• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Force-Based Quadrilateral Plate Bending Element for Plate Using Large Increment Method

    2015-08-11 14:00:52JIAHongxue賈紅學(xué)LIUXila劉西拉
    關(guān)鍵詞:西拉紅學(xué)

    JIA Hong-xue(賈紅學(xué)),LIU Xi-la(劉西拉)

    School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    Force-Based Quadrilateral Plate Bending Element for Plate Using Large Increment Method

    JIA Hong-xue(賈紅學(xué))*,LIU Xi-la(劉西拉)

    School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    A force-based quadrilateral plate element(4NQP13)for the analysis of the plate bending problems using large increment method(LIM)was proposed.The LIM,a force-based finite element method(FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems.In these analyses,LIM can provide more precise stress results and less computational time consumption compared with displacement-based FEM.The plate element was based on the Mindlin-Reissner plate theory which took into accountthe transverse shear effects.Numerical exampleswerepresented to study itsperformance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions.The 4NQP13 element can analyze the moderately thick plates and the thin plates using LIM and is free from spurious zero energy modes and free from shear locking for thin plate analysis.

    large increment method(LIM);displacement-based finite element method(FEM);Mindlin-Reissner plate theory;spurious zero energy modes;shear locking

    Introduction

    Plate elements are widely used in structural analysis in engineering.A number of research works have been proposed over several decades about the development of simple and efficient plate finite elements.The thin plate element based on the Kirchhoff theory is required that the deflections and their derivatives(C1continuity) should be continuous on the interfaces between elements.Because the C1continuity is rather difficult to guarantee for the displacement-based thin plate element,the focus has switched to the Mindlin-Reissner plate theory.The plate elements based on Mindlin-Reissner plate theory become the dominant model to calculate the bending of thin and moderately thick plate because only C0continuity is required.All existing Mindlin-Reissner plate elements can be generally divided into two groups,such as the displacementbased finite element method(FEM)[1-3]and the mixed/hybrid element method[4-7].But the displacement-based Mindlin-Reissner plate elements are commonly numerical over-stiffness and suffer from shear locking when applied in thin plate problems,thereby giving inaccuracy for the analysis of thin plate problems.Many relatively successful methods have been proposed to circumvent shear locking,such as the reduced integration[8], selective integration[9], penalty-parameter modification[10],assumed shear strain method[11],and element boundary interpolation using Timoshenko beam function[12].The selective and reduced integration can avoid the shear locking effectively in displacement-based model plate elements,but may result in singularity of the system stiffness matrix and such an element often exhibits spurious zero energy modes.As an alternative to the FEM,the large increment method(LIM) is extended to analyze the thin and moderately thick plate problems.

    Zhang and Liu[13]first presented the LIM for material nonlinear problem,based on the force method and the generalized inverse matrix theory.In LIM,the governing equations are setin three parts: equilibrium equations,compatibilityequations,and the local physical equations.Unlike the traditional force method,the independent elemental (generalized)forces variables are adopted as system unknowns,and the basic determinate structure is no longer needed,so the LIM becomes a systematic method and it is easy to implement in the program and computer.The advantage of LIM is that it separates the global equilibrium and compatibility equations from the local constitutive equations(the system matrix does not change even for nonlinear material problems),and the parallel computing in the time and spatial domain.For the traditional force method,the main unknowns are the redundant forces.However,there is no unique way to choose the redundant force in the statically indeterminate and a bad selection may cause computational instability,so it is difficult to implement in the program and computer.

    In recent years,LIM has been extended for solving elastic perfectly plasticanalysisofplane framestructuresunder monotonic and cyclic loading[14-15],2D continuum elastoplastic problems[16],and the elastic plate problems[17].In these papers,LIM has showed considerable computational savings and accuracy.In this paper,a new force-based plate element is proposed for the analysis of the thin plate and moderately thick plate problems.The new plate element(4NQP13)shows the advantages of avoiding the shear locking for thin plate problems and the spurious zeroenergymodes.The efficiencyand accuracy of the LIM are illustrated with a few benchmark problems and the results are compared with the analytical solution and the existing displacement-based quadrilateral plate elements.Only linear elastic material and small deformation are considered.

    1 Governing Equations of Plate Element

    In LIM,on a solid body Ω,its boundary is represented as S.The boundary is divided into two parts:the surface force intensity boundary Sσand the displacement boundary Su,where Sσ∩Su=0.The stress-resultant M and displacement u at each point in any element can be given by the element generalized force variables and element nodal displacement variables.The stress-resultant fields of the plate element are written as

    where M is the generalized force vector in element,Z is the shape function of generalized force parameter vector in element,and Fedenotes the elemental generalized inner force vector.

    The displacement fields in element are presented as

    and the strain vector in element is given by

    where u is the displacement vector in element,N is the shape function of node displacement vector in element,dedenotes the nodal displacement vector of the element,κ is the strain vector of the element,L is the differential operator,and B is the strain-displacement matrix in element.

