,θ2is the angle of ungrooved friction discs (Fig.3),Ngis the number of grooves for each clutch disc,A is the area of friction plates,d is the thickness of friction materials (Fig.3),Q is the fluid flow,pc(h)is the contact pressure,ηBJis the Beavars-Joseph coefficient,and erf()is the error function.

    According to the Greenwood and Williamson model[13],pc(h)can be expressed as:

    where E is the Young modulus of friction material,ρ is the asperity density,σ is the standard deviation of roughness,and β is the asperity tip radius,and erfc()is complementary error function.

    The viscosity torque can be expressed as

    where φfand φfsare Patir factor and Cheng factor,respectively; Nfis the number of friction surfaces;and r2and r1are the outside and the inside radiuses,respectively.

    The contact torque can be expressed as

    where μcis the sliding friction coefficient.

    4 Simulation and Discussion

    Figure 4 shows the calculated fluid film thickness during the course of clutch engagement under varying pressure and viscosity of ATF.Obviously,the film thickness decreases quickly in the hydrodynamic lubrication phase(PP*)and then gradually in the mixed lubrication phase(PM*),and finally keeps constant in the mechanical contact phase(PC*).Larger pressure or viscosity both can lead to smaller film thickness.With varying pressure and viscosity of ATF,the duration of each phase isspecific,which infectsthe clutch torque significantly.

    Fig.4 Thickness of the fluid film during the course of engaging a clutch

    Figure 5 shows the calculated clutch torque in three phases marked as I-III when engaging a clutch.In phase I,there is no asperity contact,so the clutch torque is equal to the viscosity torque although it is small.The viscosity torque increases slightly even with the severe reduction of fluid film thickness and thus the clutch slip decreases slightly too.In phase II,in addition to the viscosity friction,there is also asperity contact which leads to quick growth of the contact torque until reaching the steady state.The viscosity torque would peak first,which leads to an overshoot of the clutch torque,and then decrease gradually because of the changing of fluid film thickness.Under the increasing clutch torque,the clutch slip decreases significantly till it becomes very small.In phase III,the clutch is engaged completely and there is only the contact friction torque.

    Fig.5 Clutch torque when engaging a clutch

    5 Test Validation

    To verify the above model,experiment is conducted by an SAE#2 machine Greening Inc.,which considers different engaging conditions.Figure 6 illustrates both the calculated and the experimental clutch torques.In Fig.6,ω0is the initial clutch slip,Δt is the pressure ramp time,and τ is the ATF temperature.Obviously,the dynamic model predicts the torque precisely for all conditions while the static models are different.

    Fig.6 Simulation and test validations of the clutch torque under different engaging conditions

    Comparing Figs.6(a),(d),and(g)with Figs.6(b),(e),and(h),a significant torque overshoot appears which will increase with higher pressure ramp rate.Meanwhile,a higher pressure ramp rate would lead to shorter time delay.Larger pressure would decrease the clutch slip of clutch quickly.However,the real torque was unstable initially(Figs.6(g),(h),and(i)).Comparing with Fig.5,the torque also has an overshoot in the phase II because of the characteristics of viscosity torque.The torque delay at the beginning of pressure ramp-up originates from the oil film compression speed,which can affect the viscosity torque.Higher temperature can reduce the viscosity of ATF and thus slow down the increase of the viscosity torque.Thus,the overshoot torque in Figs.6(c),(g),and(i)is more smooth.Higher viscosity torque appears with larger initial clutch slip and thus the total clutch torque increases more quickly than that with smaller clutch slip.Therefore,it can be deduced that the clutch torque can be significantly affected by temperature,pressure force and clutch slip,and thus these parameters must be considered in clutch torque prediction so as to improve the control accuracy.

