• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and Experimental Analyses of Poisson Ratios for Plain-Woven Fabrics

    2015-08-11 14:01:04CHENJianwen陳建穩(wěn)CHENWujun陳務(wù)軍

    CHEN Jian-wen(陳建穩(wěn)),CHEN Wu-jun(陳務(wù)軍)

    1 Space Structures Research Center(SSRC),Shanghai Jiao Tong University,Shanghai 200030,China

    2 School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    Theoretical and Experimental Analyses of Poisson Ratios for Plain-Woven Fabrics

    CHEN Jian-wen(陳建穩(wěn))1,2*,CHEN Wu-jun(陳務(wù)軍)1

    1 Space Structures Research Center(SSRC),Shanghai Jiao Tong University,Shanghai 200030,China

    2 School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    A theoretical model with extensible yarns for plain-woven fabrics is developed to determine the calculation of Poisson ratios.The stress ratio(warp:weft),as one of parameters corresponding to Poisson ratio variations,isintroduced to complementthe theoretical model.To evaluate the reliability of the theoretical analysis,a series of biaxial tensile tests of a plain-woven fabric with nine stress ratios are conducted carefully,and the theoretical results are compared with the experimentally measured values.The effects of other influencing factors,including geometric and mechanical parameters of yarns,on Poisson ratios are analyzed thoroughly.This solution method could be applied withoutdifficulty to estimations of Poisson ratios and realistic designs for plain-woven fabrics.

    Poisson ratios;plain-woven fabrics;mechanical properties; stress ratios;tensile testing

    Introduction

    Woven fabricsare used in state-of-the-artstructures including architectural structures,inflatable containers,certain plastic laminated sheets, parachutes, airship structures,etc.[1-7]The estimations of the biaxial elastic constants for woven fabrics are of paramount importance for the realistic designs and analyses of above fabric structures[7].Especially Poisson ratio is one of the crucial properties of woven fabrics and reveals important mechanical characteristics for a woven fabric[8].And variation of Poisson ratio may cause uncommon stress-strain relationships, dissimilarto those fornormal materials[9].

    Peirce[10]firstly analyzed the relationships between various parameters of woven fabrics,using a geometrical model without consideration of forces applied.Following from the work of Peirce,several researchers have developed models based on the Peirce model.These include Leaf and Anandjiwala[11],Jong and Postle[12],Testa et al.[13],Huang[14],and Sun et al.[15].Applying the optimal-controltheory,Jong and Postle[12]introduced the yarn extension to their analyses of deformations.The work indicated that Poisson ratios calculated on the assumption of inextensible yarn were inconsistent with the experimental results.Huang[14]offered a methodology to analyze the problem of the biaxial extension of a plain-woven fabric;however,Poisson ratios of fabrics were not dealt with in the analysis.Leaf and Kandil[16]presented an analysis of the initial load-extension behavior of plain-woven fabrics,and found an analytical solution for the initial elastic modulus and Poisson ratio of an idealized model of which the yarns were assumed to be inextensible and incompressible.

    To attain more reliable elastic constants of woven fabrics,a number of researchers have developed models that also include the yarn extension mechanism.Warren[17]determined the inplane linear elastic moduli of woven fabric which was assumed to be a spatially periodic interlaced network of orthogonal yarns. The results of this theoretical analysis were in good agreement with the measured in-plane elastic moduli.Sun and Pan[8]developed a mechanicalmodelfora woven fabric with extensible yarns to calculate the fabric Poisson ratios.The influences of some mechanical properties of yarns and structural parameters of fabrics on Poisson ratios were analyzed.In addition,the experimental determination is another method to obtain the Poisson ratios of fabrics.Lloyd and Hearle[18]analyzed the limitations of a uniaxial tensile test in calculation of Poisson ratios and pointed out that a biaxial test method was required to conquer the limitations of the uniaxial test.Quaglini et al.[19]developed an experimental protocol for mechanical characterization of a plain-woven fabric.The elastic constants including Poisson ratios were determined by fitting uniaxial stress-strain curves along warp,weft and 45°directions.More recent summaries have been presented by Warren[17]and Sun et al.[8]

    As known to all,the Poisson ratios significantly influence the fabric drape and other behaviors.However,the reliable and accurate Poisson ratios for fabrics are difficult to get,as a result of shortage of reliable experimental techniques for fabrics[8].What's more,Poisson ratios,as reported byGalliot and Luchsinger[20],vary with the stress ratios and other in situ loading conditions.Poisson ratios used in fabric modeling and structural analysis were mainly estimated on the basis of those for isotropic materials[19].So far,few studies have analytically and experimentally determined the Poisson ratios for woven fabrics under different biaxial stress ratios.And there is an urgent need to analyze the effects of different stress ratios and other mechanical and geometrical parameters of fabrics on Poisson ratios.