    If the displacement set in the element is compatible,the weak form of the equilibrium equations of the element can be obtained by using the equation of virtual work

    Substituting Eq.(1)and Eq.(3)into Eq.(4),Eq.(4) can be rewritten as

    and the element equilibrium equations can be expressed as

    where

    In Eq.(7),Ceis the element equilibrium matrix,Peis the element equivalent nodal force vector.

    Thereby,theequilibrium equations ofthebody are obtained by assembling the element equilibrium equations and are presented as

    where C is an m×n equilibrium matrix of the structure,and it is assembled from the element equilibrium matrices.For the body,a statically indeterminate structure,the system coefficient of equilibrium C is an m×n non-square matrix with m<n.F is an n×1 generalized inner force vector of the body,and P is an m×1 nodal load vector.

    Similarly,if the force set in the body is in equilibrium,using Eq.(1),Eq.(3),and the principle of complementary virtual work,it can be obtained that

    Thus,the assembled system compatibility equations of the body can be expressed as

    where D is the nodal displacement vector of the body and δ is the generalized deformation vector of the body.

    The elemental constitutive equations can be written as

    where

    In Eq.(12),δedenotes the element generalized deformation vector,Φeis the element flexibility matrix,and φ represents the relationship between stress and strain of the material.

    Here the generalized inverse theory will be utilized to solve the linear equilibrium equation denoted by Eq.(8).The system equilibrium matrix C is an m×n non-square matrix with m<n for the statically indeterminate structure and the C-1does not exist.The generalized inverse of matrix C is defined as

    then

    where Im×mis an identify matrix.

    The general solution of Eq.(8)can be written as

    and the orthogonal projection operator β can be presented as

    where the orthogonal projection operator α=

    By eliminating the nodaldisplacementD using the generalized inverse theory,Eq.(10)can be rewritten as

    then,

    and Eqs.(17)and(18)become the generalized compatibility equations.

    Based on the discussion above,the stress-resultant fields are used to form the equilibrium and constitutive equations and play an important role in obtaining the precise stress results,and the displacement fields are used to form the compatibility equations in the LIM.The stress-resultant and displacement fieldswillbe presented in subsections 1.1 and 1.2,respectively.

    1.1 Assumed stress-resultant fields

    In Eq.(7)and Eq.(12),matrix Z appears in both the element equilibrium matrix Ceand the element flexibility matrix Φe.Therefore,it is important to properly assume stressresultant interpolation polynomials for obtaining the accurate results.The 4-node quadrilateral element has 12 degrees of freedom(DOF),three of which are related by three equations of equilibrium.Therefore,a stress field with a minimum of 9 independent forces is needed to describe the stress field.The stress field should be selected in a rational methodology for avoiding the spurious zero energy mode.The number of independent generalized forces m should satisfy

    where n is the total number of nodal displacement in an element and r is the number of kinematic DOF.Equation(19)is the only necessary condition but not sufficient for the absence of the zero energy modes(ZEM).The generalized inverse matrix theory is applied to detecting the zero energy modes and the necessary and sufficient condition are given as follows

    where*Ceis the element equilibrium coefficient matrix of after the element kinematic DOF is eliminated from Ce,the details will be presented in Section 3.

    The assumed stress-resultant fields should be satisfied with the equilibrium equations

    Based on the discussion above,the reasonable stressresultant fields are given in Table 1.The 4-node plate element is named 4NQP13.Here4N means4 nodes,QP means quadrilateral plate element,and 13 means the number of the unknown forces.

    Table 1 Assumed stress-resultant fields for the plate element

    1.2 Assumed displacement fields

    The main assumption of the plate bending element based on Mindlin-Reissner plate theory states that a straight line originally normal to the mid-surface of the plate remains straight but not necessarily normal to the deformed mid-surface.The node numbering for the element in isoparametric coordinates is shown in Fig.1.Therefore,the displacement fields for the transverse displacement and two rotations are interpolated in the interior of the element in terms of nodal values and assumed as

    where wi,θxi(θyi),and Niare the corresponding displacements,rotation values,and the shape functions of node i,respectively.The shape functions are given below

    Fig.1 Node numbering of the plate element

    2 Basic Theory of LIM

    In LIM,the governing equations of the body are global equilibrium equations, compatibility equations, and local constitutive equations.In the case of small deformation,the global equilibrium equations and the compatibility equations are constantlinear algebraic equations. However, the local constitutive equations are nonlinear if the constitutive relations are material nonlinear.Unlike the FEM,LIM separates the linear global equilibrium and compatibility equations from the local constitutive equations.For the indeterminate structures,its equilibrium matrixis non-square.The generalized inverse matrix method is employed to obtain the set of solutions of the non-square matrix equations directly.First the initial forces are obtained and the constitutive equations are then utilized to obtain the deformations.After that the compatibility equations are used to check whether the deformations satisfy the deformation compatible condition.Now the main goal of LIM is to find an optimized solution F that makes‖βδ‖ to approach zero.For solving the optimization problem,an iterative procedure is employed with the conjugate gradient method to find the correct solution.The governing equations of the plate element are given in Section 1.For the linear elastic material plate bending problem,the procedure of LIM is as follows.