    6 Optimization ofClutch-to-Clutch Torque Control

    Gear shifting of automatic transmission is operated by engaging one on-coming clutch and opening one off-going clutch[14-16].Figure 7 shows the equivalent driveline,in which C1 is the low-gear clutch and C2 is the high-gear clutch.Figure 8 shows the speed and torque characteristics of the power-on upshift type.The shift process is generally divided into a fill phase to eliminate the gap,a torque phase to transfer the turbine torque from C1 to C2,and a speed phase to synchronize C2.The clutch-to-clutch power on up-shifting is controlled by filling the oncoming clutch C2 while ramping down the pressure of the off-going clutch C1.Because the engine torque is active,a torque has to be reduced by the engine to let C2 pull down the engine speed.The torque capacity and pressure of C2 and C1 are controlled by the closed loop proportion integration differentiation(PID)system with reference to the clutch slip speed.Except for the fill phase for C2 because zero torque is required,all the command torque is calculated based on the engine toque and clutch slip.To make the engine speed change smoothly,the real clutch torque should follow the commandtorque.Otherwise,the engines may flare and tire up,causing poor shift quality.Therefore,the torque-to-pressure relationship is very important for ensuring high shift quality.

    Fig.7 Equivalent scheme of the driveline

    Fig.8 Speed and torque characteristics of power-on up-shift type

    6.1 Test of transmission clutch torque-pressure characteristics

    The clutch torque-pressure characteristics(T2P curve)are important for controlling the clutch of automatic transmission,which can be obtained by the test rig.Massive heat would be produced when there is high-pressure and high-speed difference,which may burn out the clutch within short time,so it is usually difficult to test under this condition.The T2P characteristics of clutches can be achieved by the comprehensive dynamic test bench in Fig.9.This test bench consists of one input motor and two output motors which can be controlled separately.The test steps are as follows:

    (1)lock up two clutches and open the third clutch(tested clutch);

    (2)set the input motor to 2000 r/min,and set the output motor to a certain speed which makes the clutch slip at 40 r/min (small slip);

    (3)increase the control pressure to the clutch,and record the clutch's pressure and the input motor torque;

    (4)according to the transmission structure,the input motor torque can be equivalent to the clutch torque.The clutch T2P characteristics can be obtained.

    Fig.9 Comprehensive dynamic test bench for automatic transmission

    Figure 10 shows the experimental T2P curves for C1 at 80℃.With increasing pressure,two different pressure rates are used.Low pressure rate is used to check the clutch kiss point pressure.Kiss point pressure is the pressure that can eliminate the clutch gap and start the clutch to transfer torque along with the increasing pressure.It can be checked by detecting the inflection point(point A)of input torque because the viscosity torque Tvand the contact torque Tcwill increase fast(Fig.5).High pressure rate is used to check the T2P characteristics.The test results in Fig.10(b)show that the clutch T2P characteristic is linear in fixed clutch slip and stable pressure change.This T2P test data can be the base curve for the clutch control.

    Fig.10 Test result for clutch T2P characteristics

    6.2 Clutch torque control

    According to Fig.6,the pressure change rate and clutch slip can affect the clutch transfer torque.Therefore,these two factors should be considered for the clutch control pressure.Otherwise the shift quality may be influenced.Figure 11 shows the clutch control results with and without correction during shifting.During the clutch oil fill stage,the slip of oncoming clutch C1 is large while its pressure is still small.If clutch pressure increases too fast,the clutch torque would fluctuate and affect the engine load(Figs.6(g)-(i)),thus affecting the shift quality(curve En2 in Fig.11).In torque exchange stage,pressure P2 for engaging clutch increases linearly so quickly that the torque is overshot,which leads to sudden rise of engine load and thus sudden drop of engine speed(curve En2).To optimize the clutch torque control,the pressure correction offset based on pressure change rate and clutch slip is added during the pressure control.The pressure offset correction map is shown in Fig.12.P'is the pressure change rate during the shifting.If the clutch slip and P'are larger,the pressure offset correction value is also larger.The final optimized pressure offset can be obtained from the vehicle calibration test.The engine speed En1 is stable and does not cause tie-up or judder during the shifting according to clutch pressure correction P1(Fig.11).With the pressure correction,the clutch transfer torque can respond to the pressure control more accurately and stably,which will makethe engine load match with the engine input torque and improve the shift quality.

    Fig.11 Clutch control results during shift

    Fig.12 Pressure offset correction MAP for varying clutch slip and pressure rate

    7 Conclusions

    (1)The static model for prediction of wet clutch torque is suitable only for the engaging condition with high clutch slip and pressure.

    (2)By characterizing the fluid flow during the course of engaging a wet clutch with three phases:fluid lubrication,mixed lubrication,and mechanical contact phase,a dynamic model is proposed to predict the clutch torque.