    This paper trying to fill the need is organized as follows.Firstly,according to the method proposed by Warren[17],a theoretical model with extensible yarns for plain-woven fabrics is established to determine an analytical expression of the Poisson ratios.As one of affecting factors,the stress ratios between warp and weft directions are introduced into the theoretical analysis of Poisson ratios.To the best knowledge of the authors,few researches have revealed the effects of the stress ratios on Poisson ratios.Secondly,to evaluate the reliability of the theoretical analysis,a series of biaxial tensile tests of a plain-woven fabric with nine stress ratios are conducted carefully,and the theoretical results are validated by comparing them with the experimentally measured values.Lastly,the effects of influencing factors including stress ratios,geometric and mechanical parameters on Poisson ratios of plain-woven fabrics are analyzed thoroughly.

    1 Theoretical Analysis of Fabrics under Biaxial Load

    The geometry of the woven fabric and each yarn under consideration here is shown in Fig.1[8,17].With reference toFig.1(b),the usual geometrical weave parameters of pick spacing p,yarn length l,and crimp height h are represented in terms of the geometric parameters R and φ0by

    where R is the radius of yarn undulation and φ0is the crimp angle.

    Fig.1 Geometry of the woven fabric:(a)schematic of woven yarn interlace,(b)cross-section of weave in either x(warp)or y (weft)direction,and(c)forces of model for each yarn

    In view of the geometry shown in Fig.1,Eqs.(1)lead to the following relations:

    where the subscripts x and y indicate warp and weft yarns,respectively.

    The Poisson ratios for a plain-woven fabric are established as follows[8],

    where

    And

    where I and Arare the moment of inertia and the area for the yarn cross-section,respectively.

    Through analysis,the Poisson ratios ofa fabric are determined by the interaction between the warp and the weft yarns,and can be expressed as functions of the structural and mechanical parameters of the system. This exclusive characteristic of a plain-woven fabric is different from a typical continuum.However,their mechanical implications are quite similar.

    In order to analyze the effect of stress ratios on the Poisson ratios,a pin-joined truss model proposed by Kawabata et al.[21-22](shown in Fig.2) was introduced.The model is obtained from a smallestunitofan actualfabric, by approximating the curved yarns with straight rods passing through two consecutive crossover points.As shown in Fig.2(b),one rod passes through points O1O2,with an angle φ0of the horizontal(x,y)plane;and the axial forces Txand Tyact through the centroids of the cross-sections of yarns.The forces fxand fycan be represented in terms of the axial forces Txand Tyby

    Fig.2 Analytical model for stress ratios:(a)the applied forces and geometric angles and(b)geometric relationship

    Since equilibrium requires the transverse contact forces to be the same for both warp and weft yarns,there is

    And it could be concluded that

    Then using Eqs.(2),we have

    The relationship between φ0iand φ0ias shown in Fig.2(b) is given by

    where,1 and 2 denote the warp and the weft directions of fabric,respectively.

    According to(9)and(10),the following relations can be determined:

    Introducing the stress ratio n and the radius ratio m,

    Eq.(11)can be written in the form

    Formula(1)determines cos(φ0x/2)and cos(φ0y/2)as

    Substituting the relation of Eqs.(14)into Eq.(13),the radius ratio m can be obtained:

    Equations(15)and(12)will be used in the next section to approximately obtain the Poisson ratios(Eq.(3))of fabric under different stress ratios.

    2 Biaxial Testing

    To assess the validity of a predictive model it is essential to have comprehensive test data with which to compare the model output.Biaxial tensile tests of a cruciform specimen(Fig.3 (b))with slit arms have been carried out using a new biaxial testing machine equipped with two orthogonal independent loading axes(Fig.3(a)).This biaxial testing equipment used was designed and commissioned by our Space Structures Research Center of Shanghai Jiao Tong University.Hydraulic power and series of valves which provide power for the tester are parametrically controlled to realize any spectra.A unique feature of this testing equipment is its feed-back of force which is automatically adjusted by the loading spectrum,and this unique feature makes the loading more precise.A more detailed report can be found in Chen et al.[22]

    The central square of the specimen is 160 mm wide.Each cruciform arm is loaded independently by two clamps mounted on a loading car.The loading car of each arm is equipped with a load cell rated 100 kN to measure the load applied to the specimen.Considering the relationship between the applied load and the stress at the center of the cruciform specimen,a reduction factor of 0.94 is applied to predicting the stress where the strain is measured.The strains are measured by the use of two needle extensometers placed in the warp and the weft directions and bolted on the test specimen using small diameter screws,and the strain gage length is set to be 28 mm.Chen et al.[23]showed that small holes in the specimen did not introduce any unacceptable errors.