    Step 1 Using the theory of generalized inverse of matrix to solve the body equilibrium Eq.(8)and find out a special solution F0as the initial value of the iteration

    Step 2 Iterate from Fnto Fn+1

    1)Calculate the deformation vector δncorresponding to Fn:

    2)Check whether the deformations are sufficiently compatible or not:

    If ε(δn) ≤ e0(e0is the given error tolerance),then the deformation are sufficiently compatible,no more iterations are required,and go to Step 3.Otherwise,the deformation vector δnis not compatible and Fnshould be modified to improve the compatibility of the deformation vector.

    3)Calculate the search direction Sn:

    where K(δn)is the current stiffness matrix,which can be obtained by calculating the inverse of the flexibility matrix Φ(Fn).

    4)Calculate the search step length:

    5)Fn+1can be calculated as:

    Step 3 Obtain the final results

    3 The Spurious Zero Energy Modes Test

    The stress-resultant and displacement fields within an element are assumed,respectively.The stress-resultant fields cannot be chosen arbitrary since the spurious zero energy modes (ZEM)should be avoided in the plate element.In order to check the ZEM,the generalized inverse matrix theory is applied to detecting the ZEM.

    Using Eq.(1),the complementary virtual work equation can be written as

    when

    from Eqs.(12)and(31),the left of Eq.(31)can be written as

    where Ceis the element equilibrium matrix,δFeis the virtual generalized element inner force,deis the nodal displacement vector of an element.By eliminating the kinematic DOF from Ceand de,Eq.(33)can be represented as

    When

    it can be found that de*has non-trivial solution by using the theory of generalized inverse of matrix and it can be presented as

    where X is arbitrary vector and has the same dimension as the dimension of Fe.

    It can be shown that the existence of the non-trivial solution can lead to rank deficiency of the element equilibrium matrix*Ce.The rank deficiency of the element equilibrium matrix is a sign of the appearance of spurious zero energy modes in the plate element.

    Equation(35)is represented as

    where r is the number of rigid body modes in an element.It is recognized that the number of independent generalized inner force parameters in the assumed stress-resultant fields has to satisfy

    and the necessary and sufficient conditions are given as

    where*Ceis the element equilibrium coefficient matrix after the element kinematic DOF is eliminated from Ce.

    The rank of an elemental flexibility matrix Φehas to satisfy

    The correct rank of the element equilibrium coefficient matrix guarantees that the plate element can avoid from spurious zero energy modes.

    4 Numerical Results and Discussion

    Several standard numerical examples are presented in this section.The square plate is used for assessing the convergence and the accuracy.The shear locking of the proposed plate elements is tested.The circular plate is used to investigate the sensitivity to distorted mesh.The results of the proposed elements are compared with existing 4-node quadrilateral displacement-based plate elements,namely the Q4 element[8],the Q4-R element[18],the RDKQM element[19],the MQP4 element[20], the MITC4 element[21], and the analytic solutions[22-24].

    4.1 Convergence tests

    A square moderately thick plate with simply supported/ clamped boundary conditions subjected to a uniform load.The parameters are the plate side L=0.4 m,the thickness t=0.08 m,the elasticity modulus E=2.1×1011Pa,Poisson's ratio ν= 0.3,and the uniform loading q=1010Pa.Due to symmetries both in geometry and the loading,a quarter of the plate is analyzed.The 4×4 regular meshes are shown in Fig.2.The corresponding convergence trends are shown in Figs.3-6.

    Fig.2 4×4 mesh for quarter of the square plate

    Fig.3 Central deflection for a clamped square plate with uniform load

    Fig.4 Central deflection for a simply supported square plate with uniform load

    Fig.5 Central moment coefficient for a clamped square plate with uniform load

    Fig.6 Central moment coefficient for a simply supported square plate with uniform load

    In Figs.3-6,it is clear that the mesh convergence of the proposed quadrilateral force-based 4NQP13 element is as good as the famous displacement-based Q4-R and RDKQM element,and is better than the displacement-based Q4 element and the force-based MQP4 element in estimating the central deflection and central moment coefficient.

    4.2 Shear locking tests

    A simply supported square plate with various thickness/span ratios t/L subjected to uniform load is used to test shear locking phenomenon of the proposed plate element using LIM,and the mesh size is 6×6 in a quarter of plate.The analytical solutions for the centraldeflection coefficientand centralmoment coefficient are obtained by Timoshenko and Krieger[22]and Liu et al.[23]for thin plate and moderately thick plate problems.

    The results of central deflection coefficient and central moment coefficient presented in Tables 2 and 3 show that the new force-based plate element can avoid the shear locking phenomenon.However,the Q4 element is not free from shear locking and cannot get the correct solution for the thin plate.