    (3)Based on the dynamic characteristics of clutch torque,the clutch pressure controlwasmodified,and thusthe fluctuation and sudden drop of engine speed could be eliminated and the shift quality be improved.

    [1]Berger E J,Sadeghi F,Krousgrill C M.Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches[J].ASME Journal of Tribology,1996,118(1):137-146.

    [2]Berger E J,Sadeghi F,Krousgrill C M.Analytical and Numerical Modeling of Engagement of Rough,Permeable,Grooved Wet Clutches[J].ASME Journal of Tribology,1997,119(1):143-148.

    [3]Yang Y B,Lam R C,Chen Y F,et al.Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisk Wet Clutch[C].Society of Automotive Engineers,Warrendale,USA,1995:950898.

    [4]Jang J Y,Khonsari M M.Thermal Characteristics of a Wet Clutch[J].ASME Journal of Tribology,1999,121(3):610-617.

    [5]Razzaque M M,Kato T.Effect of a Groove on the Behavior of a Squeeze Film between a Grooved and a Plain Rotating Annular Disk[J].ASME Journal of Tribology,1999,121(4):808-815.

    [6] Razzaque M M,Kato T.Effects of Groove Orientation on Hydrodynamic Behavior of Wet Clutch Coolant Films[J].ASME Journal of Tribology,1999,121(1):56-61.

    [7]Marano J E,Moorman S P,Whitton M D,et al.Clutch to Clutch Transmission Control Strategy [C]. Society of Automotive Engineers,Warrendale,USA,2007:2007-01-1313.

    [8]Montanari M,Ronchi F,Rossi C,et al.Control and Performance Evaluation of a Clutch Servo System with Hydraulic Actuation[J].Control Engineering Practice,2004,12(11):1369-1379.

    [9]Song X Y,Zulkefli M A M,Sun Z X.Automotive Transmission Clutch Fill Optimal Control:an Experimental Investigation[C].American Control Conference,Baltimore,MD,2010:2478-2753.

    [10] Song X Y,Sun Z X.Pressure-Based Clutch Control for Automotive Transmissions Using a Sliding-Mode Controller[J].IEEE/ASME Transactions on Mechatronics,2012,17(3):534-546

    [11]Ompusunggu A P,Janssens T,Al-Bender F,et al.Engagement Behavior of Degrading Wet Friction Clutches[C].2011 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics(AIM),Budapest,2011:271-276.

    [12]Josko D,Josko P,Jahan A,et al.Modeling of Wet Clutch Engagement Including a Thorough Experimental Validation[J].SAE Transactions,2005,114(6):1013-1028.

    [13]Yang Y B,Lam R C,F(xiàn)ujji T.Prediction of Torque Response during the Engagement of Wet Friction Clutch[C].Society of Automotive Engineers,Warrendale,USA,1998:981097.

    [14]Minowa T,Ochi T,Kuroiwa H,et al.Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting[C].Society of Automotive Engineers,Warrendale,USA,1999:1999-01-1054.

    [15]Bai S S,Moses R L,Schanz T,et al.Development of a New Clutch-to-Clutch Shift Control Technology[C].Society of Automotive Engineers,Warrendale,USA,2002:2002-01-1252.

    [16]Vasca F,Iannelli L,Senatore A,et al.Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement[J].IEEE/ ASME Transactions on Mechatronics,2010,16(3):564-573.

    U463.22

    A

    1672-5220(2015)03-0357-06

    date:2013-11-19

    National Science and Technology Support Program,China(No.2011BAG09B00)