    Fig.3 Experimental set-up:(a)biaxial testing machine and(b) dimensions(in mm)and orientation of test specimens

    The biaxial test protocol for this work was adapted from that of the standard of MSAJ[24].As shown in Fig.4,in order to remove residual strains and avoid high initial levels of creep,the load profile explores various stress ratios with repeated load cycles and a nonzero pre-stress which appears in a pre-stressing stage(20 min)and at every change of stress ratio.This nonzero pre-stress is set 2.0 kN/m(about 5.0%of the ultimatestrength);this value of pre-stress is higher than that of the standard of MSAJ in which it is set 0 kN/m.For each stress ratio,namely 0∶1,1∶3,1∶2,2∶3,1∶1,3∶2,2∶1,3∶1,and 1∶0,three cycles must be applied and at least three specimens must be tested.For this work,elastic constants have been calculated based on the principle described in the standard of MSAJ[24].

    Fig.4 Biaxial test protocol:(a)radial load regime and(b) part of load history for each specimen

    3 Comparison with Experiments and Parametric Studies

    Table 1 shows the specification of the samples tested.As the cross-section of the yarn is often not an ideal circular section,the equal area method is used to determine the yarn diameters from the measured values.Yarn dimensions and crimp characteristics have been determined using measurements of fabric cross-section images acquired using a digital camera.Measurements from multiple images were taken and averaged to give typical dimensions for the fabric.The comparisons of the theoretical predictions with the experimental results are listed in Table 2.In general,the analytical calculations are in a reasonable agreement with the measurements.

    Table 1 Physical parameters of the plain woven fabric tested

    Table 2 Poisson ratios for theoretical model and experimental data

    3.1 Stress ratios

    Figure 5 illustrates the effect of warp to weft stress ratio (σxx/σyy)on the Poisson ratios of the experimental fabric,for which the parameters are listed in Table 1.In general,the comparison between the results of model developed here and experiment appears to be quite good.It can be seen that with the increase of the stress ratio changing from 0.0 to 3.0,the Poisson ratio vxyfirst increases,then decreases after reaching a maximum of about 0.40,while the Poisson ratio vyxonly decrease steadily and arrives at 0.15 where stress ratio equals 3.0.Likewise,the experimental results,especially of the second and third cycles,experience similar variation trends,except for some slight differences.In addition,according to Fig.5,the experimental values of the first cycle are bigger and fluctuate more strongly than those of other two cycles.This is because that,with loading cycle increasing,the linearity of material response becomes more obvious,and after these cycles the tensile properties of the yarns tend to be stable.

    Fig.5 Experimental and model results for variation of Poisson ratios with stress ratios(warp:weft):(a)vxyand(b)vyx(the numbers 1,2,and 3 denote the cycle numbers)

    As shown in Fig.5,in general,the analytical calculations are in a reasonable agreement with the measurements,and from Eqs.(3),Poisson ratios for fabrics are also determined by the properties of yarns and structural geometry of fabrics.Thus the effects of these influencing factors on Poisson ratios of the theoretical model are investigated by parametric studies in the following sections.

    3.2 Yarn elastic modulus ratios

    Figure 6 demonstrates the effect of elastic modulus ratio(ExS/EyS)between warp and weft yarns on the Poisson ratio of the theoretical model,for which the yarn diameter dyequals 0.180 mm,the crimp height hx(=hy)equals 0.260 mm,and the radius of yarn undulation Rxis 0.560 mm.On the whole,for vxy,it shows that with the increase of the elastic modulus ratio (ExS/EyS),the Poisson ratio increases,and with the increase of the stress ratio n,the Poisson ratio increases as well.However,for vyx,the results are reversed.These trends were not in line with the previously discussed model[16]of which the yarns were assumed to be inextensible; the Poisson ratios ofthat inextensible yarns model were not affected by the variation of yarn elastic modulus ratios.

    Fig.6 Variation of Poisson ratios with yarn elastic modulus ratio (warp:weft)

    According to Fig.6,under different stress ratios,the elastic modulus ratio has considerably different effect on Poisson ratio.More specifically,for example,when the elastic modulus ratio is less than 1,the effect of the stress ratio on the Poisson ratio vxyis complex.While ExS/EySis greater than 1,growth of the stress ratio promotes significantly the Poisson ratio,even beyond 1.0 at some segment of the curve where stress ratio n equals 2.

    3.3 Yarn diameter ratio

    The effect of the yarn diameter ratio(dxS/dyS)on the Poisson ratio is shown in Fig.7 with equal yarn elastic modulus ratio(ExS=EyS)and equal crimp height(hx=hy),while allowing the pick spacing ratio change from 2/3 to 3/2.It indicates that with the increase of the yarn diameter ratio changing from 0.3 to 3.3,the Poisson ratio vxyfirst increases severely,and then decreases smoothly afterreaching a maximum,while the Poisson ratio vyxonly decreases rapidly and arrives at 0.1 where stress ratio equals 1.8 approximately.