    Table 2 Central deflection coefficient for a simply supported plate with uniform load

    Table 3 Central moment coefficient for a simply supported plate with uniform load

    4.3 Mesh distortion test

    A circular plate with simply supported boundary conditions is subjected to a uniform loading.The dimensionless quantities parameters are:the radius R=5,the thickness t=1 and 2.5 for the moderately thick plate,t=0.1 for the thin plate,the elasticity modulus E=10.92,the Poisson's ratio ν=0.3,the uniform loading q=1.Due to symmetry of the plate,a quarter of the plate analyzed with 12 and 48 elements is shown in Fig.7.The analytical solutions for the central displacement and central moment are obtained by Ayad and Rigolot[24]: simply supported plate:

    where

    Fig.7 Two kinds of mesh for quarter of a circular plate

    In Tables 4 and 5,it should be noted that the 4NQP13 element can lead to accurate results for the moderately thick plate and thin plate,and it is insensitive to the mesh distortion.The 4NQP13 element has good monotonic convergence towards the exact solutions and the accuracy of the 4NQP13 element for the central deflection is quite well like the Q4-R element.It also shows that the 4NQP13 element gives more accurate stressresultant than the Q4 element.

    Table 4 Central deflection for a simply supported circular plate with uniform load

    Table 5 Central moment for a simply supported circular plate with uniform load

    5 Conclusions

    The LIM has been extended for the analysis of thin and moderately thick plates.A 4-node quadrilateral plate bending element(4NQP13) based on Mindlin-Reissnertheory is proposed in this paper. Numerical comparisons with displacement-based plateelements show thatthe 4NQP13 element for the analyses of the thin and moderately thick plates using LIM provides excellent convergence and good prediction for both deflection and stress resultants,and it is insensitive to the mesh distortion.The main advantages are that the 4NQP13 element is free from spurious zero energy modes and do not exhibit shear locking in the thin plate problems.A rational selection of the stress-resultant fields which can avoid shear locking and spurious zero energy modes is very important.

    The stress distributions within the plate are particularly important in nonlinear analysis.As a force-based FEM,LIM can provide more precise stress results with high efficiency and low cost.Considering both the spatial and time domain parallel computation,the LIM has great potential for solving the material nonlinearity problems with significant computational savings.As a result,LIM will be a powerful alternative method to solve the elastoplastic problems of plate problems.

    [1]Brezzi F,Evans J A,Hughes T J R,et al.New Rectangular Plate Elements Based on Twist-Kirchhoff Theory[J].Computer Methods in Applied Mechanics and Engineering,2011,200(33): 2547-2561.

    [2]Castellazzi G,Krysl P.A Nine-Node Displacement-Based Finite Element for Reissner-Mindlin Plates Based on an Improved Formulation of the NIPE Approach[J].Finite Elements in Analysis and Design,2012,58(1):31-43.

    [3]Serpik I N.Development of a New Finite Element for Plate and Shell Analysis by Application of Generalized Approach to Patch Test[J].Finite Elements in Analysis and Design,2010,46 (11):1017-1289.

    [4]Hu B,Wang Z,Xu Y C.Combined Hybrid Method Applied in the Reissner-Mindlin Plate Model[J].Finite Elements in Analysis and Design,2010,46(5):428-437.

    [5]Choo Y S,Choi N,Lee B C.A New Hybrid-Trefftz Triangular and Quadrilateral Plate Elements[J].Applied Mathematical Modelling,2010,34(1):14-23.

    [6]Darilmaz K,Kumbasar N.An 8-Node Assumed Stress Hybrid Element for Analysis of Shells[J].Computers&Structures,2006,84(29/30):1990-2000.

    [7]Carstensen C,Xie X P,Yu G Z,et al.A Priori and a Posteriori Analysis for a Locking-Free Low Order Quadrilateral Hybrid Finite Element for Reissner-Mindlin Plates[J].Computer Methods in Applied Mechanics and Engineering,2011,200(9/10/11/12): 1161-1175.

    [8]Zienkiwicz O C,Taylor R C,Too J M.Reduced Integration Technique in General Analysis ofPlates and Shells[J].International Journal Numerical Methods in Engineering,1971,3 (2):275-290.

    [9]Hughes T J R,Cohen M,Haron M.Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates[J].Nuclear Engineering and Design,1978,46(1):203-222.

    [10]Tessler A.A Priori Identification of Shear Locking and Stiffening in Triangular Mindlin Elements[J].Computer Methods in Applied Mechanics,1985,53(2):183-200.

    [11]Hinton E,Huang H C.A Family of Quadrilateral Mindlin Plate Elements with Substitute Shear Strain Fields[J].Computers&Structures,1986,23(3):409-431.

    [12]Zhang H X,Kuang J S.Eight-Node Reissner-Mindlin Plate Element Based on Boundary Interpolation Using Timoshenko Beam Function[J].International Journal Numerical Methods in Engineering,2007,69(7):1345-1373.

    [13]Zhang C J,Liu X L.A Large Increment Method for Material Nonlinearity Problems[J].Advances in Structural Engineering,1997,1(2):99-109.

    [14]Barham W,Aref A,Dargush G.Development of the Large Increment Method for Elastic Perfectly Plastic Analysis of Plane Frame Structures Under Monotonic Loading[J].International Journal of Solids and Structures,2005,42(26):6586-6609.

    [15]Barham W,Aref A,Dargush G.On the Elastoplastic Cyclic Analysis of Plane Beam Structures Using a Flexibility-Based Finite Element Approach[J].International Journal of Solids and Structures,2008,45(22/23):5688-5704.

    [16]Long D B,Liu X L.Development of 2D Hybrid Equilibrium Elements in Large Increment Method[J].Journal of Shanghai Jiaotong University,2013,18(2):205-215.