    *Correspondence should be addressed to LIU Yan-fang,E-mail:liuyf@buaa.edu.cn

    猜你喜歡
    向陽(yáng)
    向陽(yáng)而生
    “舌”從口出
    絢爛的“光”
    三月頭 驚蟄到
    臘月里來聊“臘”字
    向陽(yáng)而生
    電閃雷鳴
    說“南”道“北”
    閱讀(低年級(jí))(2021年2期)2021-04-08 02:16:27
    字海拾“貝”
    av福利片在线| xxxwww97欧美| videosex国产| 色综合站精品国产| 亚洲中文av在线| 天堂√8在线中文| 欧美激情 高清一区二区三区| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| 国产免费av片在线观看野外av| 久久国产乱子伦精品免费另类| 国产av在哪里看| 悠悠久久av| 老汉色∧v一级毛片| 日本黄色视频三级网站网址| 亚洲五月色婷婷综合| 国产视频一区二区在线看| 熟女电影av网| 国产精品1区2区在线观看.| 在线十欧美十亚洲十日本专区| av电影中文网址| 国产精品乱码一区二三区的特点| 超碰成人久久| 欧美 亚洲 国产 日韩一| 欧美精品啪啪一区二区三区| 手机成人av网站| 欧美成人午夜精品| 老汉色∧v一级毛片| 久久久久久人人人人人| 亚洲人成伊人成综合网2020| 国产精品美女特级片免费视频播放器 | 亚洲第一青青草原| 中文字幕人成人乱码亚洲影| 国产一区在线观看成人免费| 国产av一区二区精品久久| 两个人免费观看高清视频| 午夜福利一区二区在线看| 日韩欧美一区二区三区在线观看| 亚洲av美国av| a级毛片a级免费在线| 成人午夜高清在线视频 | av免费在线观看网站| 一本精品99久久精品77| 国产v大片淫在线免费观看| e午夜精品久久久久久久| 无人区码免费观看不卡| 国产精品美女特级片免费视频播放器 | 九色国产91popny在线| 黄色丝袜av网址大全| 久久伊人香网站| 国产激情久久老熟女| 免费看日本二区| 成人亚洲精品av一区二区| 婷婷丁香在线五月| 99久久综合精品五月天人人| 十分钟在线观看高清视频www| 操出白浆在线播放| 国内精品久久久久久久电影| 99久久精品国产亚洲精品| 国产v大片淫在线免费观看| 91大片在线观看| www.熟女人妻精品国产| 欧美久久黑人一区二区| 看黄色毛片网站| 亚洲五月色婷婷综合| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 国产精品久久久人人做人人爽| 变态另类丝袜制服| a级毛片a级免费在线| 国内毛片毛片毛片毛片毛片| 欧美性猛交╳xxx乱大交人| 99国产精品一区二区蜜桃av| 真人一进一出gif抽搐免费| 少妇的丰满在线观看| 成人亚洲精品av一区二区| 一级毛片女人18水好多| 波多野结衣巨乳人妻| www日本在线高清视频| 色哟哟哟哟哟哟| 一区福利在线观看| 女生性感内裤真人,穿戴方法视频| 欧美zozozo另类| 亚洲成人久久爱视频| 国产久久久一区二区三区| 国产成人av激情在线播放| 一级毛片高清免费大全| 美国免费a级毛片| 黄色成人免费大全| 欧美一区二区精品小视频在线| 女人高潮潮喷娇喘18禁视频| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 亚洲性夜色夜夜综合| 亚洲五月天丁香| 欧美人与性动交α欧美精品济南到| 免费在线观看亚洲国产| 国产亚洲欧美精品永久| 日本一本二区三区精品| 亚洲国产日韩欧美精品在线观看 | 岛国在线观看网站| 午夜激情av网站| 不卡一级毛片| 国产男靠女视频免费网站| 久久99热这里只有精品18| 国产av不卡久久| 90打野战视频偷拍视频| 18禁美女被吸乳视频| 午夜福利在线观看吧| 久99久视频精品免费| 可以免费在线观看a视频的电影网站| 成人18禁高潮啪啪吃奶动态图| 黑人操中国人逼视频| 国产精品98久久久久久宅男小说| 亚洲一区二区三区色噜噜| 天天躁狠狠躁夜夜躁狠狠躁| 少妇被粗大的猛进出69影院| 美女高潮到喷水免费观看| 两个人视频免费观看高清| 一区二区三区精品91| 免费看日本二区| 日日夜夜操网爽| 免费无遮挡裸体视频| www.自偷自拍.com| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| 俄罗斯特黄特色一大片| 麻豆av在线久日| 欧美午夜高清在线| 两个人免费观看高清视频| 黄色视频不卡| 99国产精品一区二区蜜桃av| 一本一本综合久久| 欧美成人免费av一区二区三区| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利视频1000在线观看| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 亚洲自偷自拍图片 自拍| 侵犯人妻中文字幕一二三四区| 999久久久国产精品视频| 久久精品国产清高在天天线| 俄罗斯特黄特色一大片| 两性夫妻黄色片| 