    Fig.7 Variation of Poisson ratios with yarn diameter ratios (warp:weft)

    In general,for vxy,it shows that with the increase of the pick spacing ratio, the Poisson ratio increases. More specifically,for example,when the yarn diameter ratio is less than 0.8,the effect of pick spacing ratio on the Poisson ratio vxyis complex.While the yarn diameter ratio is greater than 0.8,increase of pick spacing ratio promotes significantly the Poisson ratio vxy.

    3.4 Pick spacing ratio

    Please see Fig.8 which presents the influence of the pick spacing ratio(Px/Py)on the Poisson ratio of a woven fabric model.In this model,both the crimp height ratio and yarn diameter ratio equal 1.0,i.e.,hx=hyand dx=dy.With the increase of the pick spacing ratio,the Poisson ratio vxyfirst ascends markedly,and then descends moderately after arriving at a maximum;while the Poisson ratio vyxonly experiences a downward trend.As illustrated by Fig.8 the yarn elastic modulus ratio affects the Poisson ratio vxymore significantly than vyx.More precisely,for Poisson ratio vxy,when the yarn elastic modulus ratio changes from 1/2 to 2/1,the maximum of Poisson ratio even reaches 1.5 from 0.5.It seems that mechanical parametersalso can impactthe Poisson ratio significantly even overweight the structural parameters,which appears inconsistent with results of the earlier study[8].This result therefore indicates that either mechanical parameters or geometric parameters may play a bigger role in determining Poisson ratios.

    Fig.8 Variation of Poisson ratios with pick spacing ratios (warp:weft)

    4 Conclusions

    As the theoretical model bases on the linear theory,it is particularly relevant to fabrics whose yarns exhibit more linear stress-strain relation.Considering the uncertainties of the yarn elastic modulus and the level of yarn flattening inevitably affecting the geometric parameters of yarns,the theoretical model tends to givepredictions thatare parallelto the experimental data from corresponding tests.To well verify the theoretical model,future work will include more experimental comparisons for other kinds of plain-woven fabrics.Moreover,the cyclic loading may change the crimp level of warp and weft yarns,which affects the biaxial tensile characteristics and elastic constants of the woven fabrics.Therefore an important question for future studies is to determine the effects of the cyclic loading on the geometric parameters of yarns.These effects of cyclic loading should be considered by the theoretical analysis to obtain accurate Poisson ratios of plain-woven fabrics.The influences ofstress ratios,various mechanical properties ofyarns,and structural parameters of fabrics on the Poisson ratios of the woven fabrics are studied.Our current findings expand prior work.This study offers an understanding of the variability of Poisson ratio and provides a guideline for the design of a woven fabric.

    [1] KangW,Suh Y,WooK,et al.Mechanical Property Characterization ofFilm-Fabric Laminate forStratospheric Airship Envelope[J].Composite Structures,2006,75(1/2/3/ 4):151-155.

    [2]Maekawa S,Shibasaki K,Kurose T,et al.Tear Propagation of a High-Performance Airship Envelope Material[J].Journal of Aircraft,2008,45(5):1546-1554.

    [3]Zhang Y Y,Zhang Q L,Zhou C Z,et al.Mechanical Properties of PTFE Coated Fabrics[J].Journal of Reinforced Plastics and Composites,2010,29(24):3624-3630.

    [4]Ambroziak A,Klosowski P.Mechanical Testing of Technical Woven Fabrics[J].Journal of Reinforced Plasticsand Composites,2013,32(10):726-739.

    [5] Bridgens B,Gosling P,Jou G T,et al.Inter-laboratory Comparison of Biaxial Tests for Architectural Textiles[J].Journal of the Textile Institute,2012,103(7):706-718.

    [6]Gosling P D,Bridgens B N.Material Testing&Computational Mechanics—a New Philosophy for Architectural Fabrics[J].International Journal of Space Structures,2008,23(4):215-233.

    [7]Galliot C,Luchsinger R H.Determination of the Response of Coated Fabrics under Biaxial Stress: Comparison between Different Test Procedures[C].The V International Conference on Textile Composites and Inflatable Structures—Structural Membranes,Barcelona,2011:263-277.

    [8]Sun H,Pan N,Postle R.On the Poisson's Ratios of a Woven Fabric[J].Composite Structures,2005,68(4):505-510.

    [9]Uhlemann J,Stranghoner N,Schmidt H,et al.Effects on Elastic Constants of Technical Membranes Applying the Evaluation Methods ofMSAJ/M-02-1995[C].The V International Conference on Textile Composites and Inflatable Structures—Structural Membranes,Barcelona,2011:250-262.

    [10]Peirce F T.The Geometry of Cloth Structure[J].Journal of the Textile Institute,1937,28:45-96.

