• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Control Systems

    2015-08-09 02:01:47YuanqingXia
    IEEE/CAA Journal of Automatica Sinica 2015年2期

    Yuanqing Xia

    Cloud Control Systems

    Yuanqing Xia

    —The concept of cloud control systems is discussed in this paper,which is an extension of networked control systems (NCSs).With the development of internet of things(IOT),the technology of NCSs has played a key role in IOT.At the same time,cloud computing is developed rapidly,which provides a perfect platform for big data processing,controller design and performance assessment.The research on cloud control systems will give new contribution to the control theory and applications in the near future.

    Index Terms—Cloud control systems(NCSs),networked control systems,cloud computing,cyber-physical systems(CPSs),big data.

    I.INTRODUCTION

    IN the last decade,network technology has dramatically been developed.Recently,more and more network technologies have been applied to control systems[1-2].This kind of control systems in which a control loop is closed via communication channel is called networked control systems (NCSs),which produces a new area in control theory.Generally speaking,NCSs allow remote monitoring and adjustment of plants over the communication channel,for example the Internet in Internet-based control systems,which make the control systems bene fi t from the ways of retrieving data and reacting to plant fl uctuations from anywhere around the world at any time.The typical NCS is shown in Fig.1.In NCSs,the plant,controller,sensor,actuator and reference command are connected through a network.Many applications have been carried out in practice and considerable studies on the design and analysis of NCSs can be seen in[3-7]and the reference therein.

    In recent years,the techniques of internet of things(IOT) are also developed very rapidly,while the research of NCSs plays a key role in this area.Roughly speaking,IOT draws on the functionality offered by all of these technologies to realize the vision of a fully interactive and responsive network environment.Fig.2 gives the possible applications.In general, for the control of IOT,the collection and processing of data are very important.First,it is dif fi cult even impossible for the designer to get the accurate physical models of all objects in IOT.

    Fig.1.Networked control systems.

    The only thing we know about the objects in IOT is the data,i.e.,various measurements.Secondly,due to the sensor technology,one can detect the changes in the physical status of things.Thus,big data about things will be collected and then stored.However,the development of computer science, especially in the aspects of computing ability and storage together with high quality and reliable measurements from process instruments,also make it possible to collect and process the data ef fi ciently.Finally,all the objects and devices in IOT are usually connected to some large databases and networks(indeed to the network of networks,e.g.,the Internet).Information and commands need to be transmitted through those networks,where the communicated information may suffer intermittent losses or delays,band width constraints,asynchronization and other unpredictable factors. These limitations will fi nally deteriorate the performance and even make the closed-loop system unstable.In recent years, many effective control theories and applications have been proposed with the development of IOT.

    Fig.2.Internet of things.

    Note that with the emergence of IOT,the captured data will grow in size.The control systems have to deal with the“big data”from the ubiquitous information sensing mobile devices,cameras,microphones,radio-frequency identi fi cation readers,and wireless sensor networks,etc.In this case,the requirements of high-quality and real-time of control will exceed the ability of the traditional networked control topology,because the big data in control system will increase the network communication burden and computational burden.To overcome the problem,a new concept called cloud control system is investigated,which combines the merits of networked control and the cloud computing technology.In this new control topology,the real-time of control can be guaranteed due to the introduction of cloud computing,while the control quality can be improved by using the on-hand networked control schemes,e.g.,networked predictive control, data-driven control,etc.Compared with the traditional NCSs, the cloud control system has the following advantages:1)It can integrate all kinds of resources well,and make them be more fully utilized;2)Improve the ef fi ciency of the system;3) Increase system reliability;4)Save more energy,etc.However, the cloud control system also faces many challenges at current stage.First,there exists big data in cloud control system, how to ef fi ciently recognize,process and transfer those data is a problem.Secondly,the cloud service provider often serves multiple clients simultaneously,in this process,how to guarantee the real-time control is also a challenge.In addition, in the cloud control system,another problem is that how to guarantee the control quality and stability of the closedloop system under the big time delays,which mainly include the service time,and the communication delays between the plant and the cloud controller.Last but not the least,the huge economic cost for cloud service at present stage is also a considerable problem.To solve this problem,a new concept from the point of view of cooperative cloud control is proposed.However,in the cooperative cloud control system, the reasonable allocation for control tasks is a huge challenge.

    The remainder of the paper is organized as follows.Firstly, as an important theoretical foundation,a brief overview of NCS and its application is given,which includes model-based NCS,data-driven NCS,networked multi-agents system and control of complex system.Then,a rudiment of cloud control systems is proposed.As an important extension,the framework of cooperative cloud control is also discussed at last.

    II.MODEL-BASED NETWORKED CONTROL SYSTEMS

    First,fruitful research results on NCSs are model-based, especially,on linear time invariant systems.More generally, consider the following discrete dynamic systemS:

    wherex(k)is the system state,u(k)is the system input,y(k) is the system output,x(k),u(k)andy(k)are with suitable finite dimensions;f(x(k),u(k),w(k))andg(x(k),u(k),v(k)) give the plant′s dynamic and the output,respectively,which can be linear or nonlinear.w(k)is the unknown process disturbance andv(k)is the unknown measurement noise.

    Many methods have been proposed to solve the problems related to NCSs.It has been proven that networked predictive method is very effective for NCSs with network-induced time delays and data dropouts[1-2].Fig.3 shows the designed feedback control scheme for system(1)-(2).It is worth noting that,to make the measurements be processed in sequence,a buffer is set at the controller node.On the other hand,the controller node can obtain the estimated states and predictive states by using Kalman fi lter:

    whereN1is the fi nite horizon,KFrepresents the compact form of Kalman fi lter expression,K(k+i)is time-varying Kalman fi lter gain[2].Given that the unknown network transmission delays inevitably exist in both the forward(from controller to actuator)channel(CAC)and feedback(from sensor to controller)channel(SCC),a networked predictive control scheme is proposed,which mainly consists of the control prediction generator and the network delay compensator.The former is designed here to generate a set of future control predictions,while the later is used to compensate for the unknown random network delays.Given that the network can transmit a set of data at the same time,it is assumed that the predictive control sequence at timekis packed and then sent to the plant side through a network.Then,the compensator will choose the latest control value from these control sequences available on the plant side.