    [17]Jia H X,Long D B,Liu X L.The Force-Based Quadrilateral Plate Elements for Plate Analysis Using Large Increment Method[C].Proceeding the 2nd International Conference on Civil Engineering and Building Materials,Hong Kong,China,2012: 221-225.

    [18]Malkus D S,Hughes T J R.Mixed Finite Element Methods-Reduced and Selective Integration Techniques:a Unification of Concepts[J].Computer Methods in Applied Mechanics and Engineering,1978,15(1):63-81.

    [19]Chen W J,Cheung Y K.Refined Quadrilateral Element Based on Mindlin/Reissner Plate Theory[J].International Journal for Numerical Methods in Engineering,2000,47(1/2/3):605-627.

    [20]Dhananjaya H R,Nagabhushanam J,Pandey P C.Bilinear Plate Bending Element for Thin Moderately Thick Plate Using Integrated Force Method[J].Structural Engineering and Mechanics,2007,26(1):43-68.

    [21]Bathe K J,Dvorkin E H.A Four-Node Plate Bending Element Based on Mindlin-Reissner Plate Theory and Mixed Interpolation[J]. International Journal for Numerical Methods in Engineering,1985,21(2):367-383.

    [22]Timoshenko S P,Krieger S W.Theory of Plates and Shells[M].New York:McGraw-Hill,1959:181-226.

    [23]Liu J,Riggs H R,Tessler A.A Four Node Shear-Deformable Shell Element Developed via Explicit Kirchhoff Constraints[J].International Journal Numerical Methods in Engineering,2000,49(8):1065-1086.

    [24]Ayad R,Rigolot A.An Improved Four-Node Hybrid-Mixed Element Based upon Mindlin's Plate Theory[J].International Journal Numerical Methods in Engineering,2000,55(6):705-731.

    O34;TU311.4

    A

    1672-5220(2015)03-0345-06

    date:2014-01-08

    National Natural Science Foundation of China(No.10872128)

    * Correspondence should to be addressed to JIA Hong-xue,E-mail:jiahongxue211@126.com