    [11]Leaf G A V,Anandjiwala R D.A Generalized Model of Plain-Woven Fabrics[J].Textile Research Journal,1973,64:21- 46.

    [12] de Jong S,Postle R.An Energy Analysis of Woven-Fabric Mechanics by Means of Optimal-Control Theory,Part I:Tensile Properties[J].Journal of the Textile Institute,1977,68(11): 350-361.

    [13]Testa R B,Stubbs N,Spillers W R.Bilinear Model for Coated Square Fabrics[J].The Journal of Engineering Mechanics,1978,104:1027-1042.

    [14]Huang N C.Finite Biaxial Extension of Completely Set Woven Fabrics[J].Journal of Applied Mechanics,1979,46:651-655.

    [15]Sun F N,Seyam A M,Gupta B S.A Generalized Model for Predicting Load-Extension Properties of Woven Fabrics[J].Textile Research Journal,1997,67(12):866-874.

    [16]Leaf G A V,Kandil K H.The Initial Load-Extension Behaviour of Plain-Woven Fabrics[J].Journal of the Textile Institute,1980,71(1):1-7.

    [17]Warren W E.The Elastic Properties of Woven Polymeric Fabric[J].Polymer Engineering&Science,1990,30(20):1309-1313.

    [18]Lloyd D W,Hearle J W S.An Examination of a“Wide-Jaw”Test for the Determination of Fabric Poisson's Ratios[J].Journal of the Textile Institute,1977,68(9):299-302.

    [19]Quaglini V,Corazza C,Poggi C.Experimental Characterization of Orthotropic Technical Textiles under Uniaxial and Biaxial Loading[J].CompositesPartA—Applied Science and Manufacturing,2008,39(8):1331-1342.

    [20]Galliot C,Luchsinger R H.A Simple Model Describing the Nonlinear Biaxial Tensile Behavior of PVC-Coated Polyester Fabrics for Usein FiniteElementAnalysis[J].Computers&Structures,2009,90:438-447.

    [21]Kawabata S,Niwa M,Kawai H.The Finite-Deformation Theory of Plain-Weave Fabrics Part I:the Biaxial-Deformation Theory[J].Journal of the Textile Institute,1973,64(1):21-46.

    [22] Chen W J,Zhang L,Zhang D X,et al.Research and Development of Bi-axial Tension Tester and Experiments on the Mechanical PropertiesofEnvelop Fabrics[C].The V International Conference on Textile Composites and Inflatable Structures—Structural Membranes,Barcelona,2011:302-314.

    [23]Chen S H,Ding X,F(xiàn)angueiro R,et al.Tensile Behavior of PVC-Coated Woven Membrane Materials under Uni-and Biaxial Loads[J].Journal of Applied Polymer Science,2008,107(3):2038-2044.

    [24]MSAJ/M-02:1995,Standard of Membrane Structures Association of Japan[S].Japan:the Membrane Structure Association of Japan,1995.

    TS151

    A

    1672-5220(2015)03-0351-06

    date:2013-10-21

    s:National Natural Science Foundations of China(Nos.51278299);Natural Science Foundation of the Jiangsu Province,China (No.BK 20150775)