    For example,when the time delays in SCC and in CAC are 0 andki,respectively,the following predictive control sequences are received on the plant side:

    where the control sequencesut|t-ki,i=1,2,···,t,are available to be chosen as the control input of the plant at timet.The output of the network delay compensator,i.e.,the input of the actuator will be

    In fact,by using the networked predictive control scheme presented in this section,the control performance of the closed-loop system with network delay is very similar to that of the closed-loop system without network delay.

    The controller sends packets to the plant:

    Fig.3.Model based networked control systems.

    At time instantk,the actuator chooses a preferable control signal as the actual input of the controlled dynamic system:

    wherei=argmini{u(k|k-i)is available}.

    More detailed stability proof and idea can be found in [1-2].

    III.DATA-DRIVEN NETWORKED CONTROL SYSTEMS DESIGN

    Under traditional control design frameworks,the dynamics are the prerequisite of control and monitoring,therefore,the state or the output measurements from the plant are often used to build these models.Once the design of a controller or a monitor is completed,the model will cease to exist. However,the use of models in this framework will inevitably introduce modeling error as well as complexity in building the model.Speci fi cally,with the emergence of IOT,big data has to be processed,the control complexity of traditional control scheme will continue to increase.To overcome these problems, the data-driven scheme is developed,which has been applied successfully in industrial process control fi eld as well as in complex systems.Given that only digital data is transmitted through the network and received by controller as well as the actuator,the data-driven method is particularly suitable for NCSs.

    In sequel,we will introduce the notion of data-driven NCS. The typical diagram of data-driven NCSs is shown in Fig.4. In such control system,the subspace projection method is applied to generate the predictive control signals.In general, the only difference between data-driven NCSs and modelbased control systems is the controller.In data-driven NCSs, when the controller receives the data including past input and past output from the sensors over network,the data-driven predictive control algorithm described as the above will be applied to generate a sequence of predictive control inputs. Then those control sequences will be transmitted to a buffer at the actuator side over network.Finally,according to the predictive networked control scheme described in(8)-(9),the compensator will choose the right control input.From the description the data-driven networked control scheme can be obtained directly without modelling,it is obviously different from the model-based one in[8].

    Fig.4.Data-driven networked control systems.

    Some experiments have shown the effectiveness of the proposed algorithm,however,there still exist many questions in this new fi eld,for example,how to distinguish linear systems and nonlinear systems based on the received data under the data-driven control scheme?How to analyze the stability of data-driven based nonlinear systems?If the data drop or time-delay occurs,how to compute the subspace objection with intermittent observations?More details about data-driven predictive NCSs can be found in our recent publication[9].

    IV.NETWORKED MULTI-AGENT SYSTEMS

    At the beginning of research on NCSs,more attention was paid on single plant through network.Recently,fruitful research results on multi-plant,especially,on multi-agent NCSs have been obtained,which focused on the design of more general models,where each agent has its own distinct nonlinear dynamics that are unknown to the other agents[10]. Agents in networks update their states based on information exchange among them.As is shown in Fig.5,there are many interesting problems for networked multi-agent systems, for example,aggregation,clustering,coordination,consensus, formation,synchronization,evolution and swarm.If each agent runs in a common state,then the multi-agent system achieves consensus.Consensus problems have a long history in computer science and form the foundation of the fi eld of distributed computing and control[11].Consensus protocols are distributed control policies based on neighbors state feedback that allow the coordination of multi-agent systems.According to the usual meaning of consensus,the system state components must converge,in fi nite time or asymptotically,to an equilibrium point where they all have the same value lying somewhere between the minimum and maximum of their initial values.In recent years,there have been a tremendous amount of research on the consensus problem,and many interesting results have been obtained[12-13].

    On the other hand,formation control problem for a group of agents is a popular research topic in decentralized control[14]. Formation control of multiple robots,spacecrafts and unmanned air vehicles,mobile autonomous agents are oftentreated as rigid bodies or mass points.Formation control of multiple autonomous vehicles has recently received an increasing interest in the control community.This interest is motivated by their potential applications in areas such as search and rescue missions,reconnaissance operations,forest fi re detection,surveillance and multi-missiles attack[15].Work in this area is generally inspired by the recent results in the coordinated control of multi-agent systems[16].The leaderfollower method uses several agents as leaders and others as followers,while the behavior based approach and the virtual structure approach are often used to perform the coordination.

    Fig.5.Control of multi-agent systems.

    Coordination control is an active research area at present and has more practical meaning[17].For example,when we eat food,our eyes help in locating the food,our nose senses the food,our hands bring the food to our mouth and our jaw muscles help the teeth to chew the food.All these activities occur in a coordinated manner,and if any of these activities misses or does not occur in time then the body will not get nutrition.Now,more researchers are devoted to multirobot systems which can be used to increase the system effectiveness.That is,with respect to a single autonomous robot or to a team of non cooperating robots,multi-robot systems can better perform a mission in terms of time and quality,and can achieve tasks not executable by a single robot(e.g.,moving a large object)or can take advantages of distributed sensing and actuation.

    With the development of softwares,hardwares and other advanced techniques in multi-agent systems,a system of collaborating computational elements controlling physical entities has come into practice,that is,cyber-physical systems (CPSs)as shown in Fig.6,which interface physics-based and digital world models.Currently,the research on CPS aims to integrate physical and computational models in a manner that outperforms a system in which the two models are kept separate[18].In the context of the feedback control system, objectives of the physical system(e.g.,disturbance rejection, tracking accuracy,etc.)are translated to computing actuator commands that minimize errors between reference and actual trajectories through physical space.

    V.CONTROL OF COMPLEX SYSTEMS

    Up to now,there is no uni fi ed understanding for complex systems both on the precise de fi nition of complexity and on the basic intuition behind the concept.From different points of view,there are many de fi nitions of complex systems,for example,a complex system refers to a system composed of interconnected parts that as a whole exhibit one or more properties(behavior among the possible properties) not obvious from the properties of the individual parts[19]. In[20],the complex systems are considered as natural or social systems which are composed of a large number of nonlinear modules.Loosely speaking,the complex systems require large,messy models that are dif fi cult to formulate and uncertain in their status,which is one of the main features of complex systems.Other features also include nonlinearity and complexity of component itself,strong coupling between components,coexistence of positive and negative feedback, etc.The complex system may be open.They may interchange information or mass with environment,and during the process, they can modify their internal structure and patterns of activity in a way of self-organization,which cause such systems to be fl exible and easily adapt to variable external conditions. However,for the complex system,the most signi fi cant feature is that one can not derive or predict solely from the knowledge of such systems’structure and the interactions between their individual elements.Thus,for the same system,one often needs to provide the parallel descriptions on different levels of its organization.A few of the most characteristic properties of the structure and behavior of the systems which are commonly referred to as complex are reviewed in the same paper,i.e., power law,self-organization,coexistence of collective effects and noise,variability and adaptability,hierarchical structure, scale invariance,self-organized criticality,and highly optimized tolerance.