在线av久久热| 人妻丰满熟妇av一区二区三区| 亚洲av五月六月丁香网| 亚洲av成人不卡在线观看播放网| 在线永久观看黄色视频| 精品国产乱码久久久久久男人| 久久久国产成人免费| 午夜成年电影在线免费观看| 亚洲 欧美一区二区三区| 中文字幕精品免费在线观看视频| 国产99白浆流出| 男女下面进入的视频免费午夜 | 久久精品成人免费网站| x7x7x7水蜜桃| 欧美大码av| 岛国在线观看网站| 久久精品人妻少妇| 色综合亚洲欧美另类图片| 99精品欧美一区二区三区四区| 久久久精品欧美日韩精品| 91国产中文字幕| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 精品福利观看| 欧美日本亚洲视频在线播放| 免费在线观看完整版高清| 亚洲av第一区精品v没综合| 制服诱惑二区| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 精品不卡国产一区二区三区| 午夜福利18| 19禁男女啪啪无遮挡网站| a在线观看视频网站| 国产亚洲欧美精品永久| 搡老熟女国产l中国老女人| 不卡一级毛片| 男人舔女人下体高潮全视频| 亚洲九九香蕉| 亚洲人成电影免费在线| 国产片内射在线| 欧美日韩精品网址| 美女免费视频网站| av有码第一页| 99久久无色码亚洲精品果冻| 日本撒尿小便嘘嘘汇集6| 啦啦啦观看免费观看视频高清| 成年版毛片免费区| 久久国产乱子伦精品免费另类| 成人亚洲精品一区在线观看| 国产av又大| 国产人伦9x9x在线观看| 欧美国产精品va在线观看不卡| 国产精品综合久久久久久久免费| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 国内精品久久久久久久电影| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 97碰自拍视频| 国产一区二区在线av高清观看| 亚洲成av人片免费观看| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 国产精品综合久久久久久久免费| 深夜精品福利| 91国产中文字幕| 国产aⅴ精品一区二区三区波| av免费在线观看网站| 日韩欧美一区视频在线观看| 免费观看人在逋| 黄色片一级片一级黄色片| 99精品在免费线老司机午夜| 欧美三级亚洲精品| 亚洲成人国产一区在线观看| a在线观看视频网站| 两人在一起打扑克的视频| 国产成人av激情在线播放| 免费无遮挡裸体视频| av在线播放免费不卡| 亚洲精品中文字幕一二三四区| 久久精品国产99精品国产亚洲性色| 亚洲专区字幕在线| 人人妻人人澡欧美一区二区| 免费高清在线观看日韩| 老司机午夜十八禁免费视频| 在线国产一区二区在线| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 狠狠狠狠99中文字幕| 久久草成人影院| 搞女人的毛片| 国产成人系列免费观看| 男女之事视频高清在线观看| av片东京热男人的天堂| 精品高清国产在线一区| 国内少妇人妻偷人精品xxx网站 | 国产成+人综合+亚洲专区| 91字幕亚洲| 一个人免费在线观看的高清视频| 桃色一区二区三区在线观看| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 美女 人体艺术 gogo| 在线观看舔阴道视频| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 日本撒尿小便嘘嘘汇集6| 亚洲自偷自拍图片 自拍| 99re在线观看精品视频| 亚洲国产精品成人综合色| 国产激情久久老熟女| 欧美不卡视频在线免费观看 | 一进一出好大好爽视频| 亚洲精品久久国产高清桃花| 久久久久久久久免费视频了| 亚洲精品中文字幕在线视频| 久久久久久国产a免费观看| 美女 人体艺术 gogo| 欧美一级a爱片免费观看看 | 久久久国产欧美日韩av| 亚洲性夜色夜夜综合| 国产成人欧美在线观看| 超碰成人久久| 国产av一区二区精品久久| 制服诱惑二区| 男男h啪啪无遮挡| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 精品第一国产精品| 日本成人三级电影网站| 天堂动漫精品| x7x7x7水蜜桃| 岛国在线观看网站| 一a级毛片在线观看| 亚洲成av人片免费观看| 久久 成人 亚洲| av天堂在线播放| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 美女国产高潮福利片在线看| 欧美在线黄色| 夜夜爽天天搞| 黄色a级毛片大全视频| 99久久久亚洲精品蜜臀av| 嫩草影院精品99| 精品日产1卡2卡| 亚洲五月色婷婷综合| 亚洲第一青青草原| 一本久久中文字幕| 欧美一级a爱片免费观看看 | 国内揄拍国产精品人妻在线 | 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| svipshipincom国产片| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | 级片在线观看| 精品一区二区三区视频在线观看免费| 91麻豆精品激情在线观看国产| 国产av又大| 99精品在免费线老司机午夜| 午夜影院日韩av| cao死你这个sao货| 久久人妻av系列| 国产爱豆传媒在线观看 | 国产伦人伦偷精品视频| 国产v大片淫在线免费观看| 精品不卡国产一区二区三区| 变态另类丝袜制服| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 欧美乱妇无乱码| 一区二区三区国产精品乱码| 美女午夜性视频免费| 人成视频在线观看免费观看| 国产高清videossex| 久久久久久九九精品二区国产 | 久久亚洲真实| 怎么达到女性高潮| 男女午夜视频在线观看| 亚洲黑人精品在线| 亚洲 欧美一区二区三区| 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 久久久久久久久免费视频了| 91字幕亚洲| 女性生殖器流出的白浆| 国产av又大| 熟妇人妻久久中文字幕3abv| 日韩精品免费视频一区二区三区| 免费看十八禁软件| 国内精品久久久久精免费| 神马国产精品三级电影在线观看 | 久久中文字幕一级| 观看免费一级毛片| 亚洲国产高清在线一区二区三 | 免费搜索国产男女视频| 九色国产91popny在线| 精品人妻1区二区| 欧美日韩乱码在线| 欧美大码av| 亚洲全国av大片| 欧美zozozo另类| 欧美最黄视频在线播放免费| 啦啦啦免费观看视频1| 一区二区三区精品91| 精品国产国语对白av| 日韩精品免费视频一区二区三区| 午夜精品在线福利| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频| 人人妻人人澡欧美一区二区| 亚洲精品久久国产高清桃花| 久久精品国产综合久久久| 亚洲第一av免费看| 久久午夜亚洲精品久久| 久久精品国产综合久久久| 色综合亚洲欧美另类图片| 久99久视频精品免费| 亚洲午夜精品一区,二区,三区| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 美女大奶头视频| 1024手机看黄色片| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文综合在线视频| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 黄片小视频在线播放| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看 | 别揉我奶头~嗯~啊~动态视频| 欧美精品亚洲一区二区| 久久中文字幕一级| 国产激情偷乱视频一区二区| 国产高清激情床上av| av片东京热男人的天堂| 在线视频色国产色| 精品午夜福利视频在线观看一区| 亚洲国产精品999在线| 久久久国产成人精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 特大巨黑吊av在线直播 | 看免费av毛片| 亚洲无线在线观看| 国产伦一二天堂av在线观看| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 99久久精品国产亚洲精品| 日本五十路高清| 久久久国产成人精品二区| 久久国产精品男人的天堂亚洲| 精品欧美一区二区三区在线| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 天堂√8在线中文| 一级毛片高清免费大全| 少妇裸体淫交视频免费看高清 | 欧美日韩黄片免| 99精品久久久久人妻精品| 好男人电影高清在线观看| 在线看三级毛片| 久久人人精品亚洲av| 成人三级做爰电影| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人| 成在线人永久免费视频| 不卡av一区二区三区| 一个人观看的视频www高清免费观看 | 久99久视频精品免费| 久久欧美精品欧美久久欧美| 国产精品亚洲av一区麻豆| 啦啦啦免费观看视频1| 日本三级黄在线观看| 日韩欧美三级三区| 波多野结衣巨乳人妻| 欧美日韩亚洲综合一区二区三区_| 不卡av一区二区三区| 久久久久免费精品人妻一区二区 | 色尼玛亚洲综合影院| 精品乱码久久久久久99久播| 男女那种视频在线观看| 亚洲无线在线观看| 女性被躁到高潮视频| 中国美女看黄片| 亚洲精品国产区一区二| 日韩一卡2卡3卡4卡2021年| 亚洲成人精品中文字幕电影| 日本三级黄在线观看| 久久久久久久久久黄片| 成人欧美大片| 视频区欧美日本亚洲| 亚洲一区二区三区不卡视频| 老鸭窝网址在线观看| av免费在线观看网站| 成年人黄色毛片网站| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 丰满的人妻完整版| 亚洲 欧美一区二区三区| 精品久久久久久久毛片微露脸| 搞女人的毛片| 久久久久国内视频| 午夜视频精品福利| 狂野欧美激情性xxxx| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频| 