    * Correspondence should be addressed to CHEN Jian-wen,E-mail:jianwench@yeah.net

    日韩av免费高清视频| 婷婷色av中文字幕| 亚洲第一av免费看| 免费在线观看完整版高清| 欧美日韩一区二区视频在线观看视频在线| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| a级片在线免费高清观看视频| 寂寞人妻少妇视频99o| 日本wwww免费看| 久久久国产一区二区| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 久久久久国产精品人妻一区二区| 一二三四中文在线观看免费高清| 免费大片18禁| 曰老女人黄片| 如何舔出高潮| 成人二区视频| 看非洲黑人一级黄片| 精品一区二区三区四区五区乱码 | 国产日韩欧美视频二区| 欧美3d第一页| 男人添女人高潮全过程视频| 99国产综合亚洲精品| 免费人妻精品一区二区三区视频| 母亲3免费完整高清在线观看 | 免费少妇av软件| 宅男免费午夜| 日韩熟女老妇一区二区性免费视频| 国产有黄有色有爽视频| a级毛片在线看网站| 少妇被粗大猛烈的视频| 视频区图区小说| 国国产精品蜜臀av免费| 午夜久久久在线观看| 久久影院123| 一级a做视频免费观看| 99久国产av精品国产电影| 亚洲图色成人| 亚洲第一区二区三区不卡| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 高清毛片免费看| 精品一区二区三卡| 色94色欧美一区二区| 高清黄色对白视频在线免费看| 国产免费又黄又爽又色| freevideosex欧美| 欧美激情极品国产一区二区三区 | 美女脱内裤让男人舔精品视频| 久久久国产精品麻豆| 91精品三级在线观看| 亚洲图色成人| 乱码一卡2卡4卡精品| 侵犯人妻中文字幕一二三四区| 中文字幕精品免费在线观看视频 | 欧美精品一区二区大全| 久久这里只有精品19| 自拍欧美九色日韩亚洲蝌蚪91| 免费久久久久久久精品成人欧美视频 | 2022亚洲国产成人精品| 两个人看的免费小视频| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 在线观看免费日韩欧美大片| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 欧美国产精品一级二级三级| a级毛片黄视频| 日本欧美视频一区| 亚洲精品乱码久久久久久按摩| 2018国产大陆天天弄谢| 亚洲精品成人av观看孕妇| 考比视频在线观看| 亚洲精品久久久久久婷婷小说| 夫妻午夜视频| 欧美丝袜亚洲另类| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 精品亚洲乱码少妇综合久久| 寂寞人妻少妇视频99o| 国产黄频视频在线观看| 亚洲成色77777| 一级毛片我不卡| 亚洲综合精品二区| 久久99热6这里只有精品| 日韩制服丝袜自拍偷拍| 极品少妇高潮喷水抽搐| 中文字幕亚洲精品专区| 啦啦啦啦在线视频资源| 激情视频va一区二区三区| 99热全是精品| 51国产日韩欧美| 妹子高潮喷水视频| 最近的中文字幕免费完整| 亚洲精品成人av观看孕妇| 三级国产精品片| 飞空精品影院首页| 国产成人欧美| 精品亚洲成a人片在线观看| 天天影视国产精品| 国产伦理片在线播放av一区| 亚洲av电影在线进入| av网站免费在线观看视频| 1024视频免费在线观看| 制服诱惑二区| 精品一区二区三区四区五区乱码 | 最近手机中文字幕大全| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 亚洲国产看品久久| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 婷婷色av中文字幕| 日本免费在线观看一区| 多毛熟女@视频| 久久人人爽人人片av| 久久av网站| 99热国产这里只有精品6| 日日摸夜夜添夜夜爱| 国产深夜福利视频在线观看| av网站免费在线观看视频| 免费av中文字幕在线| 黄网站色视频无遮挡免费观看| 欧美激情国产日韩精品一区| 精品一区二区三区四区五区乱码 | 精品少妇黑人巨大在线播放| 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 国产av一区二区精品久久| 国产极品天堂在线| 亚洲高清免费不卡视频| 成年动漫av网址| 久久久亚洲精品成人影院| 中国国产av一级| 美女视频免费永久观看网站| 永久网站在线| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 日本免费在线观看一区| 伦理电影免费视频| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久影院123| 如何舔出高潮| 成人毛片60女人毛片免费| 夫妻午夜视频| 久久精品国产a三级三级三级| 永久网站在线| 久久97久久精品| av在线app专区| 国产福利在线免费观看视频| 校园人妻丝袜中文字幕| 韩国精品一区二区三区 | 少妇人妻精品综合一区二区| 大香蕉久久网| 国产精品免费大片| 99热6这里只有精品| 欧美+日韩+精品| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 日本黄大片高清| 午夜激情av网站| 18禁动态无遮挡网站| 纯流量卡能插随身wifi吗| 亚洲成av片中文字幕在线观看 | 乱人伦中国视频| 热99久久久久精品小说推荐| 国产高清不卡午夜福利| 黄片无遮挡物在线观看| 丰满乱子伦码专区| 欧美日韩视频高清一区二区三区二| 热99国产精品久久久久久7| 日韩视频在线欧美| 欧美bdsm另类| 51国产日韩欧美| 久久久久精品人妻al黑| 有码 亚洲区| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 久久午夜综合久久蜜桃| 免费黄色在线免费观看| 欧美日韩亚洲高清精品| 国产精品人妻久久久影院| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 成人午夜精彩视频在线观看| 久久这里只有精品19| 97人妻天天添夜夜摸| 国产探花极品一区二区| 一边亲一边摸免费视频| 韩国精品一区二区三区 | 老司机影院成人| 精品少妇黑人巨大在线播放| 国国产精品蜜臀av免费| 三上悠亚av全集在线观看| 精品熟女少妇av免费看| 