    猜你喜歡
    西拉紅學(xué)
    今天,我們?nèi)绾蚊鎸t學(xué)?
    吳宓檔案中的“紅學(xué)”資料
    趙建忠《紅學(xué)流派批評史論》序
    20世紀(jì)上半葉加拿大《大漢公報(bào)》“紅學(xué)”資料鉤沉
    新中國紅學(xué)第一人——追憶李希凡老師
    塔克西拉佛教遺址發(fā)掘歷程述論
    東臺子水庫建設(shè)對西拉木倫河流域下游用水影響分析
    Cracking Patterns of Shear Walls in Reinforced Concrete Structure due to Strong Earthquake Based on Mohr-Coulomb Criterion
    紅學(xué)研究溯源
    人間(2015年21期)2015-03-11 15:23:11
    我是和你相愛的人
    国产 一区精品| 精品日产1卡2卡| 有码 亚洲区| 婷婷精品国产亚洲av| 成人亚洲精品av一区二区| 日韩成人av中文字幕在线观看 | av在线观看视频网站免费| 天堂av国产一区二区熟女人妻| 麻豆精品久久久久久蜜桃| 一夜夜www| 丰满的人妻完整版| 国内少妇人妻偷人精品xxx网站| 伊人久久精品亚洲午夜| 丝袜喷水一区| 久久精品夜色国产| 校园人妻丝袜中文字幕| 日韩欧美一区二区三区在线观看| 欧美人与善性xxx| 成年女人毛片免费观看观看9| 欧美在线一区亚洲| 免费av毛片视频| 天天一区二区日本电影三级| 国内久久婷婷六月综合欲色啪| 午夜久久久久精精品| 午夜视频国产福利| 精品久久久久久久人妻蜜臀av| 日韩欧美国产在线观看| 观看免费一级毛片| 久久久a久久爽久久v久久| 免费一级毛片在线播放高清视频| 久久久久精品国产欧美久久久| 中文在线观看免费www的网站| 麻豆精品久久久久久蜜桃| 能在线免费观看的黄片| 日韩高清综合在线| 国产黄a三级三级三级人| 99热网站在线观看| 有码 亚洲区| 一边摸一边抽搐一进一小说| 欧美性感艳星| 综合色丁香网| 日本a在线网址| 午夜免费激情av| 午夜激情欧美在线| 在现免费观看毛片| 亚洲国产色片| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看| 一本一本综合久久| 插阴视频在线观看视频| 日韩成人伦理影院| 国产伦在线观看视频一区| 熟妇人妻久久中文字幕3abv| 熟女电影av网| 午夜福利在线在线| 99热网站在线观看| 99在线人妻在线中文字幕| 国产一区二区三区在线臀色熟女| 女生性感内裤真人,穿戴方法视频| 亚洲美女视频黄频| 无遮挡黄片免费观看| av国产免费在线观看| www日本黄色视频网| 国产成人91sexporn| av国产免费在线观看| 黄片wwwwww| 91麻豆精品激情在线观看国产| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜爱| 最近在线观看免费完整版| 久久久国产成人精品二区| 级片在线观看| 在线国产一区二区在线| 国产精品国产高清国产av| 一区二区三区高清视频在线| 欧美日韩精品成人综合77777| 有码 亚洲区| 久久韩国三级中文字幕| 少妇人妻精品综合一区二区 | 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 久久6这里有精品| 精品日产1卡2卡| 亚洲经典国产精华液单| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 亚洲国产日韩欧美精品在线观看| 午夜福利18| 欧美zozozo另类| 内地一区二区视频在线| 成人亚洲欧美一区二区av| 我的女老师完整版在线观看| 三级毛片av免费| 97超碰精品成人国产| 午夜影院日韩av| 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 国产高清视频在线观看网站| 中文字幕精品亚洲无线码一区| 精品久久久久久久人妻蜜臀av| 精品一区二区三区视频在线观看免费| 午夜福利高清视频| 欧美bdsm另类| 18禁在线播放成人免费| 欧美成人a在线观看| 一进一出抽搐动态| 日韩欧美精品免费久久| 久久99热6这里只有精品| 免费人成视频x8x8入口观看| 国产一区二区激情短视频| 天堂动漫精品| 18禁黄网站禁片免费观看直播| 欧美日本亚洲视频在线播放| 国产 一区精品| 日本免费一区二区三区高清不卡| 日韩av不卡免费在线播放| 亚洲成人久久性| 久久欧美精品欧美久久欧美| 免费看a级黄色片| 亚洲国产精品sss在线观看| 91av网一区二区| 国产亚洲91精品色在线| 亚洲国产欧美人成| 九九热线精品视视频播放| 欧美一区二区国产精品久久精品| 国产一区二区三区在线臀色熟女| 超碰av人人做人人爽久久| 国产精品久久视频播放| 久久久久国内视频| 男人和女人高潮做爰伦理| 久久久国产成人精品二区| 成人亚洲精品av一区二区| 老女人水多毛片| 成人一区二区视频在线观看| 国产 一区 欧美 日韩| 久久久a久久爽久久v久久| 国产激情偷乱视频一区二区| 国产在线男女| 搡老熟女国产l中国老女人| 国产伦在线观看视频一区| 亚洲国产精品合色在线| 亚洲成人av在线免费| 一区二区三区高清视频在线| 18禁黄网站禁片免费观看直播| 久久久久久久久久黄片| 有码 亚洲区| 狠狠狠狠99中文字幕| 亚洲五月天丁香| 久久午夜亚洲精品久久| 亚洲人与动物交配视频| 直男gayav资源| 乱码一卡2卡4卡精品| 久久久久久久久久久丰满| 青春草视频在线免费观看| 啦啦啦韩国在线观看视频| 欧美高清成人免费视频www| 国内久久婷婷六月综合欲色啪| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕大全电影3| 成人精品一区二区免费| 国产精品99久久久久久久久| 欧美不卡视频在线免费观看| 国产极品精品免费视频能看的| 国产乱人视频| 欧美又色又爽又黄视频| 久久久久久伊人网av| 我要看日韩黄色一级片| 在线免费十八禁| 国产精品伦人一区二区| 又黄又爽又刺激的免费视频.