    Fig.6.Cyber-physical system.

    Fig.7 shows the composition of complex systems.As shown in fi gure,many practical systems can be modeled as complex systems,for example,climate system,ant colonies,human economies and social structures,and even living things,including human beings,as well as modern energy or telecommunication infrastructures,etc.In addition,multi-agent networked control systems can also be viewed as one simple kind of complex systems,where each agent is an element of the complex systems.

    However,at the current stage,it is still a huge challenge to apply directly existing stability theory to present an analysis of stability and instability for such complex systems.Generally speaking,the existing methods are limited to feedback control which have been implemented to regulate local and global behavior,and it is awkward to apply them directly to deal with complex systems,especially the interconnected systems. It is well known that Lyapunov based stability theory andits many extensions have been successfully applied to many kinds of systems such as continuous,discrete,impulsive, hybrid and time-delay systems.The emphasis has been on so-called closed systems.An alternative view has been taken in engineering science,where the emphasis is the responses of the in fl uence of many externalities such as inputs,disturbances and interconnections.This view treats systems as open with inputs and outputs.Lyapunov theory is also included in this approach,but functional analysis where all the inputs,outputs and other signals live in extended function spaces.It has been reviewed in the systems and control community that there are unful fi lled theoretical opportunities in the open systems for mathematicians and physicists[21].

    Fig.7.Complex systems.

    The techniques of stability analysis related to Lyapunov theory,or called energy-function methods in other words,have been well developed and can give regions of synchrony after disturbances and so change the control rules,and transfer limits and so in fl uence economic performance[22].This kind of development appears to be needed for larger classes of complex systems.A further approach,that is developed in electrical engineering as an extension of operator methods in circuit theory,uses functional analysis methods to make statements about input-output behavior[23].The more rigorous recent results on complex systems mainly use Lyapunov theory (for example,see[24-25]).However,there are also a lot of phenomena in complex systems which can not be analyzed or proven by Lyapunov theory.

    VI.CLOUD CONTROL SYSTEMS

    Initially,the concept of cloud control systems was an alternative rock band originating from the Blue Mountains near Sydney,Australia.This paper also adopts this name for a new kind of control perspective[26].As we know that most of complex systems cannot be controlled properly,since we know little about them and are lack of powerful tools to control this kind of systems.The development of new technologies, especially,magical innovations in softwares as well as hardware,provides necessary conditions to fasten computability and distributed computing.Together with development of network,cloud computing has come into our life.Nowadays, cloud computing has exceeded the original product concept, and more often,it means a service.Generally speaking,it is a byproduct of the ease-of-access to remote computing sites provided by the Internet[27]which describes a new supplement,consumption,and delivery model for IT services based on Internet protocols.It often includes the provisioning of dynamically scalable and the virtualized resources[28-29]. In practical systems,the cloud computing system provides a shared pool of con fi gurable resources,which include computation,software,data access,and storage services etc.,wherein end-users consume power without requiring to know that the physical location and con fi guration of the service provider[30]. The computers and other devices in such system are as a utility over the network which can share resources,software and information etc,such that the users can access and use through a web browser as if the programs were installed locally on their own computers[31].

    Due to the cloud control systems combine the merits of cloud computing,advanced theory of NCSs and other recently developed related results,it will exhibit unbelievable potential applications in industrial sector and other related areas.Fig.8 shows the structure of cloud control systems.

    Fig.8.Cloud control systems.

    In practical cloud control system,as the scale of the system increases,the captured information which includes ubiquitous information-sensing mobile devices,aerial sensory technologies(remote sensing),software logs,cameras,microphones, radio-frequency identi fi cation readers,and wireless sensor networks will grow in size[32].To name this kind of data,a new concept is emerging,“Big data”[33],which is a collection of data sets.However,the set is so large and complex that it is dif fi cult to be processed with the help of any on-hand traditional database management or processing tools.From the stochastic point of view,when there are suf fi cient data, some useful deterministic conclusions can be achieved based on Law of Large Numbers,while single data or a few data are quite random.However,many challenges are still existing, which include capturing,storage,search,sharing,transfer, analysis,and visualization of the big data.In cloud control systems,big data will be sent out to the systems of cloud computing,after the data being processed,control signal,such as schedule schemes,predictive control sequences and other useful information will be generated instantly for cloud control systems.Cloud control systems will provide us powerful toolsto control the complex systems which we could not imagine before.

    A.A rudiment of Cloud Control Systems

    In this section,we present a rudiment of classical cloud control systems to supply a platform for researchers who are interested in this topic.The basic assumptions in this rudiment are as follows:

    Assumption 1.A broadcast domain is involved in this rudiment,in which all nodes can reach each other by broadcast at the data link layer.

    Assumption 2.All nodes in the broadcast domain mentioned above are intelligent enough to undertake the cloud control task,but their computation abilities are assumed to be equal to each other,and the available computation resources change unpredictively.

    Assumption 3.The network delivery is not ideal,bounded time delays and data delivery dropout could occur during any transmission.

    Assumption 4.The network delivery time delays and dropout statistics between any two particular nodes could be obtained by the same nodes in some ways.

    Assumption 5.The controlled object,i.e.,any physical plant,is located at a nodeP.The cloud control task starts from a controller located at a nodeCT,and in the meantime the nodeCTis also the cloud control task management node.

    Though the controlled plantPcould be any type of equipment,it is assumed to be linear discrete time dynamic system to easily ascertain the stability of the proposed cloud control system by employing the existing NCS knowledge. The actuator and the sensor work in time-driven mode with the same step timeT.The rudiment of the cloud control systems proposed is divided into two phases:initial phase(NCS phase) and cloud control phase.