在线观看美女被高潮喷水网站| av在线观看视频网站免费| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 我要看黄色一级片免费的| 亚洲国产精品成人久久小说| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 老司机影院毛片| √禁漫天堂资源中文www| 婷婷色av中文字幕| 天天操日日干夜夜撸| 国产成人av激情在线播放| 亚洲图色成人| 亚洲精品自拍成人| 婷婷色综合www| 国产又色又爽无遮挡免| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 国产男女超爽视频在线观看| 国产精品一区二区在线不卡| 精品亚洲成国产av| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 久久国产精品大桥未久av| 国产男女内射视频| 十八禁高潮呻吟视频| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 哪个播放器可以免费观看大片| 高清欧美精品videossex| 亚洲,欧美精品.| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频| 大话2 男鬼变身卡| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 男人操女人黄网站| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 亚洲国产成人一精品久久久| 1024视频免费在线观看| 大香蕉97超碰在线| 日韩,欧美,国产一区二区三区| 少妇的丰满在线观看| 国产精品一区www在线观看| 精品酒店卫生间| 国产片内射在线| 亚洲图色成人| 看非洲黑人一级黄片| 丝袜脚勾引网站| 欧美激情极品国产一区二区三区 | 18+在线观看网站| 精品一区二区三区四区五区乱码 | 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看| 一本色道久久久久久精品综合| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| 看免费av毛片| 另类亚洲欧美激情| 久久久国产一区二区| 熟妇人妻不卡中文字幕| 91国产中文字幕| 色婷婷久久久亚洲欧美| 老司机影院毛片| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 咕卡用的链子| 女人久久www免费人成看片| 狂野欧美激情性xxxx在线观看| 一个人免费看片子| 成人国产麻豆网| 在线免费观看不下载黄p国产| 90打野战视频偷拍视频| 午夜免费鲁丝| 宅男免费午夜| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 老司机影院成人| 90打野战视频偷拍视频| 一区二区三区四区激情视频| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 99热全是精品| 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 国产成人精品福利久久| 综合色丁香网| 尾随美女入室| 一区二区av电影网| 久久韩国三级中文字幕| 久久精品夜色国产| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 狂野欧美激情性bbbbbb| 在线看a的网站| 久久国产亚洲av麻豆专区| 亚洲欧美成人精品一区二区| 精品久久国产蜜桃| 亚洲伊人色综图| 国产精品一国产av| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 满18在线观看网站| 99久久综合免费| 免费大片黄手机在线观看| www.熟女人妻精品国产 | 中国国产av一级| 久久精品aⅴ一区二区三区四区 | 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 97在线视频观看| 巨乳人妻的诱惑在线观看| 精品一区二区免费观看| av线在线观看网站| 极品人妻少妇av视频| 18禁动态无遮挡网站| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全免费视频 | 超色免费av| 美女国产高潮福利片在线看| 国产免费一级a男人的天堂| 国产在视频线精品| 在线天堂最新版资源| 9色porny在线观看| 成年av动漫网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最新中文字幕久久久久| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| av.在线天堂| 国产欧美另类精品又又久久亚洲欧美| 韩国精品一区二区三区 | 人妻系列 视频| 九九在线视频观看精品| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 老司机影院毛片| 嫩草影院入口| 插逼视频在线观看| 亚洲欧美清纯卡通| 亚洲精品久久成人aⅴ小说| 欧美日韩精品成人综合77777| 黄色 视频免费看| 亚洲第一区二区三区不卡| 国产免费视频播放在线视频| 亚洲经典国产精华液单| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 777米奇影视久久| 国产色婷婷99| 香蕉丝袜av| 中文字幕精品免费在线观看视频 | 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 亚洲高清免费不卡视频| 黄色一级大片看看| av一本久久久久| 在线观看一区二区三区激情| 亚洲精品日韩在线中文字幕| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| av片东京热男人的天堂| 一个人免费看片子| 日韩制服骚丝袜av| 91成人精品电影| 国产精品一国产av| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看 | 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| a级毛片黄视频| 老司机影院毛片| 午夜福利影视在线免费观看| 色94色欧美一区二区| 午夜福利视频精品| 国产成人精品一,二区| 亚洲精品aⅴ在线观看| 一级a做视频免费观看| 蜜臀久久99精品久久宅男| 