| 中文字幕av在线有码专区| a级一级毛片免费在线观看| 国产亚洲精品av在线| 久久久久久久久久成人| 精品福利观看| 日本成人三级电影网站| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 欧美性猛交黑人性爽| 国产一区二区亚洲精品在线观看| 少妇裸体淫交视频免费看高清| 69人妻影院| 最后的刺客免费高清国语| 最近手机中文字幕大全| 天天躁日日操中文字幕| 日韩亚洲欧美综合| 少妇熟女欧美另类| 亚洲av不卡在线观看| 极品教师在线视频| 国产高清三级在线| 尾随美女入室| 精品熟女少妇av免费看| 人人妻,人人澡人人爽秒播| 日韩中字成人| 久久亚洲精品不卡| 日韩欧美三级三区| 一个人免费在线观看电影| 日本爱情动作片www.在线观看 | 青春草视频在线免费观看| 国产精品99久久久久久久久| 亚洲经典国产精华液单| 国产高清视频在线播放一区| 日本 av在线| 在线观看一区二区三区| АⅤ资源中文在线天堂| 免费人成视频x8x8入口观看| 一本一本综合久久| 99热6这里只有精品| 成人综合一区亚洲| 久久精品国产亚洲av涩爱 | 国产毛片a区久久久久| 国产极品精品免费视频能看的| 亚洲成人中文字幕在线播放| 黄片wwwwww| 久久久久久久午夜电影| 久久久久久久午夜电影| 热99在线观看视频| 午夜影院日韩av| 成人毛片a级毛片在线播放| 亚洲色图av天堂| 内射极品少妇av片p| av福利片在线观看| av天堂在线播放| www.色视频.com| 69av精品久久久久久| 午夜激情福利司机影院| 亚洲人成网站在线观看播放| 久久久欧美国产精品| 国产色爽女视频免费观看| 久久久久久久久久久丰满| av黄色大香蕉| 国产91av在线免费观看| 在线看三级毛片| 久久久色成人| 99国产精品一区二区蜜桃av| 99在线人妻在线中文字幕| 哪里可以看免费的av片| 欧美精品国产亚洲| 美女黄网站色视频| 精品久久久久久久久av| 菩萨蛮人人尽说江南好唐韦庄 | 91久久精品电影网| 婷婷亚洲欧美| 欧美绝顶高潮抽搐喷水| 日韩成人伦理影院| a级一级毛片免费在线观看| 精品国内亚洲2022精品成人| 中文字幕人妻熟人妻熟丝袜美| 中文在线观看免费www的网站| 亚洲三级黄色毛片| 蜜桃亚洲精品一区二区三区| 欧美成人精品欧美一级黄| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清作品| 亚洲精品影视一区二区三区av| 蜜桃亚洲精品一区二区三区| 国产亚洲精品综合一区在线观看| 亚洲国产高清在线一区二区三| 2021天堂中文幕一二区在线观| 精品乱码久久久久久99久播| 听说在线观看完整版免费高清| 插阴视频在线观看视频| 99热这里只有精品一区| 99久久九九国产精品国产免费| 美女大奶头视频| 最近视频中文字幕2019在线8| 亚洲精品久久国产高清桃花| 国产单亲对白刺激| 国产精品野战在线观看| 九九在线视频观看精品| 国产 一区精品| 国产一区二区亚洲精品在线观看| 国产精品久久视频播放| 性欧美人与动物交配| 亚洲在线观看片| h日本视频在线播放| 久久欧美精品欧美久久欧美| 免费不卡的大黄色大毛片视频在线观看 | 99热精品在线国产| 永久网站在线| 日韩三级伦理在线观看| 性色avwww在线观看| 成熟少妇高潮喷水视频| 色5月婷婷丁香| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 日日摸夜夜添夜夜添小说| 全区人妻精品视频| 国产高清激情床上av| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av| 亚州av有码| 日本一二三区视频观看| 麻豆乱淫一区二区| 免费人成在线观看视频色| 国产老妇女一区| 久久精品影院6| 老司机福利观看| 悠悠久久av| 久久久精品欧美日韩精品| 麻豆乱淫一区二区| 日本一本二区三区精品| 精品久久久噜噜| 日韩精品中文字幕看吧| 午夜a级毛片| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 久久久久久久久久成人| av在线观看视频网站免费| 久久久精品94久久精品| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 国内少妇人妻偷人精品xxx网站| 欧美精品国产亚洲| 男插女下体视频免费在线播放| 成人美女网站在线观看视频| 91久久精品电影网| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 床上黄色一级片| 桃色一区二区三区在线观看| 欧美日本视频| 1000部很黄的大片| 亚洲熟妇熟女久久| 一本一本综合久久| 国产 一区 欧美 日韩| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av| 久久精品夜色国产| 免费搜索国产男女视频| 日本欧美国产在线视频| 国产 一区 欧美 日韩| 在线免费十八禁| 麻豆精品久久久久久蜜桃| 99在线视频只有这里精品首页| 校园人妻丝袜中文字幕| av在线播放精品| 久久精品夜色国产| 国产精品永久免费网站| 亚洲国产日韩欧美精品在线观看| 欧美区成人在线视频| 97碰自拍视频| 长腿黑丝高跟| 一本一本综合久久| 99久国产av精品| 91在线观看av| 久久久午夜欧美精品| 久久这里只有精品中国| 日韩欧美免费精品| 欧美色欧美亚洲另类二区| 中文字幕久久专区| 女同久久另类99精品国产91| 国内少妇人妻偷人精品xxx网站| 99热网站在线观看| 99riav亚洲国产免费| 欧美国产日韩亚洲一区| 97碰自拍视频| 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 十八禁网站免费在线| 亚洲高清免费不卡视频| 蜜桃亚洲精品一区二区三区| 国产成人一区二区在线| 自拍偷自拍亚洲精品老妇| 久久久久久大精品| 亚洲av免费高清在线观看| 一级黄片播放器| 亚洲性久久影院| 亚洲精品在线观看二区| 免费高清视频大片| 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 插逼视频在线观看| 丰满的人妻完整版| 12—13女人毛片做爰片一| 成人三级黄色视频| 亚洲va在线va天堂va国产| 成人一区二区视频在线观看| 国产男靠女视频免费网站| 日本免费a在线| 亚洲一区高清亚洲精品| 欧美绝顶高潮抽搐喷水| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片| 直男gayav资源| .