    The cloud control task starts from the initial phase,in this phase the control system is initialized as a NCS,which involves controllerCTand the controlled plantP.The networked control scheme applied by controllerCTcould be arbitrary for this cloud control rudiment,but it is assumed here to be the same as the method mentioned in Section II, since this method is easy to be extended from NCSs to cloud control systems and the stability keeps being satis fi ed after the extension.The controllerCTreceives measured outputs from the plantP,and generates the manipulated variable sets according to the model based predictive control algorithm.A compensator is set at the plant nodePto cancel the networkinduced time delays.During the initial phase,the cloud control system only involves two nodes in the prede fi ned broadcast domain and it is actually a NCS.

    After the initial phase is well maintained,the system switches to the second phase,i.e.,the cloud control phase. In this phase,the nodeCTis not only a controller but also a task management node.NodeCTstarts to keep broadcasting a requirement over the domain at a prede fi ned frequency.All nodes in this broadcast domain can receive this requirement. The requirement has to include but not limited to the following information:

    1)The IP address of the plant nodeP;

    2)The control algorithm applied and its corresponding parameters;

    3)The mathematical model of the plant;

    4)Computation burden estimated.

    During the beginning period of the cloud control phase, theCTnode undertakes two tasks,one of them is to apply the prede fi ned control algorithm,generate the manipulated variables,and then send encapsulated predictive control signals to the nodeP;the other task is to keep broadcasting the requirement over the domain.It should be noticed that the fi rst task,i.e.,control task,is not permanent for nodeCT,the reason of broadcasting the requirement for nodeCTis to fi nd“suitable successors”to undertake the control task instead of itself.

    Once a node,for example let it beCi,has enough computation resource or it is powerful enough to undertake both its current local computation and the potential cloud control task after it receives the requirement from the nodeCT,it responds to the nodeCTwith an acknowledgement.In a similar fashion,the acknowledgement includes but not limited to the following information:

    1)The network-induced time delays and data dropout statistics between the nodeCiand the nodeP(bounded time delayNiand the maximum consecutive data package dropoutDi, for example);

    2)Computation capability available(may be quantized to positive numbersCCAi).

    After the acknowledgement ofCiarrives at the nodeCT, the nodeCTwill evaluate the superiority of nodeCi.The superiority mentioned here is assumed to be a weighed sum function of the delivery time delays statisticNi,the maximum consecutive data package dropoutDiand computation capability availableCCAi,

    where d is the thickness and Tn is the film transmittance in this region.

    whereSidenotes the superiority of nodeCi,functionsf(·) andg(·)are monotonically decreasing,and functionh(·)is monotonically increasing.The positive weight coef fi cientsα,βandγshould be designed according to the engineering practice.The greater the superiority is,the more suitable the nodeCiis.In the meantime,the nodeCTalso has the knowledge of the superiority of itself,SCT.The nodeCTmaintains a list of willing nodes whose superiorities are greater than itself,i.e.,any nodejthat sent acknowledgement to nodeCTifSj>SCT.Those nodes whose superiorities are not greater thanSCTare ignored.The list of willing nodes is shown in Table I,where the length of the list,kCT,is dynamic, it depends on how many available willing nodes exist.All willing nodes are ranked in the list,and the nodeCTis the last since its superiority is the smallest among all the willing nodes.If there are no willing node available,nodeCTcould be the fi rst one,and the length of the list is one.It is advisable to set a maximum length of list,kMAX,to avoid unnecessary memory space cost and computation burden.If there are too many willing nodes available,nodeCTonly contains the fi rstkMAX-1 nodes and abandons others.

    TABLE I THE LIST OF WILLING NODES

    The next step for nodeCTis to choose some successors from the listed candidates.The number of successors,lMAX, is prede fi ned.NodeCTchooses the fi rstlMAXnodes as the cloud controllers for nodeP.If the number of the listed candidates is smaller thanlMAX,nodeCTcould use all available willing nodes as the cloud controllers.As shown in Fig.9,the yellow node is nodeCTand the blue one is nodeP.In this snap,there are fi ve available willing nodes,Ci1-Ci5,and thelMAXis de fi ned as three,so we use red color to denote the cloud control nodesCi1-Ci3,and green color to denote the inactive willing nodesCi4-Ci5.

    Fig.9.The schematic diagram of the cloud control system.

    After the cloud controllers are con fi rmed,nodeCTdelivers a control statement to the cloud controllers,this statement includes the detailed controller states as follows:

    1)The mathematical model of the plant;

    2)The estimated states of plant and manipulated variables up to the current time instant;

    3)The controller parameters.

    As mentioned above,the Kalman fi lter based predictive control method introduced in Section 2 could be applied in this rudiment.The second item in the statement could be as follows:

    To maintain the cloud control system works well,all active cloud control nodes send feedback to the nodeCTat every sampling time instant,if nodeCThas not received the feedback of a particular cloud control node in a prede fi ned duration,this cloud control node should be removed from the list,and nodeCTwill indicate the fi rst node among all the inactive willing nodes to substitute the position of the removed node.At the same time,nodePis informed about this substitution.The management of the proposed cloud control system is a dynamic process,nodeCTkeeps on seeking willing nodes,removing inactive nodes and exchanging information of current cloud control nodes to nodeP.NodePcould receive multiple manipulated variables packets from different cloud control nodes,the compensator chooses the newest one as the actual input for the controlled object.The classical control fl ow diagram of cloud control system is shown in Fig.10,in whichC2,C3andC6are the cloud control nodes,whileC6is the active cloud control node at the current stage.

    Fig.10.The control fl ow diagram of cloud control system.

    B.Cooperative Cloud Control

    In practical cloud control system,most of the big cloud infrastructure/services is often provided by the enterprises, which include Amazon,Salesforce,Google,and Microsoft, etc.In general,the end-users have to pay a high amount of money for that.For most end-users,they are more inclined to get low-cost services,which is one of the original intention of the cloud control industry.However,in such system,the single cloud controller lacks in having enough computing resource or enough computing power due to the limited fi nances.It thus presents the cooperative cloud control theory,which remains the advantages of the cloud control with a lower cost.