大片电影免费在线观看免费| 欧美成人午夜精品| 午夜视频国产福利| 夫妻性生交免费视频一级片| 免费观看在线日韩| 一级毛片电影观看| 亚洲国产精品成人久久小说| 乱人伦中国视频| 久久久国产精品麻豆| 啦啦啦在线观看免费高清www| 亚洲欧美清纯卡通| 丝袜喷水一区| 成人亚洲欧美一区二区av| 一区在线观看完整版| 欧美性感艳星| 国产亚洲av片在线观看秒播厂| 亚洲成人av在线免费| 日本vs欧美在线观看视频| 熟女人妻精品中文字幕| 伦精品一区二区三区| 日韩伦理黄色片| 中文字幕免费在线视频6| 18在线观看网站| 麻豆精品久久久久久蜜桃| 久久久亚洲精品成人影院| 黄网站色视频无遮挡免费观看| 男女免费视频国产| 亚洲人与动物交配视频| 男女下面插进去视频免费观看 | av视频免费观看在线观看| 少妇被粗大猛烈的视频| 国产无遮挡羞羞视频在线观看| 久久久久精品久久久久真实原创| 黄色 视频免费看| 亚洲美女视频黄频| 中文字幕免费在线视频6| 久久久久久伊人网av| 老熟女久久久| 少妇的逼好多水| 久热久热在线精品观看| 亚洲国产精品专区欧美| av在线老鸭窝| 一本色道久久久久久精品综合| h视频一区二区三区| 我的女老师完整版在线观看| h视频一区二区三区| 成人国语在线视频| 免费看不卡的av| 有码 亚洲区| 人妻一区二区av| √禁漫天堂资源中文www| 深夜精品福利| 在线观看国产h片| 亚洲三级黄色毛片| 国产亚洲欧美精品永久| 国产精品国产三级国产专区5o| 欧美人与性动交α欧美精品济南到 | 爱豆传媒免费全集在线观看| 亚洲四区av| 午夜免费鲁丝| 日韩一区二区三区影片| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 一区二区av电影网| 啦啦啦在线观看免费高清www| 观看美女的网站| 男人舔女人的私密视频| 日韩精品免费视频一区二区三区 | 亚洲,欧美,日韩| 国产1区2区3区精品| 亚洲精品美女久久av网站| 亚洲高清免费不卡视频| 成人免费观看视频高清| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 九九在线视频观看精品| 亚洲国产最新在线播放| 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久久大奶| 啦啦啦啦在线视频资源| 国产黄频视频在线观看| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放| 欧美精品人与动牲交sv欧美| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| kizo精华| 一级,二级,三级黄色视频| 日韩成人av中文字幕在线观看| 婷婷色av中文字幕| 男女下面插进去视频免费观看 | 看免费av毛片| 少妇熟女欧美另类| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 大香蕉97超碰在线| 免费人成在线观看视频色| 欧美xxⅹ黑人| 亚洲av.av天堂| av电影中文网址| 成人综合一区亚洲| 18在线观看网站| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 久久婷婷青草| 成人手机av| 一本久久精品| 国产av码专区亚洲av| a级毛片黄视频| 永久免费av网站大全| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 亚洲av综合色区一区| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看 | 欧美3d第一页| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃 | 一边摸一边做爽爽视频免费| 亚洲欧美成人综合另类久久久| 一区二区日韩欧美中文字幕 | 欧美人与善性xxx| 免费大片18禁| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 亚洲国产av影院在线观看| 内地一区二区视频在线| 一本色道久久久久久精品综合| 91在线精品国自产拍蜜月| 水蜜桃什么品种好| 亚洲av电影在线进入| 日本爱情动作片www.在线观看| 又黄又爽又刺激的免费视频.| 超色免费av| 在现免费观看毛片| 狠狠婷婷综合久久久久久88av| 激情五月婷婷亚洲| 天天躁夜夜躁狠狠躁躁| 天天躁夜夜躁狠狠久久av| av国产精品久久久久影院| 99国产精品免费福利视频| 我的女老师完整版在线观看| 国产乱来视频区| 夫妻性生交免费视频一级片| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频| 最新的欧美精品一区二区| 精品国产国语对白av| 赤兔流量卡办理| 五月玫瑰六月丁香| 国产亚洲精品第一综合不卡 | 国产精品麻豆人妻色哟哟久久| 国产成人av激情在线播放| 国产一区二区三区综合在线观看 | 满18在线观看网站| 在线 av 中文字幕| 中文字幕人妻熟女乱码| 亚洲av在线观看美女高潮| 成人漫画全彩无遮挡| 免费看光身美女| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 男女午夜视频在线观看 | a级片在线免费高清观看视频| 一本大道久久a久久精品| 国产熟女午夜一区二区三区| 久久久精品免费免费高清| 日韩欧美精品免费久久| 欧美亚洲 丝袜 人妻 在线| 午夜影院在线不卡| av国产精品久久久久影院| 久久久亚洲精品成人影院| 亚洲少妇的诱惑av| 青青草视频在线视频观看| 国产女主播在线喷水免费视频网站| 国产精品久久久久成人av| 国产免费福利视频在线观看| 国产精品久久久久久精品古装| 国产欧美日韩综合在线一区二区| 高清毛片免费看| 亚洲情色 制服丝袜| 色94色欧美一区二区| 韩国高清视频一区二区三区| 国产一区二区在线观看日韩| 亚洲人成网站在线观看播放| 久久青草综合色| 国产永久视频网站| 久久人人爽人人片av| xxx大片免费视频| 赤兔流量卡办理| 2021少妇久久久久久久久久久| 国产精品 国内视频| 午夜福利视频在线观看免费| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久人人人人人人| 日本欧美国产在线视频| 一区二区av电影网| 精品国产一区二区三区四区第35| 亚洲成人手机| 在线天堂中文资源库| 国产亚洲欧美精品永久| 视频中文字幕在线观看| 国产精品人妻久久久久久| 国产男人的电影天堂91|