久久久久久大精品| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 神马国产精品三级电影在线观看 | 免费无遮挡裸体视频| 国产亚洲av嫩草精品影院| 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 一区二区日韩欧美中文字幕| 看免费av毛片| 免费女性裸体啪啪无遮挡网站| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 久久精品人妻少妇| 亚洲欧美精品综合久久99| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 1024手机看黄色片| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久| av在线播放免费不卡| 久久伊人香网站| 久久久水蜜桃国产精品网| 国产伦一二天堂av在线观看| 亚洲精品久久国产高清桃花| www.自偷自拍.com| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 一本大道久久a久久精品| 精品久久久久久久末码| 亚洲 国产 在线| 午夜福利成人在线免费观看| 亚洲精品美女久久久久99蜜臀| 国产熟女xx| 日本 欧美在线| 日韩欧美 国产精品| 久久久国产成人精品二区| 国产一卡二卡三卡精品| 色综合婷婷激情| 欧美在线一区亚洲| 身体一侧抽搐| 精品久久蜜臀av无| 亚洲久久久国产精品| 久久久久免费精品人妻一区二区 | 99国产精品一区二区三区| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 少妇 在线观看| 国产麻豆成人av免费视频| 精华霜和精华液先用哪个| 久久热在线av| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 在线看三级毛片| 一进一出好大好爽视频| 亚洲午夜理论影院| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 亚洲天堂国产精品一区在线| 极品教师在线免费播放| 中文亚洲av片在线观看爽| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片| 丁香六月欧美| 母亲3免费完整高清在线观看| 少妇粗大呻吟视频| 亚洲精品国产一区二区精华液| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 一级作爱视频免费观看| 男女下面进入的视频免费午夜 | 国产蜜桃级精品一区二区三区| 一级毛片高清免费大全| 午夜福利在线观看吧| 欧美又色又爽又黄视频| 高清在线国产一区| 精品久久久久久久毛片微露脸| 日本成人三级电影网站| 国产视频内射| 岛国视频午夜一区免费看| 熟妇人妻久久中文字幕3abv| 后天国语完整版免费观看| 巨乳人妻的诱惑在线观看| 精品国内亚洲2022精品成人| 免费搜索国产男女视频| 亚洲av成人不卡在线观看播放网| 欧美国产日韩亚洲一区| 露出奶头的视频| 精品少妇一区二区三区视频日本电影| 亚洲人成伊人成综合网2020| 国产精品,欧美在线| 成人永久免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 欧美在线黄色| 精品久久久久久久人妻蜜臀av| 中亚洲国语对白在线视频| 欧美+亚洲+日韩+国产| 亚洲欧洲精品一区二区精品久久久| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 狂野欧美激情性xxxx| 在线天堂中文资源库| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 亚洲男人天堂网一区| 日韩国内少妇激情av| 99精品久久久久人妻精品| 草草在线视频免费看| 中文资源天堂在线| 国产精华一区二区三区| 美女午夜性视频免费| 男男h啪啪无遮挡| 一本久久中文字幕| 18禁黄网站禁片免费观看直播| 国产精品电影一区二区三区| 国产精品 国内视频| 神马国产精品三级电影在线观看 | 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 91成年电影在线观看| 午夜两性在线视频| 狂野欧美激情性xxxx| 亚洲中文av在线| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 国产一区在线观看成人免费| 丁香六月欧美| 日韩大码丰满熟妇| 美女免费视频网站| 成人精品一区二区免费| 黄片大片在线免费观看| 国产又色又爽无遮挡免费看| 午夜日韩欧美国产| 青草久久国产| 日本 av在线| 韩国av一区二区三区四区| 真人一进一出gif抽搐免费| 婷婷六月久久综合丁香| 欧美乱码精品一区二区三区| 欧美乱妇无乱码| 婷婷六月久久综合丁香| 又黄又粗又硬又大视频| 日本一区二区免费在线视频| 欧美激情 高清一区二区三区|