    The principle of cooperative cloud control system is similar to the classic cloud control,which,however,has the following difference:the control task will be completed by multiple (two or more)cloud controllers in a form of cooperation, as shown in Fig.11.Generally speaking,CTis not only a controller but also a task management server,whileC1–C8are the cloud controllers with the same step time,which have the same de fi nition as those in the cloud control system in Fig.10. At the beginning of the task,theCTnode has to select the multiple suitable cloud controllers from the listed candidates according to the scale of the task,for example,C2,C3,C6, and then using the distributed algorithm,CTwill assign part of the total task to each cloud controller based on its current computation resource.At the same time,nodeCTwill alsosend a copy of the current cloud control nodes list to the plant nodeP.Then,the plantPstarts to send its measurements and also the historical measurements to the cloud control nodes, for example,C2,C3,C6.After that,at each step time,every cloud controller will send feedback toCT,and at the same time,CTwill give the most new control signal according to the current task assign algorithm,which will be sent to the actuator.It is worth noting that,at every sampling time instant, both the active cloud controllers and the candidates also need to send their status to serverCT,which includes the current computation resources.Then,CTwill make a new candidate list.To maintain the cloud control system works well,theCTwill also reassign the task according to the newest state of the cloud nodes at the next sampling time.For the cooperative cloud control system,other technical detail is similar to typical cloud control system as described in above subsection,and here we omit it.

    Fig.11.The framework of cooperative cloud control system.

    The rudiment of the cloud control systems proposed above supplies a simple platform,in which researchers can develop or test their new algorithms about cloud control systems theoretically.Although we did not consider many potential features of cloud control systems in this rudiment,it indeed involves the most basic principle of the cloud control systems, taking advantage of the available computation resources and the superiorities in topology of all possible nodes to ful fi ll the given control task.

    VII.CONCLUSION

    A brief overview of NCSs has been given and new trends in NCSs have also been pointed out.With the development of cloud computing and the processing techniques of big data,the dawn of cloud control systems will emerge soon.A preliminary structure and algorithm are proposed in this paper. Some new results on cloud control systems will be found in our future publications.We believe that there will be more interesting and important results which will be produced in this new research area.

    REFERENCES

    [1]Xia Y Q,Fu M Y,Shi P.Analysis and Synthesis of Dynamical Systems with Time-delays.Berlin,Heidelberg:Springer,2009.

    [2]Xia Y Q,Fu M Y,Liu G P.Analysis and Synthesis of Networked Control Systems.Berlin,Heidelberg:Springer,2011.

    [3]Park H S,Kim Y H,Kim D S,Kwon W H.A scheduling method for network based control systems.IEEE Transactions on Control Systems Technology,2002,10(3):318-330

    [4]Zhivoglyadov P V,Middleton R H.Networked control design for linear systems.Automatica,2003,39(4):743-750

    [5]Yue D,Han Q L,Peng C.State feedback controller design of networked control systems.IEEE Transactions on Circuits and Systems,II:Express Briefs,2004,51(11):640-644

    [6]Gao H,Chen T.A new approach to quantized feedback control systems.Automatica,2008,44(2):534-542

    [7]Gao H,Chen T.Network-basedH∞output tracking control.IEEE Transactions on Automatic Control,2008,53(3):655-667

    [8]Xia Y Q,Liu G P,Fu M Y,Rees D.Predictive control of networked systems with random delay and data dropout.IET Control Theory&Applications,2008,3(11):1476-1486

    [9]Xia Y Q,Xie W,Liu B,Wang X Y.Data-driven predictive control for networked control systems.Information Science,2013,235(20):45-54

    [10]Saber R O,Fax J A,Murray R M.Consensus and cooperation in networked multi-agent systems.Proceedings of the IEEE,2007,95(1): 215-233

    [11]Yan G,Wang L,Xie G,Wu B.Consensus of multi-agent systems based on sampled-data control.International Journal of Control,2009,82(12): 2193-2105

    [12]Meng D,Jia Y.Finite-time consensus for multi-agent systems via terminal feedback iterative learning.IET Control Theory&Applications, 2011,5(18):2098-2110

    [13]Ren W,Beard R W,Atkins E M.A survey of consensus problems in multi-agent coordination.Proceedings of American Control Conference, 2005,3:1859-1864

    [14]Xiao F,Wang L,Chen J,Gao Y P.Finite-time formation control for multi-agent systems.Automatica,2011,45(11):2605-2611

    [15]Xia Y Q,Fu M Y.Compound Control Methodology for Flight Vehicles. Berlin,Heidelberg:Springer,2013.

    [16]Olfati-Saber R,Fax J A,Murray R M.Consensus and cooperation in networked multi-agent systems.Proceedings of the IEEE,2007,95(1): 215-233

    [17]Park D J,Lelima P D,Toussaint G J,York G.Cooperative control of UAVs for localization of intermittently emitting mobile targets.IEEE Transactions on Systems,Man and Cybernetics,Part B:Cybernetics, 2009,39(4):959-970

    [18]Bradley J M,Atkins E M.Toward continuous state-space regulation of coupled cyber-physical systems.Proceedings of IEEE,2012,100(1): 60-74

    [19]Joslyn C,Rocha L M.Towards semiotic agent-based models of sociotechnical organizations.In:Proceedings of AI,Simulation and Planning in High Autonomy Systems(AIS 2000)Conference.Tucson,Arizona, 2000.70-79

    [20]Kwapien′ J,Droz˙dz˙ S.Physical approach to complex systems.Physics Report,2012,515(3-4):115-226

    [21]Willems J C.In control,almost from the beginning until the day after tomorrow.European Journal of Control,2007,13(1):71-81

    [22]Hill D J.Advances in stability theory for complex systems and networks. In:Proceedings of the 27th Chinese Control Conference.Kunming, China:IEEE,2008.13-17

    [23]Desoer C A,Vidyasagar M.Feedback Systems:Input-output Properties. New York:Academic Press,1975.

    [24]Wang X,Chen G.Synchronization in scale-free dynamical networks: robustness and fragility.IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications,2002,49(1):54-62

    [25]Wu C W.Synchronization in ComplexNetworksof Nonlinear Dynamical Systems.New Jersey:World Scienti fi c,2007.

    [26]Xia Y Q.From networked control systems to cloud control systems.In: Proceedings of the 31st Chinese Control Conference.Kunming,China: IEEE,2012.5878-5883

    [27]The economist,cloud computing:clash of the clouds[Online],available: http://www.economist.com/node/14637206,November 3,2009

    [28]Says G.Cloud computing will be as in fl uential as e-business[Online],available:http://www.gartner.com/newsroom/id/707508,22 August,2010

    [29]Galen G.What cloud computing really means[Online],available: http://www.infoworld.com/d/cloud-computing/what-cloud-computingreally-means-031,June 6,2009

    [30]Cloud computing[Online],available:http://en.wikipedia.org/wiki/ Cloud_computing,November 27,2011

    [31]Cloud computing[Online],available: http://www.cloudcomputingde fi ned.com/,July 17 2010

    [32]Segaran T,Hammerbacher J.B′eautiful Data:The Stories Behind Elegant Data Solutions.Sebastopol:OReilly,2009.