国产精品久久| 免费高清视频大片| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 国产aⅴ精品一区二区三区波| 黄色配什么色好看| 亚洲精品一区av在线观看| 美女 人体艺术 gogo| av天堂在线播放| 99热6这里只有精品| 久久久午夜欧美精品| 深夜精品福利| 99热这里只有是精品50| АⅤ资源中文在线天堂| 免费一级毛片在线播放高清视频| 久久久精品94久久精品| 久久久欧美国产精品| or卡值多少钱| 国产成人一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 伊人久久精品亚洲午夜| 免费搜索国产男女视频| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 我的老师免费观看完整版| 亚洲成人久久爱视频| 男女啪啪激烈高潮av片| a级毛色黄片| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 热99在线观看视频| 国产乱人偷精品视频| 香蕉av资源在线| 国产 一区 欧美 日韩| 久久人人爽人人爽人人片va| 成人精品一区二区免费| 激情 狠狠 欧美| 国产视频内射| 免费看光身美女| 少妇人妻一区二区三区视频| 国产亚洲91精品色在线| 亚洲国产精品成人综合色| 亚洲图色成人| 国产精品国产高清国产av| 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线| 午夜视频国产福利| 国产精品一区二区三区四区久久| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 日本熟妇午夜| 97热精品久久久久久| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| av中文乱码字幕在线| 干丝袜人妻中文字幕| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 久久精品影院6| 成人精品一区二区免费| 岛国在线免费视频观看| 国产老妇女一区| 麻豆成人午夜福利视频| 精品少妇黑人巨大在线播放 | 色噜噜av男人的天堂激情| 国产91av在线免费观看| 我的女老师完整版在线观看| 国产探花在线观看一区二区| 我要看日韩黄色一级片| 国产白丝娇喘喷水9色精品| 人妻丰满熟妇av一区二区三区| 搡老妇女老女人老熟妇| 韩国av在线不卡| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 九九爱精品视频在线观看| av免费在线看不卡| 精品久久久久久久久久免费视频| a级毛片免费高清观看在线播放| 搡老熟女国产l中国老女人| 日日干狠狠操夜夜爽| 变态另类成人亚洲欧美熟女| 久99久视频精品免费| 国产三级在线视频| 女的被弄到高潮叫床怎么办| 国产精品一及| 国产精品人妻久久久久久| 欧美zozozo另类| 国产熟女欧美一区二区| 一进一出抽搐动态| 97人妻精品一区二区三区麻豆| 亚洲国产精品久久男人天堂| 国产精品人妻久久久影院| 久久久久久久久中文| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| 亚洲性夜色夜夜综合| 白带黄色成豆腐渣| 欧美色视频一区免费| 国产真实伦视频高清在线观看| 色尼玛亚洲综合影院| 久久精品影院6| 一个人看视频在线观看www免费| 成人无遮挡网站| 午夜福利高清视频| 精品日产1卡2卡| 亚洲精品色激情综合| 97超碰精品成人国产| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 免费看av在线观看网站| 国产精品一及| 国产午夜精品论理片| 午夜福利在线观看吧| 22中文网久久字幕| 色av中文字幕| 天堂√8在线中文| 成人永久免费在线观看视频| 最后的刺客免费高清国语| 波多野结衣高清无吗| 国内久久婷婷六月综合欲色啪| 97在线视频观看| 看十八女毛片水多多多| 国产真实乱freesex| 久久精品国产自在天天线| 国产成人a区在线观看| 听说在线观看完整版免费高清| 亚洲成人av在线免费| 最近的中文字幕免费完整| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 久久6这里有精品| 不卡一级毛片| 国产精品伦人一区二区| 十八禁网站免费在线| 搞女人的毛片| 国内精品宾馆在线| av国产免费在线观看| 欧美一级a爱片免费观看看| 亚洲av一区综合| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 久久中文看片网| 久久久久久久久久成人| 免费观看的影片在线观看| 少妇人妻一区二区三区视频| 中文字幕久久专区| 卡戴珊不雅视频在线播放| 大型黄色视频在线免费观看| 在线播放国产精品三级| 日韩强制内射视频| 欧美日韩综合久久久久久| 亚洲成a人片在线一区二区| 日韩欧美三级三区| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 亚洲精品成人久久久久久| 人妻丰满熟妇av一区二区三区| 成人午夜高清在线视频| 两个人的视频大全免费| 午夜福利成人在线免费观看| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看 | 亚洲性久久影院| 一本一本综合久久| 久久精品久久久久久噜噜老黄 | 天堂影院成人在线观看| 中国国产av一级| 熟女电影av网| 欧美丝袜亚洲另类| 菩萨蛮人人尽说江南好唐韦庄 | 99热这里只有是精品在线观看| 日韩欧美三级三区| 黄色配什么色好看| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久精品电影| 97超碰精品成人国产| 国产亚洲精品久久久com| 少妇被粗大猛烈的视频| 美女被艹到高潮喷水动态| 国模一区二区三区四区视频| av中文乱码字幕在线| 欧美一级a爱片免费观看看| 色播亚洲综合网| 国产三级中文精品| 久久久久久久久久久丰满| eeuss影院久久| 成人欧美大片| 性色avwww在线观看| 搡老岳熟女国产| 99精品在免费线老司机午夜| 欧美激情在线99| 99国产极品粉嫩在线观看| 精品久久久噜噜| 六月丁香七月| 国产男靠女视频免费网站| 大又大粗又爽又黄少妇毛片口| 91久久精品国产一区二区成人| 又粗又爽又猛毛片免费看| 成年免费大片在线观看| 变态另类丝袜制服| 国产精品1区2区在线观看.| 免费在线观看成人毛片| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av香蕉五月| 久久久久久久久久成人| 一进一出抽搐动态|