    [33]White T.Hadoop:The De fi nitive Guide(Second edition).Sebastopol: O’Reilly,2012.

    Yuanqing Xia graduated from the Department of Mathematics,Chuzhou University,China in 1991. He received his M.S.degree in fundamental mathematics from Anhui University,China in 1998 and his Ph.D.degree in control theory and control engineering from Beijing University of Aeronautics and Astronautics,China,in 2001.From 1991 to 1995, he was with the Tongcheng Middle-School,China, where he worked as a teacher.During January 2002-November 2003,he was a postdoctoral research associate in the Institute of Systems Science,Academy of Mathematics and System Sciences,Chinese Academy of Sciences,China, where he worked on navigation,guidance and control.From November 2003 to February 2004,he was with the National University of Singapore as a Research Fellow,where he worked on variable structure control.From February 2004 to February 2006,he was with the University of Glamorgan, Pontypridd,U.K.,as a research fellow,where he worked on networked control systems.From February 2007 to June 2008,he was a guest professor with Innsbruck Medical University,Innsbruck,Austria,where he worked on biomedical signal processing.Since July 2004,he has been with the Department of Automatic Control,Beijing Institute of Technology,Beijing, fi rst as an associate professor,then,since 2008,as a professor.And in 2012, he was appointed as Xu Teli Distinguished Professor at the Beijing Institute of Technology and obtained the National Science Foundation for Distinguished Young Scholars of China.

    His current research interests are in the fi elds of networked control systems, robust control and signal processing,active disturbance rejection control and fl ight control.He has published eight monographs in Springer and John Wiley, and more than 100 papers in journals.He is an editor in deputy of theJournal of the Beijing Institute of Technology,Associate editor ofActa Automatica Sinica,Control Theory and Applications,International Journal of Innovative Computing,Information and Control,International Journal of Automation and Computing.He obtained the Second Award of the Beijing Municipal Science and Technology(No.1)in 2010,the Second National Award for Science and Technology(No.2)in 2011,and the Second Natural Science Award of The Ministry of Education(No.1)in 2012.

    t

    May 18,2014;accepted September 12,2014.This work was supported by National Basic Research Program of China(973 Program)(2012CB720000),National Natural Science Foundation of China (61225015,61273128),Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61321002),the Ph.D.Programs Foundation of Ministry of Education of China(20111101110012),and CAST Foundation(CAST201210).Recommended by Associate Editor Huijun Gao.

    :Yuanqing Xia.Cloud control systems.IEEE/CAA Journal of Automatica Sinica,2015,2(2):134-142

    Yuanqing Xia is with the School of Automation,Key Laboratory of Intelligent Control and Decision of Complex Systems,Beijing Institute of Technology,Beijing 100081,China(e-mail:@bit.edu.cn).

    欧美不卡视频在线免费观看 | 人人妻人人爽人人添夜夜欢视频| 天天添夜夜摸| 两性夫妻黄色片| svipshipincom国产片| 热re99久久国产66热| 亚洲人成网站在线播放欧美日韩| 久久精品aⅴ一区二区三区四区| 久久久精品欧美日韩精品| 午夜精品久久久久久毛片777| 国产精品一区二区在线不卡| 在线观看66精品国产| 99re在线观看精品视频| 丝袜美腿诱惑在线| 亚洲五月天丁香| 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一小说| 一区二区三区精品91| 久久精品亚洲av国产电影网| 精品国产一区二区久久| 亚洲免费av在线视频| av天堂久久9| 中文字幕精品免费在线观看视频| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 国产精品香港三级国产av潘金莲| 国产精品 国内视频| 91麻豆av在线| 水蜜桃什么品种好| 久久精品国产清高在天天线| 一区二区三区精品91| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| tocl精华| 国产精品野战在线观看 | 黄色片一级片一级黄色片| 亚洲精品久久午夜乱码| 自线自在国产av| 日韩三级视频一区二区三区| 精品国产一区二区久久| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 在线国产一区二区在线| 纯流量卡能插随身wifi吗| 亚洲国产精品999在线| 男女做爰动态图高潮gif福利片 | 国产精品成人在线| 看免费av毛片| 1024视频免费在线观看| 午夜老司机福利片| 久久国产亚洲av麻豆专区| 每晚都被弄得嗷嗷叫到高潮| 啦啦啦 在线观看视频| 男人操女人黄网站| 看黄色毛片网站| 日韩免费av在线播放| 亚洲熟妇熟女久久| 国产区一区二久久| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 日韩欧美免费精品| 午夜久久久在线观看| 亚洲国产精品合色在线| 一进一出好大好爽视频| 中文字幕人妻熟女乱码| 男男h啪啪无遮挡| 精品电影一区二区在线| 欧美激情高清一区二区三区| 国产激情久久老熟女| 欧美精品啪啪一区二区三区| 久热这里只有精品99| 视频在线观看一区二区三区| 久久青草综合色| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 成人国语在线视频| 少妇 在线观看| 丰满的人妻完整版| 青草久久国产| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| 国产激情久久老熟女| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 一边摸一边抽搐一进一小说| 亚洲 欧美一区二区三区| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 99久久国产精品久久久| 亚洲午夜理论影院| 国产xxxxx性猛交| 日韩av在线大香蕉| 久久影院123| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 久久精品亚洲精品国产色婷小说| 两个人免费观看高清视频| 亚洲人成77777在线视频| a在线观看视频网站| 日韩有码中文字幕| 精品欧美一区二区三区在线| 国产成人av激情在线播放| 色综合婷婷激情| 又黄又爽又免费观看的视频| 成人av一区二区三区在线看| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区三| 高清毛片免费观看视频网站 | 亚洲精品一区av在线观看| 香蕉丝袜av| 国产亚洲欧美精品永久| 动漫黄色视频在线观看| 黄色视频不卡| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 国产精品美女特级片免费视频播放器 | av福利片在线| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 国产又色又爽无遮挡免费看| 午夜免费激情av| 国产精品电影一区二区三区| 久久国产精品男人的天堂亚洲| 最近最新免费中文字幕在线| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 亚洲五月婷婷丁香| 国产亚洲精品一区二区www| 日本欧美视频一区| 两性夫妻黄色片| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 久9热在线精品视频| 色综合婷婷激情| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 色综合婷婷激情| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 午夜日韩欧美国产| 99re在线观看精品视频| 欧美日韩一级在线毛片| 曰老女人黄片| 久久久久久久午夜电影 | 久久国产乱子伦精品免费另类| 在线天堂中文资源库| 大型av网站在线播放| 欧美人与性动交α欧美精品济南到| 午夜成年电影在线免费观看| 亚洲 欧美一区二区三区| 亚洲专区国产一区二区| 免费看a级黄色片| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 久久影院123| 自线自在国产av| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 村上凉子中文字幕在线| 超色免费av| 久久国产亚洲av麻豆专区| 在线观看一区二区三区激情| 波多野结衣一区麻豆| 一区二区三区国产精品乱码| 99久久久亚洲精品蜜臀av| 日韩欧美一区二区三区在线观看| 一个人免费在线观看的高清视频| 18禁美女被吸乳视频| 久99久视频精品免费| 国产精品永久免费网站| 免费日韩欧美在线观看| 嫩草影视91久久| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 一级毛片高清免费大全| a级毛片黄视频| 久久天堂一区二区三区四区| 很黄的视频免费| 成年版毛片免费区| 亚洲性夜色夜夜综合| 熟女少妇亚洲综合色aaa.| 日本黄色视频三级网站网址| 亚洲av熟女| 我的亚洲天堂| avwww免费| 国产精品久久视频播放| 无限看片的www在线观看| a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 成年版毛片免费区| 国产精品av久久久久免费| √禁漫天堂资源中文www| 欧美日韩亚洲高清精品| 日韩高清综合在线| 欧美性长视频在线观看| 久久久国产精品麻豆| 欧美中文综合在线视频| 国产av在哪里看| 日韩av在线大香蕉| 香蕉久久夜色| 国产黄a三级三级三级人| 老司机福利观看| 日本黄色视频三级网站网址| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 天堂影院成人在线观看| 美女大奶头视频| 亚洲人成电影观看| 无限看片的www在线观看| 亚洲视频免费观看视频| 国产精华一区二区三区| 午夜福利一区二区在线看| 国产高清激情床上av| 久久人妻福利社区极品人妻图片| 女人被狂操c到高潮| 成人精品一区二区免费| 色哟哟哟哟哟哟| 午夜免费观看网址| 精品福利永久在线观看| 精品久久久久久成人av| 国产精品99久久99久久久不卡| 黄色女人牲交| 又大又爽又粗| 国产人伦9x9x在线观看| 午夜两性在线视频| 成在线人永久免费视频| 丁香六月欧美| 精品乱码久久久久久99久播| 亚洲男人的天堂狠狠| 999久久久国产精品视频| 中亚洲国语对白在线视频| 9191精品国产免费久久| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 新久久久久国产一级毛片| 久久精品亚洲av国产电影网| 变态另类成人亚洲欧美熟女 | a级毛片在线看网站| 国产亚洲精品综合一区在线观看 | 日日爽夜夜爽网站| 日韩欧美三级三区| 午夜成年电影在线免费观看| 国产在线观看jvid| 免费不卡黄色视频| 老熟妇仑乱视频hdxx| 亚洲国产欧美一区二区综合| 国产精品乱码一区二三区的特点 | 国产精品美女特级片免费视频播放器 | 午夜a级毛片| 免费在线观看完整版高清| 国产精品成人在线| 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 久久人妻熟女aⅴ| 亚洲男人的天堂狠狠| 国产亚洲av高清不卡| 国产精品国产av在线观看| 久久九九热精品免费| 一级毛片女人18水好多| 一区二区日韩欧美中文字幕| 精品欧美一区二区三区在线| 亚洲自拍偷在线| 麻豆国产av国片精品| 黄色成人免费大全| 69av精品久久久久久| 91在线观看av| 久久精品影院6| www.熟女人妻精品国产| 国产主播在线观看一区二区| 老司机福利观看| 久久欧美精品欧美久久欧美| 亚洲人成电影免费在线| 悠悠久久av| 中亚洲国语对白在线视频| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区| 黄色怎么调成土黄色| 黄色女人牲交| 久久伊人香网站| 亚洲国产精品999在线| 国产欧美日韩综合在线一区二区| 亚洲成人久久性| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美网| 18禁国产床啪视频网站| 91国产中文字幕| 精品久久久久久久久久免费视频 | 亚洲成人精品中文字幕电影 | 多毛熟女@视频| 999久久久精品免费观看国产| 免费高清在线观看日韩| 久久久国产一区二区| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 色播在线永久视频| 淫秽高清视频在线观看| 一级毛片精品| av有码第一页| 国产精品野战在线观看 | 欧美日韩国产mv在线观看视频| 久久精品影院6| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 久久久国产一区二区| 无遮挡黄片免费观看| 国产麻豆69| 夜夜看夜夜爽夜夜摸 | 亚洲自偷自拍图片 自拍| 91成年电影在线观看| 国产激情欧美一区二区| 精品乱码久久久久久99久播| 两个人看的免费小视频| 久久精品国产亚洲av香蕉五月| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 久久久国产成人精品二区 | 高清av免费在线| 免费看a级黄色片| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 色综合站精品国产| 精品高清国产在线一区| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 一二三四社区在线视频社区8| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 国产高清videossex| 久久狼人影院| 夫妻午夜视频| 一进一出好大好爽视频| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 成人三级做爰电影| 精品国产一区二区三区四区第35| 校园春色视频在线观看| 久久精品国产亚洲av香蕉五月| 国产精品久久电影中文字幕| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| www.精华液| 99re在线观看精品视频| √禁漫天堂资源中文www| 午夜a级毛片| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 一级片'在线观看视频| 啦啦啦免费观看视频1| 久久草成人影院| 在线视频色国产色| 91麻豆av在线| 男女做爰动态图高潮gif福利片 | 看片在线看免费视频| 国产精品日韩av在线免费观看 | 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 97碰自拍视频| 女人被狂操c到高潮| 在线视频色国产色| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 黑人猛操日本美女一级片| 丰满的人妻完整版| 精品久久久久久久久久免费视频 | √禁漫天堂资源中文www| 婷婷六月久久综合丁香| 丰满迷人的少妇在线观看| 美女高潮喷水抽搐中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲精品粉嫩美女一区| netflix在线观看网站| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 美女国产高潮福利片在线看| www.www免费av| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 在线观看www视频免费| 成人黄色视频免费在线看| 国产精品综合久久久久久久免费 | 大码成人一级视频| 日韩欧美一区视频在线观看| 91大片在线观看| 国产成年人精品一区二区 | 国产伦人伦偷精品视频| 手机成人av网站| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 三级毛片av免费| 新久久久久国产一级毛片| 狂野欧美激情性xxxx| 免费少妇av软件| 国产亚洲欧美精品永久| 久久中文看片网| 一级毛片女人18水好多| 午夜福利在线免费观看网站| 免费日韩欧美在线观看| 久久久久国内视频| 欧美日韩亚洲高清精品| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 丰满迷人的少妇在线观看| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 亚洲午夜精品一区,二区,三区| 国产精品久久视频播放| 悠悠久久av| 国产麻豆69| 国产在线观看jvid| 天堂影院成人在线观看| 日韩三级视频一区二区三区| 国产亚洲精品一区二区www| 满18在线观看网站| 黄网站色视频无遮挡免费观看| 久久久国产成人免费| 久久久久亚洲av毛片大全| 久久草成人影院| 午夜福利一区二区在线看| 精品一区二区三区av网在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区久久| 69av精品久久久久久| 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 男人舔女人的私密视频| 欧美一级毛片孕妇| 欧美激情 高清一区二区三区| 无遮挡黄片免费观看| 婷婷丁香在线五月| 日韩欧美三级三区| 亚洲av片天天在线观看| 日韩av在线大香蕉| 身体一侧抽搐| 亚洲免费av在线视频| 精品一品国产午夜福利视频| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区久久 | 午夜老司机福利片| 精品一区二区三卡| 国产精品一区二区免费欧美| 女性生殖器流出的白浆| 老司机亚洲免费影院| 日韩大码丰满熟妇| 97碰自拍视频| 免费久久久久久久精品成人欧美视频| 亚洲久久久国产精品| netflix在线观看网站| 69av精品久久久久久| 亚洲精品成人av观看孕妇| 国产熟女午夜一区二区三区| 男女午夜视频在线观看| 多毛熟女@视频| 国产欧美日韩精品亚洲av| 国产亚洲精品综合一区在线观看 | 日本黄色视频三级网站网址| x7x7x7水蜜桃| 久久亚洲精品不卡| 亚洲色图综合在线观看| 少妇裸体淫交视频免费看高清 | 国产精品爽爽va在线观看网站 | 成熟少妇高潮喷水视频| 国产精品二区激情视频| 一本综合久久免费| 色精品久久人妻99蜜桃| 男人舔女人的私密视频| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 99国产精品一区二区三区| 十八禁人妻一区二区| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 午夜福利,免费看| 麻豆一二三区av精品| 欧美成人性av电影在线观看| 欧美日韩黄片免| 国产97色在线日韩免费| 18禁国产床啪视频网站| 午夜91福利影院| 电影成人av| 国产欧美日韩一区二区三区在线| 久久草成人影院| 免费在线观看完整版高清| 91在线观看av| 这个男人来自地球电影免费观看| 欧美+亚洲+日韩+国产| 熟女少妇亚洲综合色aaa.| 亚洲av成人av| 在线十欧美十亚洲十日本专区| 在线观看免费日韩欧美大片| 亚洲美女黄片视频| 精品第一国产精品| 亚洲九九香蕉| 99久久99久久久精品蜜桃| 在线看a的网站| 身体一侧抽搐| 99久久综合精品五月天人人| 欧美黑人欧美精品刺激| 无限看片的www在线观看| 大香蕉久久成人网| 91成人精品电影| 最近最新中文字幕大全电影3 | 欧美日韩亚洲高清精品| 久久久国产一区二区| 成年人免费黄色播放视频| 国产成+人综合+亚洲专区| 国产成人影院久久av| 神马国产精品三级电影在线观看 | 久久精品影院6| 在线十欧美十亚洲十日本专区| tocl精华| 美女午夜性视频免费| 人妻丰满熟妇av一区二区三区| 欧美日韩乱码在线| 九色亚洲精品在线播放| 男人的好看免费观看在线视频 | 国产精品亚洲av一区麻豆| 亚洲伊人色综图| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩无卡精品| 国产成人啪精品午夜网站| 丰满的人妻完整版| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 在线av久久热| 美女大奶头视频| 老司机午夜福利在线观看视频| 丁香欧美五月| 精品午夜福利视频在线观看一区| 日本 av在线| 两个人看的免费小视频| 亚洲av成人av| 色综合婷婷激情| 国产伦人伦偷精品视频| 精品福利观看| 久久性视频一级片| 亚洲专区中文字幕在线| 操美女的视频在线观看| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出 | 国产一区二区在线av高清观看| 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| 手机成人av网站| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 日本vs欧美在线观看视频| 精品一区二区三卡| 国产精品一区二区在线不卡| 亚洲熟妇熟女久久| 国产熟女xx| 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸 | 久久草成人影院| 一区二区日韩欧美中文字幕| 女人被狂操c到高潮| 涩涩av久久男人的天堂| 成熟少妇高潮喷水视频| 免费在线观看完整版高清| 久久 成人 亚洲| 一级a爱片免费观看的视频| 日韩av在线大香蕉| 欧美精品亚洲一区二区| 视频在线观看一区二区三区| 夜夜看夜夜爽夜夜摸 | 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 久久久国产成人精品二区 | 精品久久久久久成人av| 日韩欧美三级三区| 男男h啪啪无遮挡| 日本a在线网址| 久久香蕉精品热| 18美女黄网站色大片免费观看| 女人被躁到高潮嗷嗷叫费观| av片东京热男人的天堂| 国产一区在线观看成人免费| 精品第一国产精品| 国产成人精品在线电影| a级毛片黄视频| 欧美乱妇无乱码| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 亚洲精品国产精品久久久不卡| 日韩国内少妇激情av| 久久精品91无色码中文字幕| 三上悠亚av全集在线观看|